
Electronic Notes in Theoretical Computer Science 89 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume89.html 19 pages

Symbolic Model Checking of Software ?

Flavio Lerda 1, Nishant Sinha 2, Michael Theobald 3

School of Computer Science

Carnegie Mellon University

Pittsburgh, USA

Abstract

Model checking is a popular formal veri�cation technique for both software and

hardware. The veri�cation of concurrent software predominantly employs explicit-

state model checkers, such as Spin, that use partial-order reduction as a main tech-

nique to deal with large state spaces eÆciently. In the hardware domain, the intro-

duction of symbolic model checking has been considered a breakthrough, allowing

the veri�cation of systems clearly out-of-reach of any explicit-state model checker.

This paper introduces ImProviso, a new algorithm for model checking of software

that eÆciently combines the advantages of partial-order reduction with symbolic

exploration. ImProviso uses implicit BDD representations for both the state space

and the transition relation together with a new implicit in-stack proviso for eÆcient

partial-order reduction. The new approach is inspired by the Twophase partial-

order reduction algorithm for explicit-state model checking.

Initial experimental results show that the proposed algorithm improves the ex-

isting symbolic model checking approach and can be used to tackle problems that

are not tractable using explicit-state methods.

? This research was supported by the National Science Foundation (NSF) under grants no.

CCR-0121547 and CCR-0098072, by the Army Research OÆce (ARO) under contract no.

DAAD19-01-1-0485, by the OÆce of Naval Research (ONR), the Naval Research Laboratory

(NRL) under contract no. N00014-01-1-0796, by the Semiconductor Research Corporation

(SRC) under contract no. 99-TJ-684. The views and conclusions in this document are those

of the authors and should not be interpreted as representing the oÆcial policies, either

expressed or implied, of ARO, ONR, NRL, NSF, SRC, the U.S. Government or any other

entity.
1 Email:
erda@cs.cmu.edu
2 Email: nishants@cs.cmu.edu
3 Email: theobald@cs.cmu.edu

c
2003 Published by Elsevier Science B. V.

Lerda, Sinha, Theobald

1 Introduction

There have been a number of major recent initiatives toward making software

veri�cation more eÆcient [2,26,6,13,20,11]. An important reason for this trend

is that bugs in software systems can have dramatic consequences in safety

critical applications [3,24,17]. Moreover, a recent study [22] pointed out the

major negative economic impact of buggy software.

Designing bug-free software is a very challenging problem. As the typi-

cal software design process uses tools that may themselves contain bugs and

therefore cannot be trusted, and since errors also tend to be introduced by de-

signers and programmers, software veri�cation tools are indispensable. More

and more software systems include multi-threaded or distributed components,

and thus the veri�cation of concurrent software is an increasingly important

problem. The current practice in the software design industry is to use test-

ing to validate software. However, testing is typically not exhaustive, and

therefore is not suÆcient to guarantee correctness.

Model checking is a popular formal veri�cation technique for both software

and hardware. A very mature state-of-the-art tool for the veri�cation of con-

current software is the Spin model checker [12]. Spin is an explicit-state model

checker that employs partial-order reduction as a main technique to eÆciently

deal with large state spaces.

Partial-order reduction takes advantage of the independence of the steps

executed by concurrent processes. In an asynchronous model of computation,

all di�erent interleavings of the concurrent processes must be checked. Dif-

ferent interleavings can lead to di�erent states and properties that are true

for some interleavings may be false for a di�erent interleaving of the same

processes. However, under certain conditions (cf. Section 2.2), it is possible

to visit only a representative set of interleavings with the guarantee that, if a

property is violated by the system, a violation will be present in the represen-

tative set of interleavings as well. Techniques that only visit a reduced set of

interleavings are called partial-order reductions. The reduced state space can

often be dramatically smaller than the full state space.

In the hardware domain, the introduction of symbolic model checking is

generally considered a breakthrough. Symbolic model checkers use data struc-

tures, such as BDDs [4], that manipulate large number of objects simultane-

ously. In particular, symbolic model checkers allow the veri�cation of systems

clearly out-of-reach of any explicit-state model checker [5,8], with state spaces

that go beyond 1020 states.

Partial-order reduction is useful only when the system has an asynchronous

model of computation. While most hardware designs are based on a clocked

approach and thus synchronous, concurrent software is asynchronous in na-

ture. BDD-based symbolic model checking techniques, which provide eÆcient

representation and manipulation of both the state space and the transition

relation, are applicable to both hardware and software. Therefore, an eÆcient

2

Lerda, Sinha, Theobald

combination of symbolic model checking and partial-order reduction can be

used to overcome some of the current limitations of software model checking.

Two such approaches are the techniques by Alur et al. [1] and Kurshan et

al. [15]. However, both techniques su�er from an ineÆcient in-stack proviso

check that limits the e�ectiveness of the reduction. Partial-order reduction al-

gorithms are based on the idea of postponing transitions without a�ecting the

property to be checked, and provisos are used to guarantee that no transition

is postponed inde�nitely.

There are three main challenges for model checking software using a BDD-

based symbolic approach. First, an e�ective way to extract a �nite model

from a software language is needed. Second, a model checker must e�ectively

combine the symbolic approach with other optimization techniques, and in

particular, with partial-order reduction. Third, new BDD algorithms opti-

mized for the software domain must be developed. This paper focuses on the

second point, however, the other two points will be brie
y discussed in the

results and conclusions sections.

This paper introduces ImProviso, a new algorithm for model checking

of software that eÆciently combines the advantages of partial-order reduc-

tion with symbolic exploration. ImProviso uses implicit BDD representations

for both the state space and the transition relation together with a new im-

plicit in-stack proviso for eÆcient partial-order reduction. The new approach

is inspired by the Twophase partial-order reduction algorithm for explicit-

state model checking. Our new technique introduces a much tighter over-

approximation of the in-stack proviso than presented in previous work, and

thus is very promising for the veri�cation of software.

The remainder of the paper is structured as follows. In Section 2, we

present some background information that is used throughout the paper.

Next, we discuss the new proposed ImProviso algorithm is Section 3. In Sec-

tion 4, we present the results obtained from a preliminary comparison with

existing tools. Section 5 gives conclusions as well as directions for future work.

2 Background

2.1 De�nitions

We assume a process-oriented modeling language where each process main-

tains a set of local variables that cannot be accessed by other processes. The

values of the local variables of a process form the state of the process. Each

process includes a distinguished local variable called program counter.

A system consists of a set of concurrent processes with local variables, a

set of global variables that all processes can access, and a set of point-to-point

channels
4
of �nite capacity used for communication. The state of the system

4 For simplicity we only consider point-to-point channels, but this is not a necessary re-

striction of the presented approach.

3

Lerda, Sinha, Theobald

consists of the states of all the processes, the values of all global variables, and

the content of the channels. The potential state space S is simply the cross

product over the �nite ranges thereof.

Each process is speci�ed in terms of statements. We allow the speci�ca-

tion of multiple statements per program counter value in order to be able to

describe non-determinism such as reading from several channels. For each

value of the program counter at most one of a �nite number of statements will

execute. Each statement also de�nes an enabling condition, which speci�es in

which states of the system the statement can be executed.

Each statement is formalized as a transition function t de�ned on the state

space. The state that is reached from a state s by executing a transition t

is denoted by t(s). The notion of a statement being enabled is captured by

de�ning a transition t de�ned on a subset of the state space, i.e. enabled(t) �

S. We say that a transition t is enabled in a state s i� s 2 enabled(t).

Given two transitions t1 and t2 enabled in a state s:

Enabledness Condition: The execution of t2 does not disable t1, i.e. t2(s) 2

enabled(t1).

Commutativity Condition: The execution of t1 followed by t2 leads to the

same state as executing t2 followed by t1, i.e. t2(t1(s)) = t1(t2(s)).

The concepts of enabledness and commutativity are central to partial-order

reduction.

2.2 Partial-Order Reduction

Partial-order reduction is a technique to reduce the state space that needs to

be visited to model check a system. The basic idea is to de�ne an equivalence

relation over all the possible execution paths. At least one path from each

equivalence class must be visited in order to verify the correctness of the

system.

There are many di�erent approaches for partial-order reduction, including

stubborn sets [25], ample sets [23,9], and sleep sets [10]. All approaches de�ne

two types of \steps" at a given state:

� A full expansion generates the next states for all enabled transitions.

This is the normal approach taken by model checkers without partial-order

reduction.

� Under certain conditions, it is possible to expand only a subset of the en-

abled transitions, called a partial expansion. The conditions must guar-

antee to visit a path from every equivalence class.

A partial expansion essentially postpones the transitions which are not in-

cluded. A postponed transition will be enabled in all the next states. In order

to ensure correctness a transition must not be inde�nitely postponed along

any execution path. This can occur if there exists a loop in the global reach-

4

Lerda, Sinha, Theobald

S1

S2

S3

S4

t1

t1

t1

t2

t2

t2

t0

t3

t4

t5

Fig. 1. The dotted transitions are inde�nitely postponed.

able state space which contains only partial expansions and some transition

is postponed by all of the partial expansions in the cycle (transitions t1 and

t2 in Figure 1).

In partial-order reduction, therefore, two main issues need to be considered:

(i) which subsets of transitions to choose for partial expansions, and (ii) how
to avoid that transitions are postponed inde�nitely. The former leads to the

notion of deterministic states and the latter leads to the notion of proviso,
discussed below.

Deterministic States

An e�ective way to choose subsets of transitions for partial expansions is based

on the notion of a state being deterministic. A state s is deterministic for a

process P i�

� only one transition of the process P is enabled in s;

� the enabled transition of P commutes with transitions that can be executed

by another process at any point in the future (Commutativity Condition;

cf. Section 2.1);

� executing the enabled transition of P does not disable transitions that can

be executed by another process at any point in the future (Enabledness

Condition; cf. Section 2.1);

� a transition executed by another process at any point in the future cannot

disable or enable any of the transitions of P de�ned at the program counter

location of P in s (Enabledness Condition and its dual).

Note, however, that the de�nition of deterministic does not preclude the

enabled transition of P from enabling transitions in another process.

In a deterministic state, the only enabled transition can be taken, i.e. used

for a partial expansion, without a�ecting the safety property to be checked.

5

Lerda, Sinha, Theobald

Proviso

A common way to avoid that a transition is postponed inde�nitely is to check

a so called in-stack proviso at run-time. Explicit-state model checkers perform
a depth-�rst search, therefore a cycle can be detected by checking if a newly

visited state belongs to the current depth-�rst search stack, hence the name

in-stack proviso. When the in-stack proviso is not satis�ed a full expansion of

the current state is performed. The in-stack proviso makes sure that any loop

will contain at least one full expansion by forcing a full expansion whenever a
cycle is detected.

2.3 Practical Partial-Order Reduction

Computing the set of conditions necessary and suÆcient for partial-order re-
duction is typically computationally too expensive [9]. Therefore, in practice,

partial-order reduction algorithms compute safe approximations, i.e. some
steps may be larger than necessary partial expansions. Hence, the reduced

state space is guaranteed to preserve the desired properties, but may not nec-

essarily be the minimum such state space.

A simple but e�ective heuristic is based on syntactic information from the

speci�cation of the processes, i.e. which variables and channels are accessed
by each statement. A safe approximation for a state s to be deterministic for

process P is that only one transition of P is enabled in s and the following
conditions hold for every enabled or disabled transition t of process P de�ned
at the program counter of P in s:

� t does not access any global variable;

� one of the following holds:

� t is not a channel operation;

� t is a receive operation from a channel and the channel is not empty in s;
� t is a send operation on a channel and the channel is not full in s.

These conditions imply that state s is deterministic for process P .

3 New Algorithm: IMPROVISO

This section introduces a novel partial-order reduction algorithm for symbolic
model checking called ImProviso. Before explaining the new algorithm, we

brie
y review the Twophase algorithm for explicit-state model checking, de-

veloped by Nalumasu and Gopalakrishnan [21], which forms a basis of our
approach.

3.1 Twophase Algorithm

Our approach is inspired by the Twophase explicit-state partial-order reduc-

tion algorithm presented in [21]. The Twophase algorithm consists of two

alternating phases:

6

Lerda, Sinha, Theobald

S1

S2

S3

S4

P1

P1

P1

P2

(a)

S5

S6

S7

S8

P1

P1

P2

P2

(b)

Fig. 2. Back edge: (a) local to phase one; (b) beyond current phase one.

� Phase 1 expands only deterministic states (cf. Section 2.2), considering each

process at a time, in a �xed order. As long as a process is deterministic,

the single transition that is enabled for that process is executed. Otherwise,

the algorithm moves on to the next process. After expanding all processes,

the last reached state is passed on to phase 2.

� Phase 2 performs a full expansion of the given state, executing every tran-

sition enabled at that state. Then, phase 1 is invoked for each of the newly

visited states, one at a time.

In order to avoid ignoring a transition inde�nitely, it is suÆcient to perform

a full expansion for at least one state of every cycle. To ensure that, every

time a cycle is detected within the current phase 1 (e.g. states S2, S3, and

S4 in Figure 2-a), therefore the control is passed on to the next process or to

phase 2 if expanding the last process. Cycles that go beyond a single phase 1

instance (e.g. states S6, S7, and S8 in Figure 2-b) do not pose a problem since

they contain at least one fully expanded state (e.g. state S6 in the �gure).

The reason for the latter is that phase 2 always performs a full expansion and

the two phases are alternated.

3.2 Overview of ImProviso

The main challenge in designing a symbolic algorithm for partial-order reduc-

tion is to check the in-stack proviso eÆciently. Since symbolic model checkers

perform a breadth-�rst search, it is not as easy to identify cycles as with

explicit-state model checkers (cf. Section 2.2). One possible approach [1] is

to over-approximate the set of predecessors with the set of previously visited

states. This guarantees that all cycles are correctly identi�ed. However, this

over-approximation leads to a limited reduction, since in many cases a full

expansion is performed when a partial expansion would be suÆcient. In fact,

for a given state the set of its predecessors is typically much smaller than the

7

Lerda, Sinha, Theobald

set of all previously visited states.

An important aspect of improved partial-order reduction techniques for

symbolic model checking is to better distinguish between the sets of all pre-

viously visited states and the set of predecessors. We recognized that the

Twophase algorithm has a great potential for application to symbolic model

checking: the in-stack proviso is checked only during phase 1 and only against

states belonging to the stack of the current phase 1. Therefore, it is possible

to over-approximate the phase 1 stack with the set of states visited during the

current phase 1, instead of all previously visited states.

The major ideas of our approach are presented in the following subsec-

tions. First, we explain how the transition relations for the di�erent phases

are constructed. Then, two improvements over the Twophase algorithm are

described: (i) the removal of the restriction of deterministic transitions in

phase 1; (ii) the addition of a �xpoint operation to phase 1. Finally, the new

ImProviso algorithm is described, followed by a brief comparison with related

work.

3.3 De�ning the Transition Relation

Symbolic model checking uses an implicit transition relation to perform ef-

�cient image computation. Normally, a single transition relation (possibly

partitioned) represents all the transitions. In contrast, our approach de�nes

multiple transition relations because it employs two phases and di�erent sets

of transitions are executed in each phase.

Phase 1 expands at each step only the transitions of states that are de-

terministic for a given process. Therefore, a separate transition relation is

de�ned for each process. This transition relation includes only the transitions

of a process from states that are deterministic. To build the transition rela-

tion of a process, each of its transitions are considered. For each transition, we

compute the deterministic states out of all the states at which the transition

is enabled. Let us consider three examples:

� An assignment to local variable v (line 4 in Figure 3-a) is deterministic for

every state at which it is enabled.

� A non-deterministic choice with mutually exclusive conditions (lines 5-8 in

Figure 3-a) is also always deterministic.

� A non-deterministic choice with overlapping conditions (lines 9-12 in Fig-

ure 3-a) is deterministic only at states where exactly one of the two options

is enabled (w 6= 0 in the example).

Then, each transition can be restricted to the states that are deterministic

for the process it belongs to. The restricted transitions of a process are merged

to obtain a transition relation for that process. Such transition relations will

be used during phase 1.

8

Lerda, Sinha, Theobald

1: active proctype a()

2: f
3: int v, w;

4: v = 1;

5: if

6: :: v == 0; w = 0;

7: :: v == 1; w = 5;

8: �;

9: if

10: :: w >= 0; w = 1;

11: :: w <= 0; w = -1;

12: �

13: g

1: chan q = [1] of fintg;
2: int x;

3: active proctype receiver()

4: f
5: int a;

6: q ? a;

7: g
8: active proctype sender()

9: f
10: q ! 1;

11: g
12: active proctype another1()

13: f
14: x = 1;

15: g
16: active proctype another2()

17: f
18: x = 2;

19: g

(a) (b)

Fig. 3. Simple Promela examples.

Phase 2, on the other hand, expands all transitions. Therefore, its transi-
tion relation consists of all the processes and transitions and can be computed
in the usual way.

3.4 Dropping the Determinism

Phase 1 considers one process P at a time. One of the requirements for the
current state to be expanded is that only one transition of P is enabled. As a
consequence, only one single path is generated during phase 1. Therefore, no
backtracking is necessary, simplifying the implementation of an explicit-state
algorithm.

This requirement is not necessary for the correctness of the algorithm. It
is possible to remove such requirement while still preserving safety properties.
Our new algorithm, ImProviso, hence takes advantage of multiple enabled
transitions in a single process.

In particular, the states that can be expanded during phase 1 only need
to satisfy the following three conditions:

� the enabled transitions of P commute with transitions that can be executed
by another process at any point in the future;

� executing any of the enabled transitions of P does not disable transitions
that can be executed by another process at any point in the future;

� a transition executed by another process at any point in the future cannot
disable or enable any of the transitions of P de�ned at the program counter
location of P in s.

Therefore, in practice, it is suÆcient to check that every transition t of P

9

Lerda, Sinha, Theobald

de�ned at the program counter location of P in s satis�es the following:

� t does not access any global variable;

� one of following holds;

� t is not a channel operation;

� t is a receive operation from a channel and the channel is not empty in s;

� t is a send operation to a channel and the channel is not full in s;

As a consequence of this new de�nition, the construction of the transition

relations for phase 1 is simpli�ed because it is no longer necessary to determine

which states have only one transition enabled for each process. At the same

time, we are able to apply the reduction in more cases. In particular, we are

able to perform as well a reduction as Spin on an example that the Twophase

authors used to show how their tool performs a worse reduction than Spin.

3.5 Fixpoint Computation During Phase 1

The transitions expanded during phase 1 of Twophase do not a�ect each other

and all interleavings thereof are equivalent. This phase considers the processes

in a �xed order and therefore, only one of all possible interleavings is explored.

This is the key of the reduction.

Transitions of one process are expanded as long as the current state is

deterministic for the process: the algorithm generates the next state by ex-

panding the only transition that is enabled. When the current state is not

deterministic for the process, the next process is considered. When the last

process cannot be expanded any further, the current state is passed on to

phase 2 for full expansion. However, the state that is passed on to phase 2 by

this algorithm might still be deterministic for one of the previous processes.

As an example, consider the four processes in Figure 3-b: the �rst two

processes are a receiver and a sender which communicate using a channel, the

other two processes set the value of a global variable. Phase 1 will consider

the processes in a �xed order, for instance, the one given by the ordering of

the processes in the source. In the initial state the queue is empty and the

value of x is zero. The initial state is not deterministic for the �rst process

(receiver) because no transition is enabled (the queue is empty, so the read

operation is disabled). The next process (sender) is able to take a step and a

new state is reached in which the queue contains the value 1. This new state

is not deterministic for process sender as no transition is enabled at this point.

Moving on to the next process (another1), no transition is taken because the

only enabled transition refers to a global variable and therefore cannot be

safely executed during phase 1. The same situation occurs when considering

the last process (another2). At this point phase 1 terminates.

However, the current state (in which the queue contains the value 1) is

deterministic for process receiver. The Twophase algorithm does not consider

processes more than once during the same phase 1, and a full expansion is

10

Lerda, Sinha, Theobald

1: global Frontier ;

2: global VisitedStates;

3:

4: procedure Phase1 ()

5: begin

6: local Moved := true;

7: local Stack := Frontier ;

8:

9: while Moved do

10: begin

11: Moved := false;

12: for each process I

13: begin

14: local NextFrontier := empty;

15:

16: while Frontier is not empty

17: begin

18: local Image := apply(

TransitionRelationPhase1 [I],

Frontier);

19: NextFrontier := NextFrontier [

(Image \ Stack);

20: Frontier := Image � Stack ;

21: Stack := Stack [Frontier ;

22:

23: if Frontier is not empty then

24: begin

25: Moved := true;

26: end;

27: end;

28:

29: Frontier := NextFrontier ;

30: end;

31: end;

32: Frontier := Frontier � Visited ;

33: Visited := Visited [Stack ;

34: end;

35:

36: procedure Phase2 ()

37: begin

38: local Image := apply(

TransitionRelationPhase2 , Frontier);

39:

40: Frontier := Image � Visited ;

41: Visited := Visited [Image;

42: end;

43:

44: procedure ImProviso(Init)

45: begin

46: Frontier := Init ;

47: Visited := Init ;

48:

49: while Frontier is not empty do

50: begin

51: Phase1 ();

52: Phase2 ();

53: end;

54: end;

Fig. 4. Pseudo-code of the ImProviso algorithm.

performed at this point: this full expansion causes the exploration of multiple

interleavings of the receive operation with the other two processes, which is

not necessary.

ImProviso includes an additional �xpoint computation in phase 1, which

guarantees that a state is passed on from phase 1 to phase 2, only if it is not

deterministic for all of the processes. At the same time, processes are still

considered in a �xed order during each iteration, therefore exploring only one

of the possible interleavings.

Although �xpoint computations are natural in symbolic model checking,

the proposed improvement could have been added to the Twophase explicit-

state algorithm as well. In addition, this improvement of the algorithm guar-

antees that no transition belonging to phase 1 will be executed during phase

2, making the generation of the transition relation for phase 2 simpler by in-

cluding only those transitions which are not included in the phase 1 transition

relations.

3.6 The ImProviso Algorithm

The pseudo-code for the ImProviso algorithm for reachability is presented in

Figure 4.

The main procedure ImProviso (lines 44-54) initializes the frontier and the

set of already visited states to the set of initial states (lines 46-47), and then

11

Lerda, Sinha, Theobald

1 21 1121 1 1

(a) (b)

Fig. 5. Part of the visited state space which is used in cycle detection: (a) Alur et

al.; (b) ImProviso.

the two phases are called alternately until the frontier becomes empty (lines

49-53).

Phase 1 performs a partial expansion of the deterministic states for each

process (lines 12-27), by using a transition relation which only includes tran-

sitions of deterministic states for process i (TransitionRelationPhase1[I]).

If any of the newly reached states (Image) has already been visited dur-

ing the current phase 1 (i.e. belongs to Stack), then such state needs to be

expanded by the next process and therefore it is added to NextFrontier (line

19). This represents the case where one of the successors belongs to the set of

previously visited states and may be part of a cycle. Adding this state to the

next frontier guarantees that at least one other transition at that state will be

expanded.

The outer most loop (lines 9-31) is repeated as long as at least one of the

processes made a step, i.e. generated a new, unvisited state (line 25).

Phase 2 performs a full expansion (lines 39-41) in the classical way. The

transition relation used for this step is TransitionRelationPhase2, which con-

tains all transition.

3.7 Related Work

The idea of combining partial-order reduction and symbolic model checking is

not new, however, our approach has a signi�cant advantage in the way the in-

stack proviso needs to be checked. Other approaches presented before include

the work by Alur et al. [1] and Kurshan et al. [15]. We brie
y review their

approaches and relate them to our work. However, a detailed experimental

comparison with these approaches was not possible because neither of the

tools was freely available.

Alur et al. [1] adapt a partial-order reduction algorithm used in explicit-

state model checking to the symbolic case. They expand an ample sets of

transitions at each step. However, they assume that the entire set of previously

visited states in the breadth-�rst symbolic exploration (Fig. 5-a) corresponds

to the stack in the explicit case: revisiting any state is considered a possible

12

Lerda, Sinha, Theobald

cycle, even though a previously visited state may not be a predecessor to the

current state along any execution path. Thus, they might detect spurious

cycles in the state space and visit an over-approximation of the actual partial-

order reduced state space. In contrast, our approach checks for possible cycles

only with respect to states visited in the current phase 1 (Fig. 5-b).

Kurshan et al. [15] propose a completely static technique based on pre-

processing the model. They statically transform the model into one with a

reduced state space by adding information to the system description before

it is model checked. Their technique avoids ignoring a transition inde�nitely

during model checking by fully expanding at least one state from each local

cycle, where a local cycle is a cycle in the control
ow graph of a single process.

However, not every local cycle of transitions may correspond to a cycle in the

global state space and thus results in a limited reduction.

4 Experimental Results

We have implemented the ImProviso algorithm in the NuSMV symbolic model

checking framework and called the tool NuSMV-ImProviso. NuSMV[7] is the

evolution of SMV, the �rst symbolic model checker developed by Ken McMillan

at Carnegie Mellon[19].

In order to show the e�ectiveness of our approach, we report comparisons

with three other tools: (i) we compare NuSMV-ImProviso with NuSMV with-

out partial-order reduction to show the signi�cant bene�ts of adding ImProviso

to NuSMV; (ii) since ImProviso was inspired by the Twophase algorithm, we

compare NuSMV-ImProviso with the Protocol Veri�er (PV) [21], which imple-

ments Twophase; (iii) we compare NuSMV-ImProviso with Spin [12], which is

one of the leading tools for veri�cation of concurrent systems.

The tools have been run on a 1.4MHz AMD Athlon dual-processor work-

station giving each tool up to 1GB of memory.

For our comparisons, we use models written in Promela, which is the input

language of Spin and PV. For NuSMV and NuSMV-ImProviso we translate

the Promela models into an SMV speci�cation. This conversion has been

done automatically using a translator currently under development within

our group[16]. The results presented in this section have been obtained using

similar options in each of the tools, with the goal of focusing on a comparison

of the main algorithms.

Although we attempted to make our comparisons as fair as possible, some

di�erences could not be resolved, giving a slight advantage to Spin and PV over

our tool. The reported memory for the NuSMV runs includes the storage of the

transition relation while for both Spin and PV the transition relation is encoded

as part of the generated veri�er and therefore is not included in the memory

reported; the run-time for the NuSMV runs includes the time necessary to

parse the input and generate the transition relation, while this operation is

performed by the veri�cation program generator and the compiler for both

13

Lerda, Sinha, Theobald

#states time memory #states time memory
4864210 3217.69s 63.6 MB Migratory Protocol (2) 155040 108.63s 56.3 MB

1270 0.87s 6.2 MB Stable Marriage (2) 710 0.84s 7.3 MB
3107 4.26s 10.3 MB Stable Marriage (3) 1275 2.72s 10.4 MB

71495 112.25s 24.7 MB Stable Marriage (5) 10351 31.56s 30.0 MB
2187 0.08s 0.7 MB Best (7) 15 0.06s 0.7 MB

3486780000 0.56s 5.7 MB Best (20) 41 0.34s 5.7 MB
27 0.04s 0.3 MB Worst (3) 15 0.04s 0.3 MB

3486780000 0.46s 5.0 MB Worst (20) 2097150 0.36s 5.0 MB
Worst (100) 2.54E+30 14.34s 14.6 MB

NuSMV NuSMV-ImProviso

N/A1

Table 1

Comparison of NuSMV and NuSMV-ImProviso.

Spin and PV and is not included in the their run-times. It should be noted

that NuSMV-ImProviso is currently only a prototype and not as optimized as

Spin and PV. Many improvements are possible that will the reduce memory

requirements and the run-time once implemented.

4.1 NuSMV vs. NuSMV-ImProviso

The �rst set of results (Table 1) is meant to compare NuSMV with our version

of the tool NuSMV-ImProviso.

The examples presented in the table belong to the oÆcial distribution of

PV or have been taken from published work.

� The \Migratory Protocol" example, from the distribution of PV, describes

the migratory cache coherency protocol of the Avalanche system.

� The \Stable Marriage" example implements a distributed algorithm for the

solution of the stable marriage problem[18]. This example is parameterized

by the number of couples.

� The \Best" example is presented in [21] and represents a case where the PV

tool gives a better reduction than Spin. This example is parameterized by

the number of processes in the system.

� The \Worst" example is presented in [21] and represents a case where Spin

performs better reduction than the PV tool . This example is parameterized

by the number of processes in the system.

The results show that in many cases the reduction of the state space ob-

tained by using the ImProviso algorithm causes a reduction in the number of

states and a signi�cant decrease in run-time. For example, for the \Migratory

Protocol", both the states and the run-time are reduced by a factor of 30.

The slight increase of memory requirements for some of the examples can be

1 Results are not available because the model checker ran out of memory or did not complete

within 24 hours. The memory limit was set of 1GB.

14

Lerda, Sinha, Theobald

#states time memory #states time memory #states time memory
Migratory Protocol (2) 155040 108.63s 56.3 MB 86246 1.00s 4.3 MB 435456 2.34s 42.8 MB
Stable Marriage (2) 710 0.84s 7.3 MB 595 <0.01s 2.2 MB 568 <0.01s 1.5 MB
Stable Marriage (3) 1275 2.72s 10.4 MB 1135 <0.01s 2.2 MB 945 <0.01s 1.5 MB
Stable Marriage (5) 10351 31.56s 30.0 MB 9063 0.14s 2.6 MB 8421 0.03s 2.1 MB
Best (7) 15 0.06s 0.7 MB 15 <0.01s 2.2 MB 2187 0.03s 1.5 MB
Best (20) 41 0.34s 5.7 MB 41 <0.01s 2.2 MB
Worst (3) 15 0.04s 0.3 MB 27 <0.01s 2.1 MB 15 <0.01s 1.5 MB
Worst (20) 2097150 0.36s 5.0 MB 2097150 15.03s 110.6 MB
Worst (100) 2.54E+30 14.34s 14.6 MB

NuSMV-ImProviso PV SPIN

N/A1
N/A1

N/A1

N/A1

Table 2

Comparison of NuSMV, NuSMV-ImProviso, Spin and PV.

explained by the fact that a BDD representing a smaller set of states is not

necessarily smaller than one representing a larger set.

In cases where the reduction in the number of states is more than marginal,

a reduction in the memory requirements is typically also present. In fact,

the last entry in the table is only veri�able after we introduce partial-order

reduction.

4.2 Comparison with Explicit-State Model Checkers

The next table (Table 2) compares NuSMV-ImProviso with Spin and PV using

the same examples presented above.

In almost all the cases, the number of states in the reduced state space of

NuSMV-ImProviso is close to the number of states explored by the explicit-

state model checkers: this shows that the over-approximation of the proviso

condition in NuSMV-ImProviso is indeed tight.

NuSMV-ImProviso is able to verify the largest example presented while

both explicit-state tools run out of memory. This shows how the use of sym-

bolic representations for the state space can be crucial for the veri�cation of

large examples.

However, for examples that can be handled by both the symbolic and

explicit-state tools, the explicit state tools almost always use less memory and

less time. This is in part due to the fact that both Spin and PV generate a

customized veri�er for each model that needs to be veri�ed, thus generating

a very optimized veri�er for the model. We believe that further optimizations

of NuSMV-ImProviso will make it more competitive in these cases.

It is also relevant to notice that in both the \Best" and \Worst" examples,

NuSMV-ImProviso always matches the better of the the two algorithms (Spin

or PV) in terms of state space reduction: we believe that this is due to the

removal of the deterministic constraint on the transitions. This allows for

ample sets of size larger than one, but at the same time conserves the concept

of Twophase.

15

Lerda, Sinha, Theobald

#states time memory #states time memory #states time memory
2 70 0.11s 1.1 MB 70 <0.01s 2.1 MB 70 <0.01s 1.5 MB
3 488 0.57s 4.6 MB 488 0.03s 2.2 MB 488 <0.01s 1.5 MB
4 3576 6.77s 10.6 MB 3576 0.38s 2.5 MB 3576 0.10s 2.3 MB
8

#states time memory #states time memory #states time memory
2 48 0.10s 1.0 MB 48 0.04s 2.1 MB 48 0.02s 1.5 MB
3 209 0.31s 3.0 MB 209 <0.01s 2.2 MB 209 <0.01s 1.5 MB
4 922 1.77s 10.4 MB 922 0.04s 2.2 MB 922 <0.01s 1.7 MB
8 306903 3553.86s 381.8 MB 306903 28.62s 60.4 MB 306903 11.82s 232.8 MB

Non-PO

PO
NuSMV-ImProviso PV

NuSMV PV

N/A1 N/A1

SPIN

SPIN

N/A1

Table 3

The leader election protocol with NuSMV, NuSMV-ImProviso, PV, and Spin.

4.3 The Leader Election Protocol

The next table (Table 3) shows the details of the comparison of the three

tools, with and without partial-order reduction, on a set of instances of the

\Leader Election" protocol.

The \Leader Election" protocol has been used in many papers on partial-

order reduction [1,15,14], both in the explicit-state and the symbolic model

checking domain. The example models a distributed algorithm used to de-

termine which node in an unidirectional ring has the highest identi�er. The

example is parameterized by the number of nodes that belong to the ring.

It can be noted from Tables 3 and 4 (\Non-PO"), that without partial-

order reduction, our translation produces equivalent models with the same

number of states as the other tools. Interestingly, the number of states after

the reduction are the same, showing that the partial-order reduction of all the

three algorithms are equally e�ective on this example.

In all the shown examples the size of the state space after reduction is

small enough for the explicit-state model checkers to outperform the symbolic

model checker. However, this is no longer true when we consider a slightly

modi�ed and more diÆcult example.

Table 4 shows the \Leader Election" example with a modi�cation: as

pointed out in [1], the example presented as before and in [14], only represents

a particular case for a �xed assignment of identi�ers to nodes. Hence, it is

not representative of all the di�erent cases that the algorithm was meant to

deal with. In order to verify all possible assignments of identi�ers to nodes,

it is suÆcient to consider all possible assignments of identi�ers in the range

between 0 and n� 1, where n is the number of nodes.

As can be seen from the Table 4, this change to the model causes the num-

ber of states to grow exponentially as the number of nodes increases even after

16

Lerda, Sinha, Theobald

#states time memory #states time memory #states time memory
2 187 0.17s 3.0 MB 187 <0.01s 2.1 MB 187 <0.01s 1.5 MB
3 5602 5.61s 12.5 MB 5602 0.32s 2.6 MB 5602 0.07s 2.4 MB
4 473173 650.25s 62.9 MB 473173 46.62s 49.1 MB 473173 13.58s 119.7 MB
5

#states time memory #states time memory #states time memory
2 119 0.17s 3.3 MB 139 <0.01s 2.1 MB 119 <0.01s 1.5 MB
3 2566 2.14s 11.7 MB 3298 0.12s 2.4 MB 2566 0.07s 1.9 MB
4 135173 133.69s 37.6 MB 167173 6.99s 18.9 MB 135173 1.81s 34.3 MB
5 7699370 11635.00s 829.2 MB

N/A1 N/A1 N/A1

N/A1 N/A1

PO
NuSMV-ImProviso PV SPIN

NuSMV PV SPIN
Non-PO

Table 4

The leader election protocol with non-deterministic initial state.

applying partial-order reduction. Even for just 5 nodes, it is already impossible

for both Spin and PV to verify the system, and a more eÆcient representation

like the one used by the symbolic model checker becomes necessary.

In particular, all the di�erent assignments of identi�ers to the nodes gen-

erate a set of initial states: the explicit-state model checkers need to visit all

the states reachable from these initial states individually. One advantage of

a symbolic approach (besides a more compact representation) is the ability

to execute all transitions enabled in the initial states at the same time. This

is therefore a case in which the symbolic model checker can be much more

e�ective.

5 Conclusions and Future Work

In this paper, we propose a new symbolic algorithm called ImProviso that

exploits partial-order reduction to extend the applicability of symbolic model

checking to concurrent and distributed software.

The e�ectiveness of this method is based on a more eÆcient way of checking

the in-stack proviso. ImProviso was inspired by the Twophase partial-order

reduction algorithm used by the explicit-state model checker PV, but this

algorithm has been revisited to better exploit the potential of symbolic explo-

ration. We extended the approach in several ways, including the introduction

of an added �xpoint computation step, and the removal of the requirement to

restrict the applicability to deterministic transitions.

We implemented ImProviso within the veri�cation framework o�ered by

NuSMV and presented some preliminary comparison with two leading tools in

the explicit-state model checking domain. We have been able to show that

some big examples can be veri�ed by NuSMV-ImProviso, but not by either

an explicit-state model checker, or a symbolic model checker without partial

17

Lerda, Sinha, Theobald

order reduction.

In the future, we plan to extend the ImProviso algorithm to verify prop-

erties in temporal logics and intend to further improve its performance. We

believe that the presented algorithm can be used as a core to build an eÆcient

tool for model checking of concurrent software. Additional challenges that lie

ahead include making the NuSMV-ImProviso algorithms for symbolic compu-

tation more eÆcient for the case of software as they are currently optimized

for hardware.

References

[1] Alur, R., R. K. Brayton, T. A. Henzinger, S. Qadeer and S. K. Rajamani,
Partial-order reduction in symbolic state space exploration, in: Computer Aided
Veri�cation, 1997, pp. 340{351.

[2] Ball, T. and S. K. Rajamani, Automatically validating temporal safety properties
of interfaces, Lecture Notes in Computer Science 2057 (2001).

[3] Blair, M., S. Obenski and P. Bridickas, Patriot missile software problem,
Technical Report GAO/IMTEC-92-26 (1992).

[4] Bryant, R. E., Graph-based algorithms for Boolean function manipulation, IEEE
Transaction on Computers C-35 (1986), pp. 677{691.

[5] Burch, J. R., E. M. Clarke, K. L. McMillan, D. L. Dill and L. J. Hwang, Symbolic
model checking: 1020 states and beyond, in: Proceedings of the Fifth Annual

IEEE Symposium on Logic in Computer Science (1990), pp. 1{33.

[6] Chandra, S., P. Godefroid and C. Palm, Software model checking in practice:

An industrial case study, in: Proc. of 24th International Conference on Software

Engineering, 2002, pp. 431{441.

[7] Cimatti, A., E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani and A. Tacchella, NuSMV 2: An opensource tool for symbolic

model checking, in: E. Brinksma and K. G. Larsen, editors, Computer Aided

Veri�cation - Proc. of the 14th International Conference, LNCS 2404, Springer,
Copenhagen, Denmark, 2002 .

[8] Clarke, E. M., O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L.
McMillan and L. A. Ness, Veri�cation of the Futurebus+ Cache Coherence

Protocol, in: D. Agnew, L. Claesen and R. Camposano, editors, The Eleventh

International Symposium on Computer Hardware Description Languages and

their Applications (1993), pp. 5{20.

[9] Clarke, E. M., O. Grumberg and D. Peled, \Model Checking," MIT Press, 1999.

[10] Godefroid, P. and P. Wolper, A partial approach to model checking, in: Logic in
Computer Science, 1991, pp. 406{415.

18

Lerda, Sinha, Theobald

[11] Henzinger, T. A., R. Jhala, R. Majumdar and G. Sutre, Lazy abstraction, in:
Symposium on Principles of Programming Languages, 2002, pp. 58{70.

[12] Holzmann, G. J., The model checker SPIN, Software Engineering 23 (1997),
pp. 279{295.

[13] Holzmann, G. J., Software analysis and model checking, in: Proc. of 14th

International Conference on Computer Aided Veri�cation, 2002.

[14] Holzmann, G. J. and D. Peled, An improvement in formal veri�cation, in: Proc.
FORTE 1994 Conference, 1994.

[15] Kurshan, R., V. Levin, M. Minea, D. Peled and H. Yenig�un, Combining software

and hardware veri�cation techniques, Formal Methods in System Design 21

(2002), pp. 251{280.

[16] Lerda, F., Translating Promela into SMV for partial-order reduction, Technical
Report To be published, SCS - Carnegie Mellon (2003).

[17] Lions, J. L., Arianne 5: Flight 501 failure, Technical report, European Space
Agency (1996).

[18] Lluch-Lafuente, A., L. Edelkamp and S. Leue, Partial order reduction in directed

model checking, in: SPIN, 2002, pp. 112{127.

[19] McMillan, K. L., \Symbolic Model Checking - An Approach to the State
Explosion Problem," Ph.D. thesis, SCS - Carnegie Mellon (1992).

[20] Musuvathi, M., D. Y. Park, A. Chow, D. R. Engler and D. L. Dill, CMC: A

pragmatic approach to model checking real code.

[21] Nalumasu, R. and G. Gopalakrishnan, An eÆcient partial order reduction

algorithm with an alternative proviso implementation, Formal Methods in
System Design 20 (2002), pp. 231{247.

[22] Newman, M., Software errors cost U.S. economy $59.5 billion annualy,
Technical Report NIST 2002-10, National Institute of Standards and
Technology (2002).

[23] Peled, D., Combining partial order reductions with on-the-
y model-checking,
in: Proceedings of CAV'94 (1994), pp. 377{390.

[24] Stephensons, A., D. Mulville, F. Bauer, G. Dukeman, P. Norvig, L. LaPiana,
P. Rutledge, D. Folta and R. Sackheim, Mars climate orbiter mishap

investigation board phase I report, Technical report, National Aeronautics and
Space Administration (1999).

[25] Valmari, A., A stubborn attack on state explosion, in: Proceedings of Computer

Aided Veri�cation, 1990, pp. 25{42.

[26] Visser, W., K. Havelund, G. Brat, S. Park and F. Lerda, Model checking

programs, Automated Software Engineering 10 (2003), pp. 203{232.

19

