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Abstract: Modern applications such as web knowledge bases, network traffic 
monitoring and online social networks involve an unprecedented amount of 
‘heterogeneous’ network data, with rich types of interactions among nodes. 
How can we find patterns and anomalies for heterogeneous networks with 
millions of edges that have high dimensional attributes, in a scalable way? We 
introduce MultiAspectForensics, a novel tool to automatically detect and 
visualise bursts of specific sub-graph patterns within a local community of 
nodes as anomalies in a heterogeneous network, leveraging scalable tensor 
analysis methods. One such pattern consists of a set of vertices that form a 
dense bipartite graph, whose edges share exactly the same set of attributes.  
We present empirical results of the proposed method on three datasets from 
distinct application domains, and discuss insights derived from these patterns 
discovered. Moreover, we empirically show that our algorithm can be feasibly 
applied to higher dimensional datasets. 
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1 Introduction 

Modern applications in the internet era, either data-informed or data-driven, have 
contributed to the boom of network data arising from a spectrum of domains, such as web 
knowledge bases (Bizer et al., 2009b), network traffic monitoring (Gómez et al., 2009) 
and online social networks (Boyd and Ellison, 2007). A glowing trend in the 
accumulation and analysis of such data is the emergence of heterogeneous interactions 
between nodes in the network, for which a vivid depiction is offered by the Facebook 
friendship page, with multiple page elements ranging from wall posts, comments, and 
photos, to mutual friends, shared interests and common networks between a pair of users. 
In web knowledge bases, the resource description framework (RDF) is a method for 
expressing knowledge as triples in the form of subject-predicate-object expressions that 
represents a heterogeneous interactions between subject nodes and object nodes with 
predicate edges (Klyne and Carroll, 2004), and OWL is a language based on RDF that 
describes the semantics of ontology (Bechhofer et al., 2004). The RDF-based knowledge 
is published as linked data (Bizer et al., 2009a). Browsing and navigation over such a 
space of information, despite its overwhelming scale and complexity, has been a 
challenging task commonly encountered in many fields. Yet the rather recent availability 
and popularity of these data, in addition to practical requirements over the efficiency, 
robustness and generalisability of the solution, has rendered the topic of pattern  
mining for heterogeneous network data a relatively under-explored one, where even the 
definition of interesting or abnormal patterns could become a non-trivial problem itself. 

Many of pioneering studies on pattern discovery for graph and network data focused 
on frequent substructure mining, with heuristics motivated by information theory (Cook 
and Holder, 1994), mathematical graph theory (Yan and Han, 2002; Kuramochi and 
Karypis, 2004), inductive logic programming (Dehaspe and Toivonen, 1999), etc. An 
intimately related problem is the detection of rare event and anomalous behaviour, which 
has attracted wide interests thanks to its many well-recognised applications concerned 
with security, risk assessment, and fraud analysis. Noble and Cook (2003) were among 
the first to address this challenge on structured network data by providing solutions based 
on the minimal description length principle to search for abnormal sub-graphs. And many 
alternative approaches are now available to spot anomalous nodes (Akoglu et al., 2010), 
edges (Chakrabarti, 2004), or both (Eberle and Holder, 2007), with further elaboration 
adapted to bipartite graphs (Sun et al., 2005), and time-evolving graphs (Tong et al., 
2008). This piece of work, by revealing two classes of patterns in the context of 
heterogeneous graphs, resembles a novel attempt to explore this relatively young realm of 
multi-aspect network data for state-of-the-art discoveries and developments. 

A heterogeneous network can be represented as a graph with several statistics that 
differ according to the types of the relationships between nodes, and these statistics are 
carefully mixed up to process some data mining tasks such as clustering (Sun et al., 2009) 
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or classification (Ji et al., 2011). Instead we resort to a tensor-based representation and 
employ off-the-shelf decomposition algorithms (Kolda and Bader, 2009) as a starting 
point of the analysis. Previous research along this line has paid a great deal of attention 
on individual nodes, which play a central role in similarity ranking (Franz et al., 2009), 
personalised recommendation (Zheng et al., 2010), etc. The major finding in our study is 
that, for multiple heterogeneous network data across diverse application domains, we 
could always observe groups of elements with similar connections along one or more 
data modes, as implied by nearly-identical decomposition scores, which transform to 
quite visible spikes in histogram plots. While algorithms in aforementioned studies 
mostly look for elements with top eigenscores, our heuristic distinguishes itself by being 
able to capture patterns formed by less well-connected nodes in the network, which do 
not necessarily stand out in the eigenspace and are often ignored by other extant 
techniques. 

In summary, we propose MultiAspectForensics, which starts with a data 
decomposition step for input heterogeneous networks, features a spike detection heuristic 
to reveal non-trivial substructure patterns. Our method also includes programs to 
automatically visualise the detected spikes and summarise the sub-graph patterns 
corresponding to the spikes. We demonstrate its effectiveness and efficiency by executing 
MultiAspectForensics on three datasets from distinct application scenarios, present 
empirical results and investigate the discovered patterns, which could be leveraged to 
suggest suspicious activities from network traffic logs such as port-scanning and  
denial-of-service attack, extract interesting facts from a web knowledge base such as 
punk musicians or low-cost airline destinations, and report gene function groups in a 
developmental biology consistent with established theories. Moreover, we empirically 
show that our algorithm can be feasibly applied to higher dimensional datasets. 

This paper is a revised and expanded version of a paper entitled 
‘MultiAspectForensics: pattern mining on large-scale heterogeneous networks with 
tensor analysis’ presented at ASONAM 2011, Kaohsiung, Taiwan, 25–27 July 2011 
(Maruhashi et al., 2011). 

The remainder of this paper is organised as follows: we first briefly sketch  
related literatures in Section 2, and then elaborate on MultiAspectForensics procedures 
step-by-step in Section 3. Experimental studies are covered in Section 4. Lastly, Section 5 
concludes the discussion and highlights future directions. 

2 Related work 

2.1 Anomaly detection 

Outlier detection, despite its wide interest across many application domains, is usually a 
challenging problem, as reflected in the fact that even a formal definition is not easy to 
make. A classical one was given by Hawkins (1980): “an observation that deviates so 
much from other observations as to arouse suspicion that it was generated by a different 
mechanism”. 

Outlier detection methods can be categorised into two sets: parametric,  
statistical-based approaches, and non-parametric, model-free approaches. A common 
characteristic of methods in the former category is the existence of statistical assumptions 
about the underlying data distribution (Barnett and Lewis, 1994). The latter category 
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usually makes the call by resorting to distance computation (Knorr et al., 2000) or density 
estimation (Breunig et al., 2000; Jin et al., 2001). Besides, projection-based methods 
(Aggarwal and Yu, 2001) have been introduced for high-dimensional data. Moreover, 
clustering algorithms may output outlier labels as a by-product (e.g., Chaoji et al., 2008). 

Compared to outlier detection, anomaly detection in structured data has only gained 
recent attention (Chandola et al., 2009), where we have reviewed relevant studies in the 
introductory section and claimed that there is no other attempt, to the extent of  
our knowledge, to discover similar patterns in heterogeneous network data as 
MultiAspectForensics. 

2.2 Tensor analysis and graph mining 

Tensor decomposition has been a basic technique well studied and applied to a wide 
range of disciplines and scenarios. An informative survey on tensor decompositions is 
presented by Kolda and Bader (2009) with many further references. Recent researches 
have further generalised the CP decomposition to handle incomplete data (Acar et al., 
2010), or to produce non-negative components (Shashua and Hazan, 2005). Tucker 
decomposition, as the other well-known approach, is more flexible, although its 
application is usually limited by its limited scalability and vulnerability to noise. Notably, 
recent work on scalable alternatives such as Tsourakakis (2010) may open up the venue 
to enhance the MultiAspectForensics methodology with more powerful decomposition 
algorithms. 

Quite a few popular implementations of tensor decomposition algorithms for 
academic researchers have been made publicly available. Examples are the N-way 
toolbox by Andersson and Bro (2000) and the more recent MATLAB tensor toolbox by 
Bader and Kolda (2010). The ALS method was proposed in the original papers by Carroll 
and Chang (1970) and Harshman (1970) to realise the CP decomposition, and it still 
remains the primary workhorse algorithm today due to its speed and ease of 
implementation (Tomasi and Bro, 2006). 

Tensor analysis has also been applied to study the dynamics of graphs and  
networks (Sun et al., 2008). They commonly start by analysing graph/tensor snapshots 
within each timestamp, and take the output for subsequent time-series analysis. 
MultiAspectForensics, instead of focusing on the evolution between adjacent  
time-stamps, treats timestamp as another data mode to allow better discovery of global 
patterns in this trade-off. 

3 Algorithm 

MultiAspectForensics, in a nutshell, consists of the following steps: 

• data decomposition: take the input heterogeneous network as a tensor and perform 
the CP decomposition to obtain an eigenscore vector along each data mode 

• spike detection in histograms: iterate over all data modes to obtain histograms and 
apply the spike detection algorithm 

• visualisation: create attribute plots and histogram plots with detected spikes 
highlighted 
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• substructure discovery: identify the induced sub-graph for each spike and summarise 
patterns discovered. 

The above procedure just makes use of the strongest component after data 
decomposition. If the contribution of the top one eigen-component is not as large, the 
latter three steps should be carried out over multiple strongest components in a similar 
fashion. 

The running example in this section comes from a snapshot of network traffic log 
which consists of packet traces in an enterprise network (Lawrence Berkeley National 
Laboratory and ICSI, n.d.). Each trace in the log is a triplet of (IP-source, IP-destination, 
port-number), which could be represented as a directed network of machine IP addresses 
with the only edge attribute ‘port number’ and number of packets as edge weights. 

Table 1 lists definitions of symbols used in this paper. 
Table 1 Symbol table 

Symbol Definition 

X A tensor (‘datacube’) 
X (i1,…,iM) The entry of X with index (i1,…,iM) 
M The order of the tensor [e.g., M = 3 for internet traffic (source-destination-port)] 
X(n) The mode-n matricisation of a tensor X 
E(n) The elements of mode # n (e.g., the set of IP-sources, for n = 1) 
In The size of the nth mode (i.e., In = | E(n) | ) 

( )n
ie  The ith element of mode # n (e.g., ‘128.1.5.22’) 

R The desired rank (# of components) in the decomposition 
( ) nn I RA ×∈R  The matrices for mode # n in the decomposition results of CP decomposition for X 
( )n
iaG  The ith row vector of A(n) (1 ≤ i ≤ R) 
( )n
ija  The jth value, or eigenscore, in ( )n

iaG  

3.1 Data decomposition 

We first introduce a few definitions. A tensor can be represented as a multidimensional 
array of scalars. Its order is the dimensionality of the array, while each dimension is 
known as one mode, of which the value ranges over the set of elements for the specific 
mode. Thus, vectors are tensors of order one, and matrices are tensors with two modes. In 
Section 4 we will use measure to denote the unit of each entry in the multi-dimensional 
array. 

To transform a heterogeneous network into a tensor, every edge becomes a non-zero 
entry in the multi-dimensional array, where edge attributes, together with edge source and 
destination, make up different modes of the tensor. Edge weights naturally stay as entry 
values for weighted networks. Node attributes could also be incorporated by taking a 
Cartesian product over two end points of an edge, for instance, if a directed network 
contains nodes with seven different colours, we could have an edge attribute whose arity 
is 72 = 49. 
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Tensor decomposition leverages multi-linear algebra to the analysis of high-order 
data. The canonical polyadic (CP) decomposition we applied in this paper generalises the 
singular value decomposition (SVD) for matrices. It factorises a tensor to the weighted 
sum of outer products of mode-specific vectors, as illustrated in Figure 1 for a three-order 
tensor. Formally, for an M-mode tensor X of size I1 × I2 × ··· × IM, its CP decomposition 
of rank R yields 

( ) ( )(1) ( )
1

1

( )

1 1

,

m

R
M

r r r
r

MR
m

r ri
r m

i a a

a

=

= =

≈ × ×

=

∑

∑ ∏

JJJG JJJJG
…X λ

λ

 (1) 

Similar to SVD, the approximation becomes closer as R enlarges, and would be exact if it 
equals the rank of the tensor [see Håstad (1990) for details]. We used the cp_als function 
in the MATLAB tensor toolbox (Bader and Kolda, 2010) which features the alternating 
least squares (ALS) method, a predominant implementation for CP decomposition. 

Figure 1 Illustration of the CP decomposition: the input three-mode tensor on the left is 
decomposed into R triplets of vectors on the right, reminiscing of the rank-R SVD  
of a matrix (see online version for colours) 

 

3.2 Spike detection in histograms 

Now that we have transformed complex structured data into a set of more manageable 
vectors, the next step is to spot anomalous patterns from these vectors. As a starting 
point, we visualise each vector by creating an attribute plot, which displays absolute 
values of eigenscores (y-axis) along its elements (indexed by the x-axis). An example of 
such plots is given in Figure 2. Note that the y-axis should be in log scale to emphasise 
on the relative difference. The black arrows indicate score values shared by many 
elements, which are not uncharacteristic in other dimensions and across different 
datasets. This key observation enables us to create effective heuristics to extract spikes 
from histograms as anomalies, and subsequently examine sub-graph patterns they imply 
in the next subsection. And the fact that many spikes do not appear at the very top of the 
figure with most significant eigenscore values makes it more difficult for many 
alternative methods to be effective. 
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Figure 2 An attribute plot which displays absolute values of eigenscores (y-axis in log-scale) 
along its elements (indexed by the x-axis) for the ‘IP-source’ mode with negative 
eigenscores for Lawrence Berkeley National Lab (LBNL) network traffic dataset  
(see online version for colours) 

 

Notes: Elements are sorted such that IP-sources located in the same local network  
have similar attribute index. The black arrows point to common score  
values, illustrating an observation critical to the algorithmic design of 
MultiAspectForensics. 

Algorithm 1 Spike detection algorithm (SDA) 

Require: Eigenscore histogram vector Ho of size N 
Ensure: The set indicating spikes detected S 

1: sort the histogram in descending order s.t. 1 2 No o oH H H≥ ≥ ≥"  

2: S ← φ; Q ← 0; QSUM 2
1 n

N

on
H

=
←∑  

3: for k = 1,…,K do 
4:  S ← S ∪ {ok} 

5:  2
koQ Q H← +  

6:  if Q / QSUM ≥ s and 1/ko oH H r<  then 

7:   break 
8:  end if 
9: end for 
10: if Q / QSUM < s then 
11:  S ← φ 
12: end if 
13: return S 

Prior to applying the spike detection heuristics, we obtain histogram data by equally 
dividing the range of eigenscores in log scale. The detection algorithm just needs to sort 
and traverse the histogram data until one of the following conditions is satisfied: 
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1 the energy as measured by sum of square values of frequencies covered is equal or 
more than a fraction of s, and the frequency is less than a fraction of r of the largest 
one 

2 K bins are already inspected. 

After the inspection, the sets of elements within each bin are extracted as spikes, as long 
as the energy covered is equal or more than a fraction of s. K is the desired number of 
spikes to be detected, and we used K = 20 as the number of spikes we can investigate 
practically. We used r = 50%, because the bins with equal or more than half of the 
frequencies of the largest one should be extracted as spikes, as long as the condition of 
the energy is satisfied. We examined several number of s under K = 20 and r = 50%, and 
we chose s = 90% so that many spikes are extracted for most of the datasets we used. The 
pseudo-code of the algorithm is listed in Algorithm 1 above. 

3.3 Visualisation 

Application of this algorithm to the data vector in Figure 2 yields Figure 3, where we put 
attribute plot on the left side-by-side with histogram plot on the right, high-lighting every 
spike in red. Using these plots, we can investigate the distributions of the attribute index 
of the elements within each spike. Figure 3 shows the IP-sources within the detected 
spikes have attribute index in a specific range. Because the elements are sorted such that 
IP-sources located in the same local network have similar attribute index, the attribute 
plot indicates that these IP-sources are located in the same local network. 

Figure 3 An attribute plot (adopted from Figure 2) on the left side-by-side with the 
corresponding histogram plot showing the count of elements that have same eigenscores 
(indicated by x-axis) in the ‘IP-source’ mode for LBNL network traffic dataset  
(see online version for colours) 
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Notes: Detected spikes are indicated by red circles in histogram plot and red dots in 
attribute plot. We can find the elements within each spike have attribute index in a 
specific range, indicating that they are located in the same local network. 

The collection of output plots of MultiAspectForensics is named MultiAspectForensics 
X-ray (MAF-ray), which puts together attribute plots and histogram plots of both positive 
and negative eigenscores. The rank 1 MAF-ray of LBNL network traffic dataset is shown 
in Figure 4. With MAF-ray, users can easily realise that there have occurred spikes in 
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histogram plot of some modes, whose corresponding elements have specific attribute 
index in attribute plot, like aforementioned spikes of IP-sources. 

Figure 4 First MAF-ray for LBNL network traffic dataset: attribute plots and histogram plots, for 
‘IP-source’ mode (the top row, #1) and ‘IP-destination’ mode (the middle row, #2) and 
‘port#’ mode (the bottom row, #3), and for the positive (left) and negative (right) parts 
(see online version for colours) 
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Note: Using MAF-ray, we can quickly spot IP-sources (or IP-destinations, or port#), 
which have similar behaviour, forming one of the patterns in Section 3.4. 

3.4 Substructure discovery 

Having extracted anomalous sets of elements that form histogram spikes from each data 
mode, we head back to the input network data to examine corresponding local  
sub-networks to complete the final step of pattern discovery. Because the elements  
within the same spike are expected to behave similarly and specifically, the local  
patterns corresponding to detected spikes can be understood as bursts of common  
patterns shared by the elements. As the starting point for analysing the local patterns,  
we propose spike table that shows detected spikes along with frequency counts of 
elements within each spike, numbers of common patterns, and numbers of unique 
elements of other modes within the common patterns. A spike table in ‘IP-source’  
mode (#1) in our running example is shown in Table 2. For example, most of the  
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119 IP-sources within spike #2 have three common patterns (131.243.143.66/534, 
131.243.141.187/534, and 131.243.140.105/534 as IP-destination/port number), with 
three distinct IP-destinations (mode #2), and one distinct port number (mode #3). Patterns 
derived from MultiAspectForensics could be summarised into the following two 
categories: 

3.4.1 Generalised star (g-Star) 

This pattern can be detected as a spike in a mode, whose corresponding elements share a 
single common pattern of other modes. This is a sub-network which consists of 
conterminous edges that differ only in one data mode. It generalises the star pattern in 
two dimensional graphs, and makes up a continuous block along one dimension in the 
adjacency tensor, if elements along that dimension are ordered carefully. We can find 
three spikes of this category in the spike table shown in Table 2. They are groups of  
IP-sources sending packets to a single destination server using the same port [Figure 5(a) 
‘NCP’]. Note that in a heterogeneous network, this category of patterns also includes 
multiple edges between one pair of nodes with differing attribute values, e.g., a good 
many port numbers in our running example, in which case the source machine may be 
either an administrator performing port screening or a suspect trying to exploit a 
vulnerable port [Figure 5(b) ‘port scanning’]. 

3.4.2 Generalised bipartite-core (g-Bcore) 

This pattern can be detected as a spike in a mode, whose corresponding elements share 
multiple common patterns of other modes. This is a sub-network that represents a dense 
bipartite structure similar to the bipartite-core pattern in regular graphs. More generally, it 
can be viewed as a fibre of continuous blocks along one dimension in higher-order 
tensors under specific element orders. Patterns of this category can be classified into 
some classes according to the number of unique elements of each mode within the 
common patterns. In the spike table shown in Table 2, spikes of this category are 
classified into two classes, spikes whose common patterns contain multiple unique 
elements only in mode #2 (spike #2 and #5), and spikes only in mode #3 (spike #3 and 
#7). The former class is a group of IP-sources sending packets to multiple destination 
servers with the same port [Figure 6(a) ‘file sharing’]. And the latter class is a group of 
IP-sources sending packets over different port numbers to the same server [Figure 6(b) 
‘multi purpose’], likely to happen during a distributed denial-of-service (DDoS) attack, a 
typical scenario of network intrusion, in which IP-sources play the role of malicious hosts 
sending huge volumes of packets to the target server as the victim. Note that this category 
of patterns can also include classes of spikes whose common patterns contain multiple 
unique elements in several modes, like spikes detected in the network traffic dataset with 
additional mode of time tick, as shown in Section 4. 

As a final remark, the statement that both patterns are belated to a block along one 
dimensions or a bundle of blocks in the high-order tensor only holds when elements of 
their respective data modes are ordered in specific ways. And the complexity to search 
for such an order is generally exponential, which reflects, in some sense, the power of the 
proposed approach. 
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Table 2 A spike table in ‘IP-source’ mode (#1) for the LBNL network traffic dataset 

# Frequency 
count 

# common 
patterns 

# unique elements of 
mode #2;3 Description 

1 172 1 1; 1 g-Star (‘NCP’) 
2 119 3 3; 1 g-Bcore (‘file sharing’) 
3 63 5 1; 5 g-Bcore (‘multi purpose’) 
4 51 1 1; 1 g-Star 
5 33 4 4; 1 g-Bcore 
6 26 1 1; 1 g-Star 
7 26 2 1; 2 g-Bcore 

Notes: Number of common patterns are the number of patterns of other modes shared by 
more than 90% of the elements within each spike. Numbers of unique elements of 
other modes within the common patterns are also shown. 

Figure 5 Examples of generalised star patterns discovered in the LBNL network traffic dataset, 
(a) ‘NCP’: ten IP-sources (randomly selected out of 172 ones) are sending multiple 
packets to a server machine with Port# 524, which is a UDP port under the NCP 
protocol from a network OS for file sharing and printing services  
(b) ‘Port scanning’: the IP-source registered by an Indian ISP is sending packets to a 
host in LBNL via port numbers (ranging from 2,300 to 2,900) not usually intended for 
this type of communication, implying a suspicious activity 

 
(a) 

 
(b) 

Note: Wavy arrows indicate multiple edges between the pair of nodes with a handful of 
distinct attribute values. 
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Figure 6 Examples of generalised bipartite-core patterns discovered in the LBNL network traffic 
dataset, (a) ‘File sharing’: ten IP-sources (randomly selected out of 119 ones) are 
sending multiple packets to an array of server machines over a port used for file sharing 
and printing services (b) ‘Multi purpose’: ten IP-sources (randomly selected out of  
63 ones) are sending packets over different ports to a multi-purpose server machine 

 
(a) 

 
(b) 

Note: Wavy arrows indicate multiple edges between the pair of nodes with a handful of 
distinct attribute values. 

4 Empirical results 

We commence this section with the description of datasets as well as experimental 
environment. It is followed by the discussion of respective patterns discovered by 
MultiAspectForensics in each of the three datasets. 
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4.1 Data and environment 

Datasets are acquired from three dissimilar application domains: network traffic 
monitoring, knowledge networks, and bioinformatics. A summary is highlighted in  
Table 3. 
Table 3 A summary of datasets 

Dataset # modes Measure # non-zero Dimensions # spikes 
LBNL-sdp 3 # packets 27 K 2,345 IP-srcs 7 
    2,355 IP-dsts 0 
    6,055 port #'s 10 
LBNL-sdpt 4 # packets 231K 3,610 time ticks 2 
    2,345 IP-srcs 0 
    2,355 IP-dsts 0 
    6,055 port #'s 0 
RTW 3 binary 10 K 3,641 subjects 15 
    98 verbs 0 
    3,929 objects 2 
BDGP 3 binary 38 K 4,491 genes 5 
    248 terms 2 
    6 stages 0 

Note: The numbers of spikes extracted by MultiAspectForensics are shown. 

• LBNL: The network traffic log is made available through a research effort to study 
the characteristics of traffic for internet enterprises (Pang et al., 2005). The 
measurement was taken on servers within the LBNL from thousands of internal hosts 
over time, with millions of packet traces recorded. Each packet trace includes four 
data modes: IP-source, IP-destination, port number, and a time tick in second. With 
privacy in concern, lower 16 bits were randomly permuted to anonymise the host 
identity, whereas upper 16 bits were kept intact for proper identification of the 
location and service provider (Pang et al., 2006). We borrowed a subset of this 
dataset within one-hour time span in this section. 

• RTW: This online knowledge base is the outcome of the Never-Ending Language 
Learning (NELL) system at Carnegie Mellon University (Carlson et al., 2010a). It 
employs natural language processing and machine learning techniques to constantly 
and automatically crawl web pages and extract facts (Carlson et al., 2010b). Each 
fact is a triplet of (subject, verb, object) such as (Pittsburgh, city-located-in-state, 
Pennsylvania), which could be represented as a directed graph made up of entities 
like Pittsburgh or Pennsylvania, edges with attributes like city-located-in-state. For 
better quality of results, we applied our algorithm on a pre-processed subset after 
noise removal (by courtesy of Dr. Byran Kisiel at Carnegie Mellon University). 

• Berkeley Drosophila Genome Project (BDGP): The dataset is collected from the 
BDGP to study the spatial-temporal patterns of gene expression during the early  
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development of fruit fly (Tomancak et al., 2002, 2007). We selected three data 
modes from the database dump available at Berkeley Drosophilia Genome Project 
(n.d.), Patterns of Gene Expression in Drosophila Embryogenesis, which consists of 
4,491 genes, 248 functional annotation terms from a specialised vocabulary, and 6 
different developmental stages. 

MultiAspectForensics was implemented in the MATLAB language, and all following 
experiments were performed on a Unix machine with four 2.8 GHz cores, and 16 GB 
memories. For every of these datasets, the wall-clock time was no more than 2 minutes  
to carry out the computation and generate attribute plot and histogram plot along all 
modes. 

4.2 LBNL traffic log 

We have already discussed patterns discovered from a snapshot of this dataset in  
Section 3.4, illustrated in Figures 5 and 6. With the additional mode of time tick  
(LBNL-sdpt), we found two dominating spikes for the ‘time-ticks’ mode (Table 3). The 
elements within these two big spikes in histogram plot (arrows on Figure 7) distributes on 
almost all the attributes in attribute plot, indicating the traffic corresponding to these 
spikes occurred at almost every time-tick. A spike table indicates both of the spikes are  
g-Bcore pattern, bipartite-cores between ‘time-tick’ elements and patterns of other modes 
(Table 4). Upon closer examination, we reported the following activities: the first spike is 
related to the HTTP traffic on port 80 between four servers in LBNL and three remote 
hosts in Chinese academic institutions, possibly executing scripts to crawl/download web 
pages. The second spike seems to be related to the same HTTP traffic as the first spike, 
with additional traffic between a server in LBNL and a remote host at India 
aforementioned. We traced further in time and found that the remote host never sent 
packets back to acknowledge the connection, suggestive of suspicious activities to be 
reported to domain experts. 

Figure 7 An attribute plot on the left side-by-side with the corresponding histogram plot for the 
‘time’ mode (#1) from the first MAF-ray for LBNL-sdpt (see online version for colours) 

 

Note: The spikes indicated by black arrow are discussed in Section 4.2. 
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Table 4 A spike table in ‘time ticks’ mode (#1) for LBNL-sdpt 

# Frequency count # common patterns # unique elements of mode #2;3;4 Description 
1 2,641 10 9; 9; 7 g-Bcore 
2 803 11 9; 10; 7 g-Bcore 

Notes: Number of common patterns are the number of patterns of other modes shared by 
more than 90% of the elements within each spike. Numbers of unique elements of 
other modes within the common patterns are also shown. 

4.3 RTW knowledge base 

Recall that each item in the knowledge database could be represented as a (subject, verb, 
object) triplet. MultiAspectForensics detected 15 spikes in ‘subjects’ mode and two 
spikes in ‘objects’ mode (Table 3). A spike table shows the spikes detected in ‘subjects’ 
mode in Table 5. Almost all of the spikes are g-Star pattern with exception of a spike of 
g-Bcore pattern having only two common patterns. 
Table 5 A spike table in ‘subjects’ mode (#1) for RTW knowledge base 

# Frequency count # common patterns # unique elements of mode #2;3 Description 

1 265 1 1; 1 g-Star 
2 134 1 1; 1 g-Star 
3 63 1 1; 1 g-Star 
4 31 1 1; 1 g-Star 
5 30 1 1; 1 g-Star 
6 30 1 1; 1 g-Star (‘punk’) 
7 29 1 1; 1 g-Star 
8 27 1 1; 1 g-Star (‘ryanair’) 
9 27 1 1; 1 g-Star 
10 26 1 1; 1 g-Star 
11 25 1 1; 1 g-Star 
12 24 1 1; 1 g-Star 
13 24 1 1; 1 g-Star 
14 22 2 2; 2 g-Bcore 
15 22 1 1; 1 g-Star 

Notes: Number of common patterns are the number of patterns of other modes shared by 
more than 90% of the elements within each spike. Numbers of unique elements of 
other modes within the common patterns are also shown. 

Figure 8 illustrates a sub-graph discovered revealing a g-Star pattern (‘punk’). The music 
artists/bands listed here are specialised to punk music according to the knowledge base. 
And Figure 9 displays another g-Star pattern (‘ryanair’) between European cities and an 
Irish low-cost airline which flies to many regional or secondary airports to reduce cost, 
following a different business model and choice of destination from industrial giants. 
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Figure 8 ‘Punk’: a g-Star pattern discovered from the RTW knowledge base about 49 punk 
music artists, of which a random selected set of ten are listed 

 

Note: They are all specialised in punk or one of its sub-genres according to the 
knowledge base. 

Figure 9 ‘Ryanair’: a g-Star pattern discovered from the RTW knowledge base about  
36 European destinations of the Ryanair, an Irish low-cost airline, of which a  
random selected set of ten are listed 

 

Note: Many of these cities have only sparse connections with other verbs. 

We should note that some elements within each spike have more versatile peers. For 
example, some of the musicians of ‘subjects’ mode in the ‘punk’ spike have patterns of 
verb ‘music-artist-genre’ with objects ‘horror punk’, ‘proto punk’, ‘British punk’ and 
‘punk rock’ (not shown in the figure). In ‘ryanair’ spike, some of the cities of ‘subjects’ 
mode have patterns of verb ‘city-located-in-country’ with objects ‘Finland’, ‘Norway’, 
‘Austria’, ‘Scotland’, ‘Spain’, ‘Belgium’ and ‘Ireland’ (not shown in the figure). These 
patterns are not be favourably selected by MultiAspectForensics, because they are less 
important in the first rank. 
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Moreover, as a sanity check, since node names are ordered alphabetically in this 
dataset, the pattern does not make a continuous block in the tensor without non-trivial 
permutation. 

4.4 BDGP gene annotation 

In this dataset MultiAspectForensics spots a spike of a set of genes known to be 
responsible for the maternal effect in the early development of fruit fly, which also 
provides hints to study other higher organisms including Homo sapiens. Products of such 
maternal effect genes, in the form of either protein or mRNA, play a critical role in the 
very early stage of embryo development, such as the first few cell divisions. For instance, 
four of such genes, including bicoid, caudal, hunchback, and nanos, is mostly responsible 
for the determination of anterior-posterior axis – which side of the embryo will be the 
future head and which other side will be the future tail (Lawrence, 1992). 

4.5 Scalability 

Can MultiAspectForensics be feasibly applied to higher dimensional datasets? The most 
time-consuming part in MultiAspectForensics is CP decomposition for the input tensor, 
for which a predominant implementation is the ALS method, such as the cp_als function 
in the MATLAB tensor toolbox (Bader and Kolda, 2010). Given a mode-N sparse tensor 
of size I1 × I2 × ··· × IN, the computational cost of each iteration depends on the larger of 
the following: 

1 
1

N
nn

I I
=

=∑  

2 NNZ = the number of non-zero elements. 

Figure 10 Computational time of MultiAspectForensics on two different datasets, (a) NNZ << I  
(b) NNZ >> I 

  
(a)     (b) 

Notes: On the x-axis, N denotes the number of iterations, I equals the sum of sizes over 
all dimensions, and NNZ stands for the number of non-zero elements. The 
complexity of MultiAspectForensics in time is O(N ∗ max(I, NNZ)). 
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Figure 10 presents empirical results over two different datasets – (a) a traffic log from 
LBNL data for which the tensor is sparse (NNZ << I), and we added non-zero elements to 
(a) in order to create a more dense tensor in (b) for which NNZ >> I. These results 
support the complexity of MultiAspectForensics in time is O(N ∗ max(I, NNZ)). If the 
dimension is low and the tensor data stays in the category (b), the computational cost 
does not depend on the addition of the dimensions, and scales linearly as NNZ grows. 
When the dimension increases, the tensor data becomes sparser and will fall into the 
category (a). In such a case, even though the total volume of the high-dimensional space 
increases exponentially, the computational cost will increase linearly as the dimension 
grows, proportional with the sum of the number of attribute index. In each case 
MultiAspectForensics has a feasible time complexity for higher dimensional datasets. 

5 Conclusions 

We presented MultiAspectForensics, a novel and effective tool to automatically detect 
and visualise a category of anomalous patterns, including generalised star and generalised 
bipartite-core patterns. These patterns can be understood as bursts of specific sub-graph 
patterns within a local community of nodes in heterogeneous networks, even if they exist 
among less-well connected nodes which are more likely to be ignored by many extant 
methods. Empirical results exhibited valuable insights derived from pattern discovered, 
across multiple application domains such as network traffic monitoring, knowledge 
networks, and bioinformatics. These successes could be attributed to the fact that we 
resorted to a tensor-based representation to facilitate data decomposition, reached a  
key observation leading to spike patterns in histogram plots, and revealed  
typical substructures reflecting spectral properties of heterogeneous data. Moreover, 
MultiAspectForensics is scalable to higher dimensional datasets, as we have empirically 
shown. 
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