

Regular resolution effectively simulates resolution

Emre Yolcu

`eyolcu@cs.cmu.edu`

Computer Science Department
Carnegie Mellon University

with Sam Buss

Resolution [Blake, 1937; Robinson, 1965]

Refutes a propositional formula in conjunctive normal form (i.e., a set of clauses) by using the single rule

$$\frac{A \vee x \quad B \vee \bar{x}}{A \vee B}$$

to derive the empty clause, which is trivially false.

Resolution [Blake, 1937; Robinson, 1965]

Refutes a propositional formula in conjunctive normal form (i.e., a set of clauses) by using the single rule

$$\frac{A \vee x \quad B \vee \bar{x}}{A \vee B}$$

to derive the empty clause, which is trivially false.

Throughout this talk, “proof” means “refutation”:

proof of unsatisfiability \equiv refutation of satisfiability

Example: resolution proof

$$\Gamma = (\bar{x} \vee \bar{z}) \wedge (\bar{y} \vee z) \wedge (x \vee y \vee \bar{z}) \wedge (x \vee \bar{y}) \wedge (y \vee z)$$

Example: resolution proof

$$\Gamma = (\bar{x} \vee \bar{z}) \wedge (\bar{y} \vee z) \wedge (x \vee y \vee \bar{z}) \wedge (x \vee \bar{y}) \wedge (y \vee z)$$

Tree-like:

$$\begin{array}{c} \overline{y} \vee z \quad y \vee z \\ \hline z \qquad \qquad x \vee y \vee \bar{z} \end{array} \quad \begin{array}{c} \overline{y} \vee z \quad y \vee z \\ \hline z \qquad \qquad \bar{x} \vee \bar{z} \end{array}$$
$$\begin{array}{c} x \vee \bar{y} \\ \hline x \end{array} \quad \begin{array}{c} x \vee y \\ \hline \perp \end{array}$$

Example: resolution proof

$$\Gamma = (\bar{x} \vee \bar{z}) \wedge (\bar{y} \vee z) \wedge (x \vee y \vee \bar{z}) \wedge (x \vee \bar{y}) \wedge (y \vee z)$$

Tree-like:

$$\begin{array}{c} \bar{y} \vee z \quad y \vee z \\ \hline z \qquad \qquad x \vee y \vee \bar{z} \qquad \bar{y} \vee z \quad y \vee z \\ \hline x \vee \bar{y} \qquad \qquad x \vee y \qquad \qquad z \qquad \qquad \bar{x} \vee \bar{z} \\ \hline x \\ \hline \bot \end{array}$$

Sequence-like:

$$\bar{x} \vee \bar{z}, \bar{y} \vee z, x \vee y \vee \bar{z}, x \vee \bar{y}, y \vee z, z, x \vee y, x, \bar{x}, \bot$$

Regular resolution [Tseitin, 1968]

No variable is resolved upon more than once along any path.

$$\frac{\frac{\overline{y} \vee z \quad y \vee z}{z} \quad \frac{x \vee y \vee \overline{z}}{x \vee y}}{x \vee \overline{y}} \quad \frac{\overline{y} \vee z \quad y \vee z}{z} \quad \frac{}{\overline{x} \vee \overline{z}}$$
$$\frac{x}{\perp}$$

Regular resolution [Tseitin, 1968]

No variable is resolved upon more than once along any path.

$$\frac{\frac{\frac{\overline{y} \vee z \quad y \vee z}{z} \quad y}{x \vee y \vee \overline{z}} \quad z}{x \vee y} \quad y \quad \frac{\overline{y} \vee z \quad y \vee z}{z} \quad y}{x \vee \overline{y}} \quad x$$
$$\frac{\overline{x} \vee \overline{z}}{z} \quad z$$
$$\perp$$

Regular resolution [Tseitin, 1968]

No variable is resolved upon more than once along any path.

$$\frac{\frac{\frac{\overline{y} \vee z \quad y \vee z}{z} \quad y}{x \vee y} \quad x \vee y \vee \overline{z}}{x \vee \overline{y}} \quad \frac{\overline{y} \vee z \quad y \vee z}{z} \quad y}{x} \quad \frac{\overline{x} \vee \overline{z}}{\perp} \quad z$$

Regular resolution is exponentially weaker than resolution.
[Alekhnovich, Johannsen, Pitassi, Urquhart, 2007]

Propositional proof complexity

Concerned with the quantity

$$s_P(\Gamma) := \text{"size of a smallest } P\text{-proof of } \Gamma\text{"}.$$

Propositional proof complexity

Concerned with the quantity

$$s_P(\Gamma) := \text{“size of a smallest } P\text{-proof of } \Gamma\text{”}.$$

Let P and Q be proof systems.

- P simulates Q if there is some c such that $s_P(\Gamma) \leq s_Q(\Gamma)^c$ for all Γ .
- P is exponentially separated from Q if there is some $(\Gamma_n)_{n \in \mathbb{N}}$ such that $s_P(\Gamma_n) = n^{O(1)}$ while $s_Q(\Gamma_n) = 2^{\Omega(n)}$.

Effective simulation [Pitassi and Santhanam, 2010]

Definition

Let P and Q be two proof systems for the class \mathcal{C} of CNF formulas.
 P *effectively simulates* Q if

Definition

Let P and Q be two proof systems for the class \mathcal{C} of CNF formulas. P *effectively simulates* Q if there is some function $f: \mathcal{C} \times \mathbb{N} \rightarrow \mathcal{C}$ such that the following hold.

Definition

Let P and Q be two proof systems for the class \mathcal{C} of CNF formulas. P *effectively simulates* Q if there is some function $f: \mathcal{C} \times \mathbb{N} \rightarrow \mathcal{C}$ such that the following hold.

- The formula $f(\Gamma, m)$ is *satisfiable* if and only if Γ is and it can be *computed* in time polynomial in $|\Gamma| + m$.

Definition

Let P and Q be two proof systems for the class \mathcal{C} of CNF formulas. P effectively simulates Q if there is some function $f: \mathcal{C} \times \mathbb{N} \rightarrow \mathcal{C}$ such that the following hold.

- The formula $f(\Gamma, m)$ is satisfiable if and only if Γ is and it can be computed in time polynomial in $|\Gamma| + m$.
- When m is at least the size of the smallest Q -proof of Γ , the formula $f(\Gamma, m)$ has a P -proof of size polynomial in $|\Gamma| + m$.

Known results

Effective simulations exist in several cases where either no simulation is known or an exponential separation exists.

Known results

Effective simulations exist in several cases where either no simulation is known or an exponential separation exists.

Examples:

- linear resolution → resolution [Buresh-Oppenheim and Pitassi, 2007]

Known results

Effective simulations exist in several cases where either no simulation is known or an exponential separation exists.

Examples:

- linear resolution → resolution [Buresh-Oppenheim and Pitassi, 2007]
- clause learning → resolution
[Hertel, Bacchus, Pitassi, Van Gelder, 2008]

Known results

Effective simulations exist in several cases where either no simulation is known or an exponential separation exists.

Examples:

- linear resolution \rightarrow resolution [Buresh-Oppenheim and Pitassi, 2007]
- clause learning \rightarrow resolution
[Hertel, Bacchus, Pitassi, Van Gelder, 2008]
- resolution \rightarrow k -DNF resolution [Atserias and Bonet, 2004]

Known results

Effective simulations exist in several cases where either no simulation is known or an exponential separation exists.

Examples:

- linear resolution → resolution [Buresh-Oppenheim and Pitassi, 2007]
- clause learning → resolution
[Hertel, Bacchus, Pitassi, Van Gelder, 2008]
- resolution → k -DNF resolution [Atserias and Bonet, 2004]
- blocked clauses without new variables → extended resolution
[Buss and Thapen, 2021]

Known results

Effective simulations exist in several cases where either no simulation is known or an exponential separation exists.

Examples:

- linear resolution \rightarrow resolution [Buresh-Oppenheim and Pitassi, 2007]
- clause learning \rightarrow resolution
[Hertel, Bacchus, Pitassi, Van Gelder, 2008]
- resolution \rightarrow k -DNF resolution [Atserias and Bonet, 2004]
- blocked clauses without new variables \rightarrow extended resolution
[Buss and Thapen, 2021]
- constant-depth extensions of PC \rightarrow $\text{AC}^0[p]$ -Frege
[Impagliazzo, Mouli, Pitassi, 2020]

Known results

Effective simulations exist in several cases where either no simulation is known or an exponential separation exists.

Examples:

- linear resolution \rightarrow resolution [Buresh-Oppenheim and Pitassi, 2007]
- clause learning \rightarrow resolution [Hertel, Bacchus, Pitassi, Van Gelder, 2008]
- resolution \rightarrow k -DNF resolution [Atserias and Bonet, 2004]
- blocked clauses without new variables \rightarrow extended resolution [Buss and Thapen, 2021]
- constant-depth extensions of PC \rightarrow $\text{AC}^0[p]$ -Frege [Impagliazzo, Mouli, Pitassi, 2020]
- G_0 (“quantified Frege”) \rightarrow any proof system [Pitassi and Santhanam, 2010]

New results

Theorem

Regular resolution effectively simulates resolution.

New results

Theorem

Regular resolution effectively simulates resolution.

Exponential separation of resolution from regular resolution \implies

Corollary

Regular resolution is not closed under variable substitutions.

New results

Theorem

Regular resolution effectively simulates resolution.

Exponential separation of resolution from regular resolution \implies

Corollary

Regular resolution is not closed under variable substitutions.

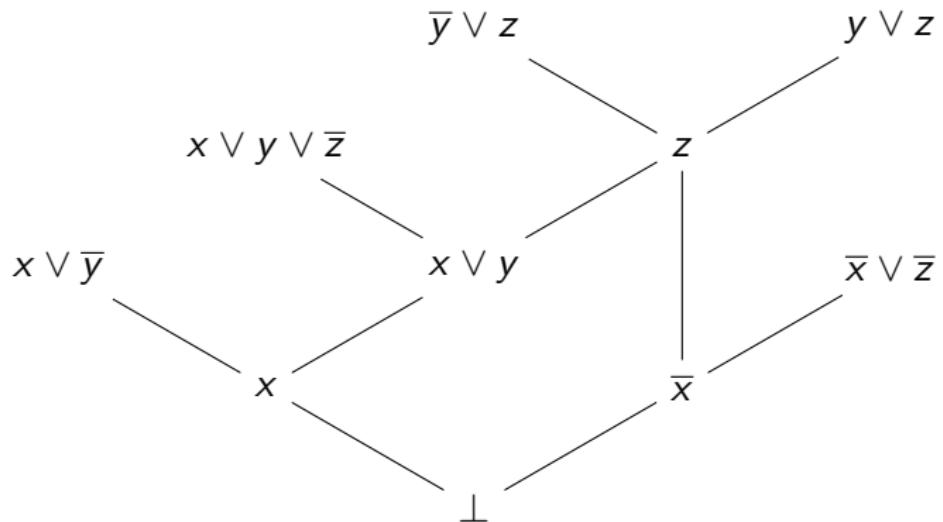
Relationship between automatizability and effective simulations \implies

Corollary

If resolution is not weakly automatizable, then neither is regular resolution.

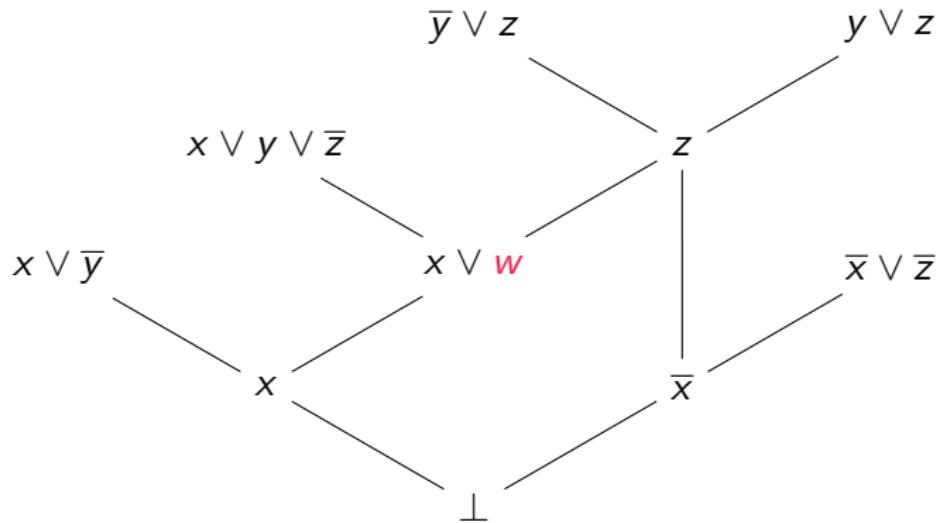
Proof idea

$$\Gamma = (\bar{x} \vee \bar{z}) \wedge (\bar{y} \vee z) \wedge (x \vee y \vee \bar{z}) \wedge (x \vee \bar{y}) \wedge (y \vee z)$$



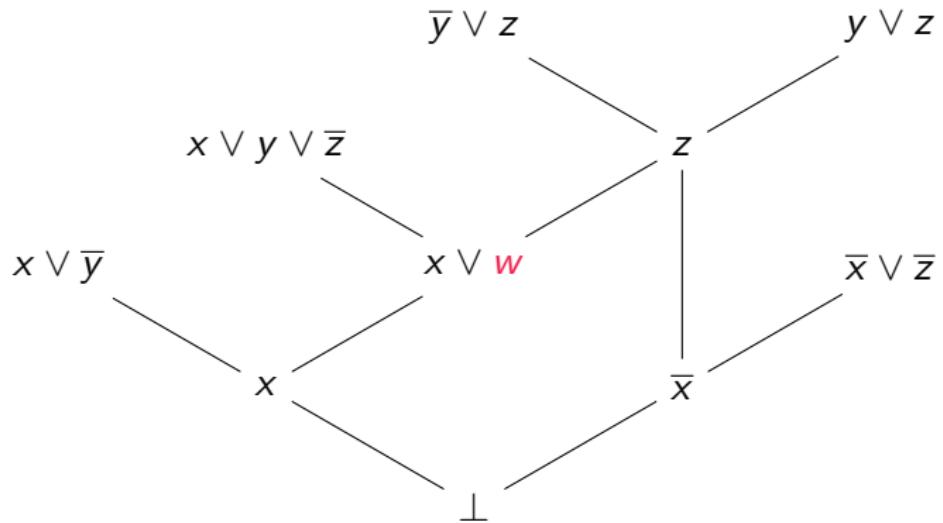
Proof idea

$$\Gamma = (\bar{x} \vee \bar{z}) \wedge (\bar{y} \vee z) \wedge (x \vee y \vee \bar{z}) \wedge (x \vee \bar{y}) \wedge (y \vee z)$$



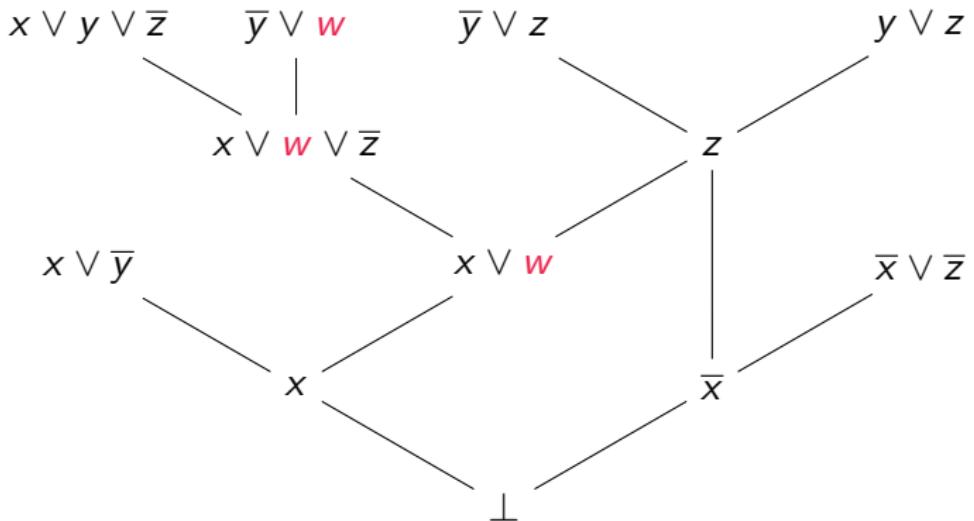
Proof idea

$$f(\Gamma, m) = (y \leftrightarrow w) \wedge (\bar{x} \vee \bar{z}) \wedge (\bar{y} \vee z) \wedge (x \vee y \vee \bar{z}) \wedge (x \vee \bar{y}) \wedge (y \vee z)$$



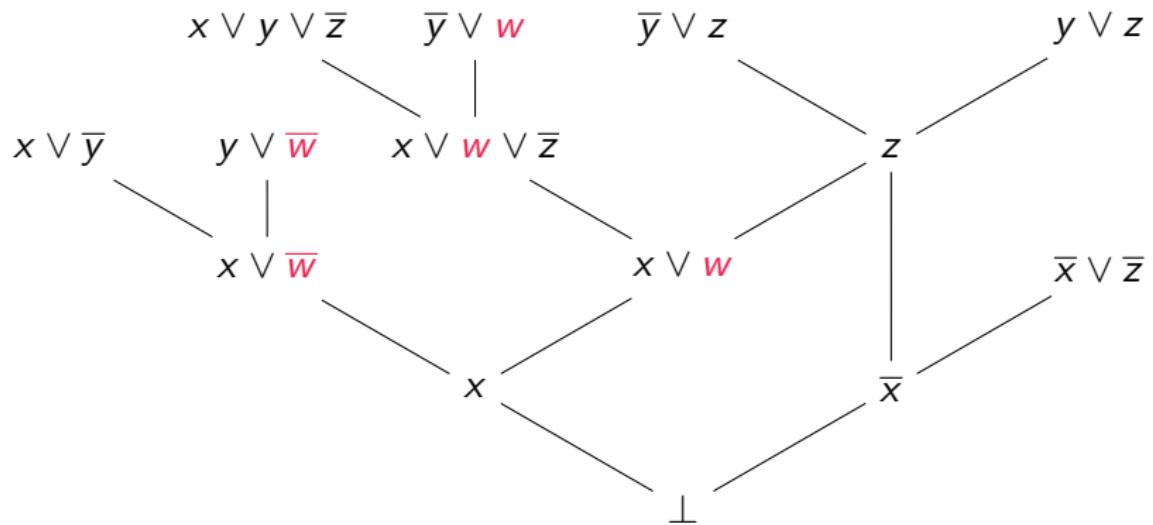
Proof idea

$$f(\Gamma, m) = (y \leftrightarrow w) \wedge (\bar{x} \vee \bar{z}) \wedge (\bar{y} \vee z) \wedge (x \vee y \vee \bar{z}) \wedge (x \vee \bar{y}) \wedge (y \vee z)$$



Proof idea

$$f(\Gamma, m) = (y \leftrightarrow w) \wedge (\bar{x} \vee \bar{z}) \wedge (\bar{y} \vee z) \wedge (x \vee y \vee \bar{z}) \wedge (x \vee \bar{y}) \wedge (y \vee z)$$



Open questions

- Eliminate the dependence of f on the size parameter m .

Open questions

- Eliminate the dependence of f on the size parameter m .
- Use the effective simulation to determine the relationship between regular resolution and linear resolution.
(This was partially our initial motivation.)

Open questions

- Eliminate the dependence of f on the size parameter m .
- Use the effective simulation to determine the relationship between regular resolution and linear resolution.
(This was partially our initial motivation.)
- Are “restarts” necessary for linear resolution and clause learning to simulate resolution?