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Resolution [Blake, 1937; Robinson, 1965]

Refutes a propositional formula in conjunctive normal form
(i.e., a set of clauses) by using the single rule

A ∨ x B ∨ x

A ∨ B

to derive the empty clause, which is trivially false.

Throughout this talk, “proof” means “refutation”:

proof of unsatisfiability ≡ refutation of satisfiability
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Example: resolution proof

Γ = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (y ∨ z)

Tree-like:

x ∨ y

y ∨ z y ∨ z

z x ∨ y ∨ z

x ∨ y

x

y ∨ z y ∨ z

z x ∨ z

x

⊥
Sequence-like:

x ∨ z , y ∨ z , x ∨ y ∨ z , x ∨ y , y ∨ z , z , x ∨ y , x , x , ⊥
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Regular resolution [Tseitin, 1968]

No variable is resolved upon more than once along any path.

x ∨ y

y ∨ z y ∨ z

z x ∨ y ∨ z

x ∨ y

x

y ∨ z y ∨ z

z x ∨ z

x

⊥

Regular resolution is exponentially weaker than resolution.
[Alekhnovich, Johannsen, Pitassi, Urquhart, 2007]
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Propositional proof complexity

Concerned with the quantity

sP(Γ) := “size of a smallest P-proof of Γ”.

Let P and Q be proof systems.

• P simulates Q if there is some c such that sP(Γ) ≤ sQ(Γ)
c

for all Γ.

• P is exponentially separated from Q if there is some (Γn)n∈N
such that sP(Γn) = nO(1) while sQ(Γn) = 2Ω(n).



Propositional proof complexity

Concerned with the quantity

sP(Γ) := “size of a smallest P-proof of Γ”.

Let P and Q be proof systems.

• P simulates Q if there is some c such that sP(Γ) ≤ sQ(Γ)
c

for all Γ.

• P is exponentially separated from Q if there is some (Γn)n∈N
such that sP(Γn) = nO(1) while sQ(Γn) = 2Ω(n).



Effective simulation [Pitassi and Santhanam, 2010]

Definition
Let P and Q be two proof systems for the class C of CNF formulas.
P effectively simulates Q if

there is some function f : C × N → C
such that the following hold.

• The formula f (Γ,m) is satisfiable if and only if Γ is and
it can be computed in time polynomial in |Γ|+m.

• When m is at least the size of the smallest Q-proof of Γ, the
formula f (Γ,m) has a P-proof of size polynomial in |Γ|+m.
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Known results

Effective simulations exist in several cases where either no simulation
is known or an exponential separation exists.

Examples:

• linear resolution → resolution [Buresh-Oppenheim and Pitassi, 2007]

• clause learning → resolution
[Hertel, Bacchus, Pitassi, Van Gelder, 2008]

• resolution → k-DNF resolution [Atserias and Bonet, 2004]
• blocked clauses without new variables → extended resolution

[Buss and Thapen, 2021]

• constant-depth extensions of PC → AC0[p]-Frege
[Impagliazzo, Mouli, Pitassi, 2020]

• G0 (“quantified Frege”) → any proof system
[Pitassi and Santhanam, 2010]
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New results

Theorem
Regular resolution effectively simulates resolution.

Exponential separation of resolution from regular resolution =⇒

Corollary

Regular resolution is not closed under variable substitutions.

Relationship between automatizability and effective simulations =⇒

Corollary

If resolution is not weakly automatizable, then neither is regular
resolution.



New results

Theorem
Regular resolution effectively simulates resolution.

Exponential separation of resolution from regular resolution =⇒

Corollary

Regular resolution is not closed under variable substitutions.

Relationship between automatizability and effective simulations =⇒

Corollary

If resolution is not weakly automatizable, then neither is regular
resolution.



New results

Theorem
Regular resolution effectively simulates resolution.

Exponential separation of resolution from regular resolution =⇒

Corollary

Regular resolution is not closed under variable substitutions.

Relationship between automatizability and effective simulations =⇒

Corollary

If resolution is not weakly automatizable, then neither is regular
resolution.



Proof idea
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Open questions

• Eliminate the dependence of f on the size parameter m.

• Use the effective simulation to determine the relationship
between regular resolution and linear resolution.
(This was partially our initial motivation.)

• Are “restarts” necessary for linear resolution and clause learning
to simulate resolution?
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