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Abstract: Modern applications such as web knowledge bases, network traffic
monitoring and online social networks involve an unprecedented amount of
‘heterogeneous’ network data, with rich types of interactions among nodes.
How can we find patterns and anomalies for heterogeneous networks with
millions of edges that have high dimensional attributes, in a scalable way? We
introduce MultiAspectForensics, a novel tool to automatically detect and
visualise bursts of specific sub-graph patterns within a local community of
nodes as anomalies in a heterogeneous network, leveraging scalable tensor
analysis methods. One such pattern consists of a set of vertices that form a
dense bipartite graph, whose edges share exactly the same set of attributes.
We present empirical results of the proposed method on three datasets from
distinct application domains, and discuss insights derived from these patterns
discovered. Moreover, we empirically show that our algorithm can be feasibly
applied to higher dimensional datasets.
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1 Introduction

Modern applications in the internet era, either data-informed or data-driven, have
contributed to the boom of network data arising from a spectrum of domains, such as web
knowledge bases (Bizer et al., 2009b), network traffic monitoring (Gomez et al., 2009)
and online social networks (Boyd and Ellison, 2007). A glowing trend in the
accumulation and analysis of such data is the emergence of heterogeneous interactions
between nodes in the network, for which a vivid depiction is offered by the Facebook
friendship page, with multiple page elements ranging from wall posts, comments, and
photos, to mutual friends, shared interests and common networks between a pair of users.
In web knowledge bases, the resource description framework (RDF) is a method for
expressing knowledge as triples in the form of subject-predicate-object expressions that
represents a heterogeneous interactions between subject nodes and object nodes with
predicate edges (Klyne and Carroll, 2004), and OWL is a language based on RDF that
describes the semantics of ontology (Bechhofer et al., 2004). The RDF-based knowledge
is published as linked data (Bizer et al., 2009a). Browsing and navigation over such a
space of information, despite its overwhelming scale and complexity, has been a
challenging task commonly encountered in many fields. Yet the rather recent availability
and popularity of these data, in addition to practical requirements over the efficiency,
robustness and generalisability of the solution, has rendered the topic of pattern
mining for heterogeneous network data a relatively under-explored one, where even the
definition of interesting or abnormal patterns could become a non-trivial problem itself.

Many of pioneering studies on pattern discovery for graph and network data focused
on frequent substructure mining, with heuristics motivated by information theory (Cook
and Holder, 1994), mathematical graph theory (Yan and Han, 2002; Kuramochi and
Karypis, 2004), inductive logic programming (Dehaspe and Toivonen, 1999), etc. An
intimately related problem is the detection of rare event and anomalous behaviour, which
has attracted wide interests thanks to its many well-recognised applications concerned
with security, risk assessment, and fraud analysis. Noble and Cook (2003) were among
the first to address this challenge on structured network data by providing solutions based
on the minimal description length principle to search for abnormal sub-graphs. And many
alternative approaches are now available to spot anomalous nodes (Akoglu et al., 2010),
edges (Chakrabarti, 2004), or both (Eberle and Holder, 2007), with further elaboration
adapted to bipartite graphs (Sun et al., 2005), and time-evolving graphs (Tong et al.,
2008). This piece of work, by revealing two classes of patterns in the context of
heterogeneous graphs, resembles a novel attempt to explore this relatively young realm of
multi-aspect network data for state-of-the-art discoveries and developments.

A heterogeneous network can be represented as a graph with several statistics that
differ according to the types of the relationships between nodes, and these statistics are
carefully mixed up to process some data mining tasks such as clustering (Sun et al., 2009)
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or classification (Ji et al., 2011). Instead we resort to a tensor-based representation and
employ off-the-shelf decomposition algorithms (Kolda and Bader, 2009) as a starting
point of the analysis. Previous research along this line has paid a great deal of attention
on individual nodes, which play a central role in similarity ranking (Franz et al., 2009),
personalised recommendation (Zheng et al., 2010), etc. The major finding in our study is
that, for multiple heterogeneous network data across diverse application domains, we
could always observe groups of elements with similar connections along one or more
data modes, as implied by nearly-identical decomposition scores, which transform to
quite visible spikes in histogram plots. While algorithms in aforementioned studies
mostly look for elements with top eigenscores, our heuristic distinguishes itself by being
able to capture patterns formed by less well-connected nodes in the network, which do
not necessarily stand out in the eigenspace and are often ignored by other extant
techniques.

In summary, we propose MultiAspectForensics, which starts with a data
decomposition step for input heterogeneous networks, features a spike detection heuristic
to reveal non-trivial substructure patterns. Our method also includes programs to
automatically visualise the detected spikes and summarise the sub-graph patterns
corresponding to the spikes. We demonstrate its effectiveness and efficiency by executing
MultidspectForensics on three datasets from distinct application scenarios, present
empirical results and investigate the discovered patterns, which could be leveraged to
suggest suspicious activities from network traffic logs such as port-scanning and
denial-of-service attack, extract interesting facts from a web knowledge base such as
punk musicians or low-cost airline destinations, and report gene function groups in a
developmental biology consistent with established theories. Moreover, we empirically
show that our algorithm can be feasibly applied to higher dimensional datasets.

This paper is a revised and expanded version of a paper entitled
‘MultiAspectForensics: pattern mining on large-scale heterogeneous networks with
tensor analysis’ presented at ASONAM 2011, Kaohsiung, Taiwan, 25-27 July 2011
(Maruhashi et al., 2011).

The remainder of this paper is organised as follows: we first briefly sketch
related literatures in Section 2, and then elaborate on MultiAspectForensics procedures
step-by-step in Section 3. Experimental studies are covered in Section 4. Lastly, Section 5
concludes the discussion and highlights future directions.

2 Related work

2.1 Anomaly detection

Outlier detection, despite its wide interest across many application domains, is usually a
challenging problem, as reflected in the fact that even a formal definition is not easy to
make. A classical one was given by Hawkins (1980): “an observation that deviates so
much from other observations as to arouse suspicion that it was generated by a different
mechanism”.

Outlier detection methods can be categorised into two sets: parametric,
statistical-based approaches, and non-parametric, model-free approaches. A common
characteristic of methods in the former category is the existence of statistical assumptions
about the underlying data distribution (Barnett and Lewis, 1994). The latter category
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usually makes the call by resorting to distance computation (Knorr et al., 2000) or density
estimation (Breunig et al., 2000; Jin et al., 2001). Besides, projection-based methods
(Aggarwal and Yu, 2001) have been introduced for high-dimensional data. Moreover,
clustering algorithms may output outlier labels as a by-product (e.g., Chaoji et al., 2008).

Compared to outlier detection, anomaly detection in structured data has only gained
recent attention (Chandola et al., 2009), where we have reviewed relevant studies in the
introductory section and claimed that there is no other attempt, to the extent of
our knowledge, to discover similar patterns in heterogeneous network data as
MultidspectForensics.

2.2 Tensor analysis and graph mining

Tensor decomposition has been a basic technique well studied and applied to a wide
range of disciplines and scenarios. An informative survey on tensor decompositions is
presented by Kolda and Bader (2009) with many further references. Recent researches
have further generalised the CP decomposition to handle incomplete data (Acar et al.,
2010), or to produce non-negative components (Shashua and Hazan, 2005). Tucker
decomposition, as the other well-known approach, is more flexible, although its
application is usually limited by its limited scalability and vulnerability to noise. Notably,
recent work on scalable alternatives such as Tsourakakis (2010) may open up the venue
to enhance the MultiAspectForensics methodology with more powerful decomposition
algorithms.

Quite a few popular implementations of tensor decomposition algorithms for
academic researchers have been made publicly available. Examples are the N-way
toolbox by Andersson and Bro (2000) and the more recent MATLAB tensor toolbox by
Bader and Kolda (2010). The ALS method was proposed in the original papers by Carroll
and Chang (1970) and Harshman (1970) to realise the CP decomposition, and it still
remains the primary workhorse algorithm today due to its speed and ease of
implementation (Tomasi and Bro, 2006).

Tensor analysis has also been applied to study the dynamics of graphs and
networks (Sun et al., 2008). They commonly start by analysing graph/tensor snapshots
within each timestamp, and take the output for subsequent time-series analysis.
MultiAspectForensics, instead of focusing on the evolution between adjacent
time-stamps, treats timestamp as another data mode to allow better discovery of global
patterns in this trade-off.

3  Algorithm

MultidspectForensics, in a nutshell, consists of the following steps:

e data decomposition: take the input heterogeneous network as a tensor and perform
the CP decomposition to obtain an eigenscore vector along each data mode

e spike detection in histograms: iterate over all data modes to obtain histograms and
apply the spike detection algorithm

e visualisation: create attribute plots and histogram plots with detected spikes
highlighted
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o substructure discovery: identify the induced sub-graph for each spike and summarise
patterns discovered.

The above procedure just makes use of the strongest component after data
decomposition. If the contribution of the top one eigen-component is not as large, the
latter three steps should be carried out over multiple strongest components in a similar
fashion.

The running example in this section comes from a snapshot of network traffic log
which consists of packet traces in an enterprise network (Lawrence Berkeley National
Laboratory and ICSI, n.d.). Each trace in the log is a triplet of (/P-source, IP-destination,
port-number), which could be represented as a directed network of machine IP addresses
with the only edge attribute ‘port number’ and number of packets as edge weights.

Table 1 lists definitions of symbols used in this paper.

Table 1 Symbol table

Symbol Definition

X A tensor (‘datacube’)

X (i1,...,iy)  The entry of X with index (iy,...,i)

M The order of the tensor [e.g., M = 3 for internet traffic (source-destination-port)]
X(,) The mode-» matricisation of a tensor X’

E The elements of mode # n (e.g., the set of IP-sources, for n = 1)

I, The size of the n™ mode (i.e., I, =| E™ | )

e The i element of mode # n (e.g., <128.1.5.22")

R The desired rank (# of components) in the decomposition

A™ e Rk The matrices for mode # n in the decomposition results of CP decomposition for X
a" The i row vector of A(n) (1 <i <R)

a” The ;" value, or eigenscore, in G

3.1 Data decomposition

We first introduce a few definitions. A tensor can be represented as a multidimensional
array of scalars. Its order is the dimensionality of the array, while each dimension is
known as one mode, of which the value ranges over the set of elements for the specific
mode. Thus, vectors are tensors of order one, and matrices are tensors with two modes. In
Section 4 we will use measure to denote the unit of each entry in the multi-dimensional
array.

To transform a heterogeneous network into a tensor, every edge becomes a non-zero
entry in the multi-dimensional array, where edge attributes, together with edge source and
destination, make up different modes of the tensor. Edge weights naturally stay as entry
values for weighted networks. Node attributes could also be incorporated by taking a
Cartesian product over two end points of an edge, for instance, if a directed network
congains nodes with seven different colours, we could have an edge attribute whose arity
is 7°=49.
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Tensor decomposition leverages multi-linear algebra to the analysis of high-order
data. The canonical polyadic (CP) decomposition we applied in this paper generalises the
singular value decomposition (SVD) for matrices. It factorises a tensor to the weighted
sum of outer products of mode-specific vectors, as illustrated in Figure 1 for a three-order
tensor. Formally, for an M-mode tensor X of size [} x I, x -+ x [, its CP decomposition
of rank R yields

R B
X(0) = 30 (@ x...x )
r=l1
R
ST
)lm
r=1 m=1

Similar to SVD, the approximation becomes closer as R enlarges, and would be exact if it
equals the rank of the tensor [see Hastad (1990) for details]. We used the cp_als function
in the MATLAB tensor toolbox (Bader and Kolda, 2010) which features the alternating
least squares (ALS) method, a predominant implementation for CP decomposition.

Q)

Figure 1 Illustration of the CP decomposition: the input three-mode tensor on the left is
decomposed into R triplets of vectors on the right, reminiscing of the rank-R SVD
of a matrix (see online version for colours)
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3.2 Spike detection in histograms

Now that we have transformed complex structured data into a set of more manageable
vectors, the next step is to spot anomalous patterns from these vectors. As a starting
point, we visualise each vector by creating an attribute plot, which displays absolute
values of eigenscores (y-axis) along its elements (indexed by the x-axis). An example of
such plots is given in Figure 2. Note that the y-axis should be in /og scale to emphasise
on the relative difference. The black arrows indicate score values shared by many
elements, which are not uncharacteristic in other dimensions and across different
datasets. This key observation enables us to create effective heuristics to extract spikes
from histograms as anomalies, and subsequently examine sub-graph patterns they imply
in the next subsection. And the fact that many spikes do not appear at the very top of the
figure with most significant eigenscore values makes it more difficult for many
alternative methods to be effective.
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Figure 2 An attribute plot which displays absolute values of eigenscores (y-axis in log-scale)
along its elements (indexed by the x-axis) for the ‘IP-source’ mode with negative
eigenscores for Lawrence Berkeley National Lab (LBNL) network traffic dataset
(see online version for colours)
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Notes: Elements are sorted such that IP-sources located in the same local network
have similar attribute index. The black arrows point to common score
values, illustrating an observation critical to the algorithmic design of
MultiAspectForensics.

Algorithm 1 Spike detection algorithm (SDA)

Require: Eigenscore histogram vector H, of size N
Ensure: The set indicating spikes detected S

1:  sort the histogram in descending order s.t. H, 2 H,, 2--->2H,,

»

N
S — ¢, 0« 0; Osum <—Zn:1H02"

3: fork=1,....Kdo

4. S—Su {o}

5: O« 0Q+H;

6 if O/ Osyyy>sand H,, / H, <r then
7: break

8: end if

9 end for

10:  if O/ Qgupr < s then

11: S ¢

12:  endif

13: return S

Prior to applying the spike detection heuristics, we obtain histogram data by equally
dividing the range of eigenscores in log scale. The detection algorithm just needs to sort
and traverse the histogram data until one of the following conditions is satisfied:
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1  the energy as measured by sum of square values of frequencies covered is equal or
more than a fraction of s, and the frequency is less than a fraction of r of the largest
one

2 K bins are already inspected.

After the inspection, the sets of elements within each bin are extracted as spikes, as long
as the energy covered is equal or more than a fraction of 5. K is the desired number of
spikes to be detected, and we used K = 20 as the number of spikes we can investigate
practically. We used r = 50%, because the bins with equal or more than half of the
frequencies of the largest one should be extracted as spikes, as long as the condition of
the energy is satisfied. We examined several number of s under K = 20 and » = 50%, and
we chose s = 90% so that many spikes are extracted for most of the datasets we used. The
pseudo-code of the algorithm is listed in Algorithm 1 above.

3.3 Visualisation

Application of this algorithm to the data vector in Figure 2 yields Figure 3, where we put
attribute plot on the left side-by-side with histogram plot on the right, high-lighting every
spike in red. Using these plots, we can investigate the distributions of the attribute index
of the elements within each spike. Figure 3 shows the IP-sources within the detected
spikes have attribute index in a specific range. Because the elements are sorted such that
IP-sources located in the same local network have similar attribute index, the attribute
plot indicates that these IP-sources are located in the same local network.

Figure 3  An attribute plot (adopted from Figure 2) on the left side-by-side with the
corresponding histogram plot showing the count of elements that have same eigenscores
(indicated by x-axis) in the ‘IP-source’ mode for LBNL network traffic dataset
(see online version for colours)
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Notes: Detected spikes are indicated by red circles in histogram plot and red dots in
attribute plot. We can find the elements within each spike have attribute index in a
specific range, indicating that they are located in the same local network.

The collection of output plots of MultiAspectForensics is named MultiAspectForensics
X-ray (MAF-ray), which puts together attribute plots and histogram plots of both positive
and negative eigenscores. The rank 1 MAF-ray of LBNL network traffic dataset is shown
in Figure 4. With MAF-ray, users can easily realise that there have occurred spikes in
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histogram plot of some modes, whose corresponding elements have specific attribute
index in attribute plot, like aforementioned spikes of [P-sources.

Figure 4
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First MAF-ray for LBNL network traffic dataset: attribute plots and histogram plots, for

‘IP-source’ mode (the top row, #1) and ‘IP-destination’ mode (the middle row, #2) and
‘port#” mode (the bottom row, #3), and for the positive (left) and negative (right) parts
(see online version for colours)
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Note: Using MAF-ray, we can quickly spot IP-sources (or IP-destinations, or port#),
which have similar behaviour, forming one of the patterns in Section 3.4.

3.4 Substructure discovery

Having extracted anomalous sets of elements that form histogram spikes from each data
mode, we head back to the input network data to examine corresponding local
sub-networks to complete the final step of pattern discovery. Because the elements
within the same spike are expected to behave similarly and specifically, the local
patterns corresponding to detected spikes can be understood as bursts of common
patterns shared by the elements. As the starting point for analysing the local patterns,
we propose spike table that shows detected spikes along with frequency counts of
elements within each spike, numbers of common patterns, and numbers of unique
elements of other modes within the common patterns. A spike table in ‘IP-source’
mode (#1) in our running example is shown in Table 2. For example, most of the
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119 IP-sources within spike #2 have three common patterns (131.243.143.66/534,
131.243.141.187/534, and 131.243.140.105/534 as IP-destination/port number), with
three distinct IP-destinations (mode #2), and one distinct port number (mode #3). Patterns
derived from MultiAspectForensics could be summarised into the following two
categories:

3.4.1 Generalised star (g-Star)

This pattern can be detected as a spike in a mode, whose corresponding elements share a
single common pattern of other modes. This is a sub-network which consists of
conterminous edges that differ only in one data mode. It generalises the star pattern in
two dimensional graphs, and makes up a continuous block along one dimension in the
adjacency tensor, if elements along that dimension are ordered carefully. We can find
three spikes of this category in the spike table shown in Table 2. They are groups of
IP-sources sending packets to a single destination server using the same port [Figure 5(a)
‘NCP’]. Note that in a heterogeneous network, this category of patterns also includes
multiple edges between one pair of nodes with differing attribute values, e.g., a good
many port numbers in our running example, in which case the source machine may be
either an administrator performing port screening or a suspect trying to exploit a
vulnerable port [Figure 5(b) ‘port scanning’].

3.4.2 Generalised bipartite-core (g-Bcore)

This pattern can be detected as a spike in a mode, whose corresponding elements share
multiple common patterns of other modes. This is a sub-network that represents a dense
bipartite structure similar to the bipartite-core pattern in regular graphs. More generally, it
can be viewed as a fibre of continuous blocks along one dimension in higher-order
tensors under specific element orders. Patterns of this category can be classified into
some classes according to the number of unique elements of each mode within the
common patterns. In the spike table shown in Table 2, spikes of this category are
classified into two classes, spikes whose common patterns contain multiple unique
elements only in mode #2 (spike #2 and #5), and spikes only in mode #3 (spike #3 and
#7). The former class is a group of IP-sources sending packets to multiple destination
servers with the same port [Figure 6(a) ‘file sharing’]. And the latter class is a group of
IP-sources sending packets over different port numbers to the same server [Figure 6(b)
‘multi purpose’], likely to happen during a distributed denial-of-service (DDoS) attack, a
typical scenario of network intrusion, in which IP-sources play the role of malicious hosts
sending huge volumes of packets to the target server as the victim. Note that this category
of patterns can also include classes of spikes whose common patterns contain multiple
unique elements in several modes, like spikes detected in the network traffic dataset with
additional mode of time tick, as shown in Section 4.

As a final remark, the statement that both patterns are belated to a block along one
dimensions or a bundle of blocks in the high-order tensor only holds when elements of
their respective data modes are ordered in specific ways. And the complexity to search
for such an order is generally exponential, which reflects, in some sense, the power of the
proposed approach.
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Table 2 A spike table in ‘IP-source’ mode (#1) for the LBNL network traffic dataset

¢ P oo Swigedaiso  pecpion

1 172 1 I;1 g-Star (‘NCP”)

2 119 3;1 g-Bcore (‘file sharing’)
3 63 5 1;5 g-Bcore (‘multi purpose’)
4 51 1 1;1 g-Star

5 33 4 4;1 g-Bcore

6 26 1 1;1 g-Star

7 26 2 1;2 g-Bcore

Notes: Number of common patterns are the number of patterns of other modes shared by
more than 90% of the elements within each spike. Numbers of unique elements of
other modes within the common patterns are also shown.

Figure 5 Examples of generalised star patterns discovered in the LBNL network traffic dataset,
(a) ‘NCP’: ten IP-sources (randomly selected out of 172 ones) are sending multiple
packets to a server machine with Port# 524, which is a UDP port under the NCP
protocol from a network OS for file sharing and printing services
(b) ‘Port scanning’: the IP-source registered by an Indian ISP is sending packets to a
host in LBNL via port numbers (ranging from 2,300 to 2,900) not usually intended for
this type of communication, implying a suspicious activity

Source-IP L
198.129.** ~
{Berkeley Lab}

Source-IP — 334(NCP)
131.243.** 7
(LBNL) Y ionee |

1283.210.101
Source-1P
1283.189.144
128.3.*.*
(LBNL) 128.3.147.124
128.3.78.71

(@)

Port Numbers
2423, 2473, 2516, 2561, 2606,
2650, 2695, 2739, 2782, 2832
(randomly selected out of 435 pors)

59.183.237.213
Source-IP 131.243,141,232

(an Indian ISP) ..
Destination-IP
(LBNL)

Destination-IP
(LBNL)

(b)

Note: Wavy arrows indicate multiple edges between the pair of nodes with a handful of
distinct attribute values.
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Figure 6 Examples of generalised bipartite-core patterns discovered in the LBNL network traffic
dataset, (a) ‘File sharing’: ten IP-sources (randomly selected out of 119 ones) are
sending multiple packets to an array of server machines over a port used for file sharing
and printing services (b) ‘Multi purpose’: ten IP-sources (randomly selected out of
63 ones) are sending packets over different ports to a multi-purpose server machine

Port #
\ 534(NCP)
Source-IP \\\
131.243.* * \\\\‘ 131.243.143.66
W7
(LBNL) N
!
»“.je
- i
N
Source-IP / /
128.3.** o Destination-IP
(LBNL) 131.243.* *
L (LBNL)
(@)
Port Numbers
B 135(epmap),
139(netbios-ssn),
389(ldap),
4445 (microsoft-ds),
e o
(LBNL)
- Destination-IP
B (LBNL)
sy
(LBNL)
| >

(b)

Note: Wavy arrows indicate multiple edges between the pair of nodes with a handful of
distinct attribute values.

4 Empirical results

We commence this section with the description of datasets as well as experimental
environment. It is followed by the discussion of respective patterns discovered by
MultidspectForensics in each of the three datasets.
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Data and environment

Datasets are acquired from three dissimilar application domains: network traffic
monitoring, knowledge networks, and bioinformatics. A summary is highlighted in
Table 3.

Table 3 A summary of datasets

Dataset # modes Measure # non-zero Dimensions # spikes
LBNL-sdp 3 # packets 27K 2,345 IP-srcs 7
2,355 IP-dsts 0
6,055 port #'s 10
LBNL-sdpt 4 # packets 231K 3,610 time ticks 2
2,345 IP-srcs 0
2,355 IP-dsts 0
6,055 port #'s 0
RTW 3 binary 10K 3,641 subjects 15
98 verbs 0
3,929 objects 2
BDGP 3 binary 38K 4,491 genes 5
248 terms 2
6 stages 0

Note: The numbers of spikes extracted by MultiAspectForensics are shown.

LBNL: The network traffic log is made available through a research effort to study
the characteristics of traffic for internet enterprises (Pang et al., 2005). The
measurement was taken on servers within the LBNL from thousands of internal hosts
over time, with millions of packet traces recorded. Each packet trace includes four
data modes: IP-source, [P-destination, port number, and a time tick in second. With
privacy in concern, lower 16 bits were randomly permuted to anonymise the host
identity, whereas upper 16 bits were kept intact for proper identification of the
location and service provider (Pang et al., 2006). We borrowed a subset of this
dataset within one-hour time span in this section.

RTW: This online knowledge base is the outcome of the Never-Ending Language
Learning (NELL) system at Carnegie Mellon University (Carlson et al., 2010a). It
employs natural language processing and machine learning techniques to constantly
and automatically crawl web pages and extract facts (Carlson et al., 2010b). Each
fact is a triplet of (subject, verb, object) such as (Pittsburgh, city-located-in-state,
Pennsylvania), which could be represented as a directed graph made up of entities
like Pittsburgh or Pennsylvania, edges with attributes like city-located-in-state. For
better quality of results, we applied our algorithm on a pre-processed subset after
noise removal (by courtesy of Dr. Byran Kisiel at Carnegie Mellon University).

Berkeley Drosophila Genome Project (BDGP): The dataset is collected from the
BDGP to study the spatial-temporal patterns of gene expression during the early
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development of fruit fly (Tomancak et al., 2002, 2007). We selected three data
modes from the database dump available at Berkeley Drosophilia Genome Project
(n.d.), Patterns of Gene Expression in Drosophila Embryogenesis, which consists of
4,491 genes, 248 functional annotation terms from a specialised vocabulary, and 6
different developmental stages.

MultidspectForensics was implemented in the MATLAB language, and all following
experiments were performed on a Unix machine with four 2.8 GHz cores, and 16 GB
memories. For every of these datasets, the wall-clock time was no more than 2 minutes
to carry out the computation and generate attribute plot and histogram plot along all
modes.

4.2 LBNL traffic log

We have already discussed patterns discovered from a snapshot of this dataset in
Section 3.4, illustrated in Figures 5 and 6. With the additional mode of time tick
(LBNL-sdpt), we found two dominating spikes for the ‘time-ticks’ mode (Table 3). The
elements within these two big spikes in histogram plot (arrows on Figure 7) distributes on
almost all the attributes in attribute plot, indicating the traffic corresponding to these
spikes occurred at almost every time-tick. A spike table indicates both of the spikes are
g-Bcore pattern, bipartite-cores between ‘time-tick’ elements and patterns of other modes
(Table 4). Upon closer examination, we reported the following activities: the first spike is
related to the HTTP traffic on port 80 between four servers in LBNL and three remote
hosts in Chinese academic institutions, possibly executing scripts to crawl/download web
pages. The second spike seems to be related to the same HTTP traffic as the first spike,
with additional traffic between a server in LBNL and a remote host at India
aforementioned. We traced further in time and found that the remote host never sent
packets back to acknowledge the connection, suggestive of suspicious activities to be
reported to domain experts.

Figure 7 An attribute plot on the left side-by-side with the corresponding Aistogram plot for the
‘time’ mode (#1) from the first MAF-ray for LBNL-sdpt (see online version for colours)

#1 (Positive) _ #1 (Positive)
10 140
w 1}
M Y
8 10 8 10 l
0] 0
g g
Q ] £y D
,t_? 10 F_T 10
] F=]
il 1000 Z000 3000 ] 500 lo00 1500 2000 Z500
Attribute Index Frequency Count

Note: The spikes indicated by black arrow are discussed in Section 4.2.
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Table 4 A spike table in ‘time ticks’ mode (#1) for LBNL-sdpt

# Frequency count #common patterns # unique elements of mode #2,3;4 Description
1 2,641 10 9:9;7 g-Bcore
2 803 11 9;10; 7 g-Bcore

Notes: Number of common patterns are the number of patterns of other modes shared by
more than 90% of the elements within each spike. Numbers of unique elements of
other modes within the common patterns are also shown.

4.3 RTW knowledge base

Recall that each item in the knowledge database could be represented as a (subject, verb,
object) triplet. MultiAspectForensics detected 15 spikes in ‘subjects’ mode and two
spikes in ‘objects’ mode (Table 3). A spike table shows the spikes detected in ‘subjects’
mode in Table 5. Almost all of the spikes are g-Star pattern with exception of a spike of
g-Bcore pattern having only two common patterns.

Table 5 A spike table in ‘subjects’ mode (#1) for RTW knowledge base

#  Frequency count # common patterns # unique elements of mode #2,3 Description

1 265 1 I;1 g-Star

2 134 1 I;1 g-Star

3 63 1 I;1 g-Star

4 31 1 I;1 g-Star

5 30 1 I;1 g-Star

6 30 1 I;1 g-Star (‘punk’)
7 29 1 I;1 g-Star

8 27 1 I;1 g-Star (‘ryanair’)
9 27 1 I;1 g-Star

10 26 1 I;1 g-Star

11 25 1 I;1 g-Star

12 24 1 I;1 g-Star

13 24 1 I;1 g-Star

14 22 2 2;2 g-Bcore

15 22 1 I;1 g-Star

Notes: Number of common patterns are the number of patterns of other modes shared by
more than 90% of the elements within each spike. Numbers of unique elements of
other modes within the common patterns are also shown.

Figure 8 illustrates a sub-graph discovered revealing a g-Star pattern (‘punk’). The music
artists/bands listed here are specialised to punk music according to the knowledge base.
And Figure 9 displays another g-Star pattern (‘ryanair’) between European cities and an
Irish low-cost airline which flies to many regional or secondary airports to reduce cost,
following a different business model and choice of destination from industrial giants.
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Figure 8

‘Punk’: a g-Star pattern discovered from the RTW knowledge base about 49 punk

music artists, of which a random selected set of ten are listed

subject
{names of
punk bands)

-

verb
{‘'music-artist-genre’)

gang_of four
dead_kennedys

chject
("punk’}

Note: They are all specialised in punk or one of its sub-genres according to the

knowledge base.

Figure 9

‘Ryanair’: a g-Star pattern discovered from the RTW knowledge base about

36 European destinations of the Ryanair, an Irish low-cost airline, of which a
random selected set of ten are listed

subject
{names of
cities)

-

verb
(‘city-has-
company-office’)

[ alghero >

ryanair

object
{'ryanair’)

Note: Many of these cities have only sparse connections with other verbs.
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We should note that some elements within each spike have more versatile peers. For
example, some of the musicians of ‘subjects’ mode in the ‘punk’ spike have patterns of
verb ‘music-artist-genre’ with objects ‘horror punk’, ‘proto punk’, ‘British punk’ and
‘punk rock’ (not shown in the figure). In ‘ryanair’ spike, some of the cities of ‘subjects’
mode have patterns of verb ‘city-located-in-country’ with objects ‘Finland’, ‘Norway’,
‘Austria’, ‘Scotland’, ‘Spain’, ‘Belgium’ and ‘Ireland’ (not shown in the figure). These
patterns are not be favourably selected by MultiAspectForensics, because they are less

important in the first rank.
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Moreover, as a sanity check, since node names are ordered alphabetically in this
dataset, the pattern does not make a continuous block in the tensor without non-trivial
permutation.

4.4 BDGP gene annotation

In this dataset MultiAspectForensics spots a spike of a set of genes known to be
responsible for the maternal effect in the early development of fruit fly, which also
provides hints to study other higher organisms including Homo sapiens. Products of such
maternal effect genes, in the form of either protein or mRNA, play a critical role in the
very early stage of embryo development, such as the first few cell divisions. For instance,
four of such genes, including bicoid, caudal, hunchback, and nanos, is mostly responsible
for the determination of anterior-posterior axis — which side of the embryo will be the
future head and which other side will be the future tail (Lawrence, 1992).

4.5 Scalability

Can MultiAspectForensics be feasibly applied to higher dimensional datasets? The most
time-consuming part in MultiAspectForensics is CP decomposition for the input tensor,
for which a predominant implementation is the ALS method, such as the ¢p_als function
in the MATLAB tensor toolbox (Bader and Kolda, 2010). Given a mode-N sparse tensor
of size I; x I, x -+ x I, the computational cost of each iteration depends on the larger of
the following:

N
1 I= I,
n=l1

2 NNZ = the number of non-zero elements.

Figure 10 Computational time of MultiAspectForensics on two different datasets, (a) NNZ <</

(b) NNZ>>1
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Notes: On the x-axis, N denotes the number of iterations, / equals the sum of sizes over
all dimensions, and NNZ stands for the number of non-zero elements. The
complexity of MultiAspectForensics in time is O(N * max(I, NNZ)).
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Figure 10 presents empirical results over two different datasets — (a) a traffic log from
LBNL data for which the tensor is sparse (VNZ << I), and we added non-zero elements to
(a) in order to create a more dense tensor in (b) for which NNZ >> [. These results
support the complexity of MultiAspectForensics in time is O(N * max(l, NNZ)). If the
dimension is low and the tensor data stays in the category (b), the computational cost
does not depend on the addition of the dimensions, and scales linearly as NNZ grows.
When the dimension increases, the tensor data becomes sparser and will fall into the
category (a). In such a case, even though the total volume of the high-dimensional space
increases exponentially, the computational cost will increase linearly as the dimension
grows, proportional with the sum of the number of attribute index. In each case
MultidspectForensics has a feasible time complexity for higher dimensional datasets.

5 Conclusions

We presented MultiAspectForensics, a novel and effective tool to automatically detect
and visualise a category of anomalous patterns, including generalised star and generalised
bipartite-core patterns. These patterns can be understood as bursts of specific sub-graph
patterns within a local community of nodes in heterogeneous networks, even if they exist
among less-well connected nodes which are more likely to be ignored by many extant
methods. Empirical results exhibited valuable insights derived from pattern discovered,
across multiple application domains such as network traffic monitoring, knowledge
networks, and bioinformatics. These successes could be attributed to the fact that we
resorted to a tensor-based representation to facilitate data decomposition, reached a
key observation leading to spike patterns in histogram plots, and revealed
typical substructures reflecting spectral properties of heterogeneous data. Moreover,
MultiAspectForensics is scalable to higher dimensional datasets, as we have empirically
shown.
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