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Resolution

Refutes a propositional formula in conjunctive normal form
(i.e., a set of clauses) by using the single rule
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to derive the empty clause, which is trivially false.
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Throughout this talk, “proof” means “refutation’:

proof of unsatisfiability =  refutation of satisfiability
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Sequence-like:

z, xVy, x, X, L



Regular resolution

No variable is resolved upon more than once along any path.
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Regular resolution [Tseitin, 1968]

No variable is resolved upon more than once along any path.
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Regular resolution is exponentially weaker than resolution.
[Alekhnovich, Johannsen, Pitassi, Urquhart, 2007]
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Concerned with the quantity

sp(l) = “size of a smallest P-proof of .

Let P and @ be proof systems.

® P simulates Q if there is some ¢ such that sp(") < sg(IN)°
for all T.

® P s exponentially separated from Q if there is some (I'j)en
such that sp(T,) = n%1) while sg(I,) = 27,
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Effective simulation [Pitassi and Santhanam, 2010]

Definition

Let P and Q be two proof systems for the class C of CNF formulas.
P effectively simulates Q if there is some function f: C x N — C
such that the following hold.

® The formula f(I', m) is satisfiable if and only if I is and
it can be computed in time polynomial in || + m.

® \When m is at least the size of the smallest Q-proof of I, the
formula f(I', m) has a P-proof of size polynomial in [['| + m.
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Known results

Effective simulations exist in several cases where either no simulation
is known or an exponential separation exists.

Examples:

linear resolution — resolution [Buresh-Oppenheim and Pitassi, 2007]

clause learning — resolution

[Hertel, Bacchus, Pitassi, Van Gelder, 2008]

resolution — k-DNF resolution [Atserias and Bonet, 2004]
blocked clauses without new variables — extended resolution
[Buss and Thapen, 2021]

constant-depth extensions of PC — AC°[p]-Frege
[Impagliazzo, Mouli, Pitassi, 2020]

Go (“quantified Frege") — any proof system
[Pitassi and Santhanam, 2010]
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New results

Regular resolution effectively simulates resolution.

Exponential separation of resolution from regular resolution —

Corollary

Regular resolution is not closed under variable substitutions.

Relationship between automatizability and effective simulations —-

Corollary

If resolution is not weakly automatizable, then neither is regular
resolution.
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Proof idea
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® Use the effective simulation to determine the relationship
between regular resolution and linear resolution.
(This was partially our initial motivation.)



Open questions

e Eliminate the dependence of f on the size parameter m.
® Use the effective simulation to determine the relationship

between regular resolution and linear resolution.

® Are “restarts” necessary for linear resolution and clause learning
to simulate resolution?



