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Collatz conjecture

C (n) =

{
n/2 if n ≡ 0 (mod 2)

3n + 1 if n ≡ 1 (mod 2)

Conjecture

For all n ∈ N+, the trajectory n, C (n), C (C (n)), . . . reaches 1.

Verified for all n below 955× 260 as of today.1

1https://pcbarina.fit.vutbr.cz/
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String rewriting

Σ alphabet

`→ r rewrite rule

R rewriting system

→R rewrite relation

Example: R = {ab → ba}

abbab →R babab →R bbaab →R bbaba→R bbbaa



Termination

Definition
R is terminating if there is no infinite chain

X0 →R X1 →R X2 →R · · ·

where Xi ∈ Σ∗.

Theorem
R is terminating iff there is a well-founded order � such that
for all X ,Y ∈ Σ∗, if X →R Y then X � Y .
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Interpretation method [Manna and Ness, 1970]

To prove that a rewriting system R with alphabet Σ is terminating:
1. Fix some domain A equipped with a well-founded order �.

2. Translate each s ∈ Σ into a monotone function [s] : A→ A
such that for each `→ r ∈ R ,

[`](x) � [r ](x) for all x ∈ A,

where for a string T = t1 . . . tn we define [T ] := [t1] ◦ · · · ◦ [tn].

Example: R = {ab → ba}. Fix the domain (A,�) to be (N+, >).
With the interpretations [a](x) = x2 and [b](x) = x + 1,

[ab](x) = (x + 1)2 > x2 + 1 = [ba](x) for all x ∈ N+.
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Matrix interpretations [Hofbauer and Waldmann, 2006]

To prove that a rewriting system R with alphabet Σ is terminating:
1. Fix A to be Nd and equip it with the well-founded order �

defined as

x � y ⇐⇒ x1 > y1 ∧ xi ≥ yi for i ∈ {2, 3, . . . , d}.

2. Look for an affine function [s] : Nd → Nd for each s ∈ Σ (i.e.,
matrices Ms and vectors vs) such that for each `→ r ∈ R ,

[`](x) = M`x + v` �Mrx + vr = [r ](x) for all x ∈ Nd .
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Example proof

Z =




aa→ bc
bb → ac
cc → ab





[a](x) =




1 3 0 0
0 0 0 0
0 1 0 1
0 1 2 0


 x +




1
0
1
0




[b](x) =




1 0 0 2
0 0 0 0
0 0 0 1
0 1 0 2


 x +




0
0
0
2




[c](x) =




1 1 0 0
0 0 0 2
0 1 0 1
0 1 0 0


 x +




1
0
3
0



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Example proof (cont.)

x � y ⇐⇒ x1 > y1 ∧ xi ≥ yi for i ∈ {2, 3, . . . , d}.

It is decidable to check that for all x,

[aa](x) =




1 3 0 0
0 0 0 0
0 1 2 0
0 2 0 2


 x +




2
0
1
2


 �




1 3 0 0
0 0 0 0
0 1 0 0
0 2 0 2


 x +




1
0
0
2


 = [bc](x),

[bb](x) =




1 2 0 6
0 0 0 0
0 1 0 2
0 2 0 4


 x +




4
0
2
6


 �




1 1 0 6
0 0 0 0
0 1 0 2
0 2 0 4


 x +




2
0
1
6


 = [ac](x),

[cc](x) =




1 1 0 2
0 2 0 0
0 1 0 2
0 0 0 2


 x +




2
0
3
0


 �




1 0 0 2
0 0 0 0
0 1 0 2
0 0 0 2


 x +




1
0
3
0


 = [ab](x).



Unary encoding [Zantema, 2005]

System U :

h11 → 1h 11h� → 11s�
1s → s1
�s → �h

h1� → t11�
1t → t111
�t → �h

Rewrite sequences:

�h12n� → · · · → �h1n� for n > 1

�h12n+1� → · · · → �h13n+2� for n ≥ 0

Example run:
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Mixed-base encoding

System M:

f. → .
t. → 2.

f0 → 0f
f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

/0 → /t
/1 → /ff
/2 → /ft

Example run:
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1 = 13
2 = 23

/ = 10
. = 01

Example run:
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/0 → /t
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/2 → /ft
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f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

/0 → /t
/1 → /ff
/2 → /ft

Digits: (Think of the digit nb as applying the function bx + n.)

f(x) = 2x
t(x) = 2x + 1

0(x) = 3x
1(x) = 3x + 1
2(x) = 3x + 2

/(x) = 1
.(x) = x

Example run:

/ft. (10021201 = 5)



Mixed-base encoding

System M:

f. → .
t. → 2.

f0 → 0f
f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

/0 → /t
/1 → /ff
/2 → /ft

Digits: (Think of the digit nb as applying the function bx + n.)

f(x) = 2x
t(x) = 2x + 1

0(x) = 3x
1(x) = 3x + 1
2(x) = 3x + 2

/(x) = 1
.(x) = x

Example run:

/f2. (10022301 = 8)



Mixed-base encoding

System M:

f. → .
t. → 2.

f0 → 0f
f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

/0 → /t
/1 → /ff
/2 → /ft

Digits: (Think of the digit nb as applying the function bx + n.)

f(x) = 2x
t(x) = 2x + 1

0(x) = 3x
1(x) = 3x + 1
2(x) = 3x + 2

/(x) = 1
.(x) = x

Example run:

/1f. (10130201 = 8)



Mixed-base encoding

System M:

f. → .
t. → 2.

f0 → 0f
f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

/0 → /t
/1 → /ff
/2 → /ft

Digits: (Think of the digit nb as applying the function bx + n.)

f(x) = 2x
t(x) = 2x + 1

0(x) = 3x
1(x) = 3x + 1
2(x) = 3x + 2

/(x) = 1
.(x) = x

Example run:

/fff. (1002020201 = 8)



Mixed-base encoding

System M:

f. → .
t. → 2.

f0 → 0f
f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

/0 → /t
/1 → /ff
/2 → /ft

Digits: (Think of the digit nb as applying the function bx + n.)

f(x) = 2x
t(x) = 2x + 1

0(x) = 3x
1(x) = 3x + 1
2(x) = 3x + 2

/(x) = 1
.(x) = x

Example run:

/ff. (10020201 = 4)



Mixed-base encoding

System M:

f. → .
t. → 2.

f0 → 0f
f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

/0 → /t
/1 → /ff
/2 → /ft

Digits: (Think of the digit nb as applying the function bx + n.)

f(x) = 2x
t(x) = 2x + 1

0(x) = 3x
1(x) = 3x + 1
2(x) = 3x + 2

/(x) = 1
.(x) = x

Example run:

/f. (100201 = 2)



Mixed-base encoding

System M:

f. → .
t. → 2.

f0 → 0f
f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

/0 → /t
/1 → /ff
/2 → /ft

Digits: (Think of the digit nb as applying the function bx + n.)

f(x) = 2x
t(x) = 2x + 1

0(x) = 3x
1(x) = 3x + 1
2(x) = 3x + 2

/(x) = 1
.(x) = x

Example run:

/. (1001 = 1)



Nonexistence of matrix proofs for unary encoding

Definition
A sequence x1, x2, . . . is N-rational if for some d ∈ N+ there exist
M ∈ Nd×d and v,w ∈ Nd such that xn = vTMnw for all n.

Lemma (A “corollary” of Berstel’s theorem (1971))

No N-rational sequence x1, x2, . . . satisfies x8n+1 > x9n+2 for all n.

Lemma (Endrullis, Waldmann, Zantema (2008))

If some collection of d-dimensional affine interpretations is useful for
proving the termination of a rewriting system, then so is some other
collection of (d + 1)-dimensional linear interpretations.



Nonexistence of matrix proofs for unary encoding

Definition
A sequence x1, x2, . . . is N-rational if for some d ∈ N+ there exist
M ∈ Nd×d and v,w ∈ Nd such that xn = vTMnw for all n.

Lemma (A “corollary” of Berstel’s theorem (1971))

No N-rational sequence x1, x2, . . . satisfies x8n+1 > x9n+2 for all n.

Lemma (Endrullis, Waldmann, Zantema (2008))

If some collection of d-dimensional affine interpretations is useful for
proving the termination of a rewriting system, then so is some other
collection of (d + 1)-dimensional linear interpretations.



Nonexistence of matrix proofs for unary encoding

Definition
A sequence x1, x2, . . . is N-rational if for some d ∈ N+ there exist
M ∈ Nd×d and v,w ∈ Nd such that xn = vTMnw for all n.

Lemma (A “corollary” of Berstel’s theorem (1971))

No N-rational sequence x1, x2, . . . satisfies x8n+1 > x9n+2 for all n.

Lemma (Endrullis, Waldmann, Zantema (2008))

If some collection of d-dimensional affine interpretations is useful for
proving the termination of a rewriting system, then so is some other
collection of (d + 1)-dimensional linear interpretations.



Nonexistence of matrix proofs for unary encoding (cont.)

Theorem
Natural matrix interpretations (regardless of dimension) cannot be
used for proving the termination of the rewriting system U .

Proof idea. Suppose for a contradiction that there is a collection {Ms}s∈Σ of
(WLOG linear) d-dimensional interpretations for proving the termination of U .

In this system, we may represent a positive integer k as �h1k�. Define

fk := eT
1 [�h1k�](ed) = eT

1 M�h1k�ed = (eT
1 M�h)Mk

1(M�ed),

so f1, f2, . . . is an N-rational sequence.
Applying the Collatz map three times to a number of the form 8n + 1 gives
8n + 1 7→ 12n + 2 7→ 6n + 1 7→ 9n + 2. Thus, U allows the rewrite sequence

�h18n+1� → · · · → �h19n+2�,

which requires the use of every single rule in the system.

Since {Ms}s∈Σ is useful, we have f8n+1 > f9n+2, contradicting earlier lemma.



Nonexistence of matrix proofs for unary encoding (cont.)

Theorem
Natural matrix interpretations (regardless of dimension) cannot be
used for proving the termination of the rewriting system U .

Proof idea. Suppose for a contradiction that there is a collection {Ms}s∈Σ of
(WLOG linear) d-dimensional interpretations for proving the termination of U .
In this system, we may represent a positive integer k as �h1k�. Define

fk := eT
1 [�h1k�](ed) = eT

1 M�h1k�ed = (eT
1 M�h)Mk

1(M�ed),

so f1, f2, . . . is an N-rational sequence.

Applying the Collatz map three times to a number of the form 8n + 1 gives
8n + 1 7→ 12n + 2 7→ 6n + 1 7→ 9n + 2. Thus, U allows the rewrite sequence

�h18n+1� → · · · → �h19n+2�,

which requires the use of every single rule in the system.

Since {Ms}s∈Σ is useful, we have f8n+1 > f9n+2, contradicting earlier lemma.



Nonexistence of matrix proofs for unary encoding (cont.)

Theorem
Natural matrix interpretations (regardless of dimension) cannot be
used for proving the termination of the rewriting system U .

Proof idea. Suppose for a contradiction that there is a collection {Ms}s∈Σ of
(WLOG linear) d-dimensional interpretations for proving the termination of U .
In this system, we may represent a positive integer k as �h1k�. Define

fk := eT
1 [�h1k�](ed) = eT

1 M�h1k�ed = (eT
1 M�h)Mk

1(M�ed),

so f1, f2, . . . is an N-rational sequence.
Applying the Collatz map three times to a number of the form 8n + 1 gives
8n + 1 7→ 12n + 2 7→ 6n + 1 7→ 9n + 2. Thus, U allows the rewrite sequence

�h18n+1� → · · · → �h19n+2�,

which requires the use of every single rule in the system.

Since {Ms}s∈Σ is useful, we have f8n+1 > f9n+2, contradicting earlier lemma.



Nonexistence of matrix proofs for unary encoding (cont.)

Theorem
Natural matrix interpretations (regardless of dimension) cannot be
used for proving the termination of the rewriting system U .

Proof idea. Suppose for a contradiction that there is a collection {Ms}s∈Σ of
(WLOG linear) d-dimensional interpretations for proving the termination of U .
In this system, we may represent a positive integer k as �h1k�. Define

fk := eT
1 [�h1k�](ed) = eT

1 M�h1k�ed = (eT
1 M�h)Mk

1(M�ed),

so f1, f2, . . . is an N-rational sequence.
Applying the Collatz map three times to a number of the form 8n + 1 gives
8n + 1 7→ 12n + 2 7→ 6n + 1 7→ 9n + 2. Thus, U allows the rewrite sequence

�h18n+1� → · · · → �h19n+2�,

which requires the use of every single rule in the system.

Since {Ms}s∈Σ is useful, we have f8n+1 > f9n+2, contradicting earlier lemma.



Even worse

Zantema’s challenge (2003):

W (n) =

{
3n/2 if n ≡ 0 (mod 2)

⊥ if n ≡ 1 (mod 2)

Unary system:
h11 → 1h
1h� → 1t�
1t → t111
�t → �h



Switching to mixed-base encoding

Zantema’s challenge (2003):

W (n) =

{
3n/2 if n ≡ 0 (mod 2)

⊥ if n ≡ 1 (mod 2)

Mixed-base system:

f. → 0. f0 → 0f
f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

/0 → /t
/1 → /ff
/2 → /ft



Switching to mixed-base encoding

Mixed-base system:

f. → 0. f0 → 0f
f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

/0 → /t
/1 → /ff
/2 → /ft

Interpretations:

[f](x) =

[
1 0
0 1

]
x +

[
1
1

]
[t](x) =

[
0 0
0 1

]
x +

[
0
1

]

[/](x) =

[
0 0
0 0

]
x [.](x) =

[
1 0
0 0

]
x

[0](x) =

[
1 0
0 1

]
x +

[
0
2

]
[1](x) =

[
0 1
0 1

]
x +

[
2
2

]
[2](x) =

[
0 1
0 1

]
x +

[
2
2

]



Switching to mixed-base encoding

Interpretations:

[f](x) =

[
1 0
0 1

]
x +

[
1
1

]
[t](x) =

[
0 0
0 1

]
x +

[
0
1

]

[/](x) =

[
0 0
0 0

]
x [.](x) =

[
1 0
0 0

]
x

[0](x) =

[
1 0
0 1

]
x +

[
0
2

]
[1](x) =

[
0 1
0 1

]
x +

[
2
2

]
[2](x) =

[
0 1
0 1

]
x +

[
2
2

]

Example run:

[〈3360〉](x) =
[
0 0
0 0

]
x +

[
5
0

]



Switching to mixed-base encoding

Interpretations:

[f](x) =

[
1 0
0 1

]
x +

[
1
1

]
[t](x) =

[
0 0
0 1

]
x +

[
0
1

]

[/](x) =

[
0 0
0 0

]
x [.](x) =

[
1 0
0 0

]
x

[0](x) =

[
1 0
0 1

]
x +

[
0
2

]
[1](x) =

[
0 1
0 1

]
x +

[
2
2

]
[2](x) =

[
0 1
0 1

]
x +

[
2
2

]

Example run:

[〈25 · 3 · 5 · 7〉](x) =
[
0 0
0 0

]
x +

[
5
0

]



Switching to mixed-base encoding

Interpretations:

[f](x) =

[
1 0
0 1

]
x +

[
1
1

]
[t](x) =

[
0 0
0 1

]
x +

[
0
1

]

[/](x) =

[
0 0
0 0

]
x [.](x) =

[
1 0
0 0

]
x

[0](x) =

[
1 0
0 1

]
x +

[
0
2

]
[1](x) =

[
0 1
0 1

]
x +

[
2
2

]
[2](x) =

[
0 1
0 1

]
x +

[
2
2

]

Example run:

[〈3360〉](x) =
[
0 0
0 0

]
x +

[
5
0

]



Switching to mixed-base encoding

Interpretations:

[f](x) =

[
1 0
0 1

]
x +

[
1
1

]
[t](x) =

[
0 0
0 1

]
x +

[
0
1

]

[/](x) =

[
0 0
0 0

]
x [.](x) =

[
1 0
0 0

]
x

[0](x) =

[
1 0
0 1

]
x +

[
0
2

]
[1](x) =

[
0 1
0 1

]
x +

[
2
2

]
[2](x) =

[
0 1
0 1

]
x +

[
2
2

]

Example run:

[〈5040〉](x) =
[
0 0
0 0

]
x +

[
4
0

]



Switching to mixed-base encoding

Interpretations:

[f](x) =

[
1 0
0 1

]
x +

[
1
1

]
[t](x) =

[
0 0
0 1

]
x +

[
0
1

]

[/](x) =

[
0 0
0 0

]
x [.](x) =

[
1 0
0 0

]
x

[0](x) =

[
1 0
0 1

]
x +

[
0
2

]
[1](x) =

[
0 1
0 1

]
x +

[
2
2

]
[2](x) =

[
0 1
0 1

]
x +

[
2
2

]

Example run:

[〈7560〉](x) =
[
0 0
0 0

]
x +

[
3
0

]



Switching to mixed-base encoding

Interpretations:

[f](x) =

[
1 0
0 1

]
x +

[
1
1

]
[t](x) =

[
0 0
0 1

]
x +

[
0
1

]

[/](x) =

[
0 0
0 0

]
x [.](x) =

[
1 0
0 0

]
x

[0](x) =

[
1 0
0 1

]
x +

[
0
2

]
[1](x) =

[
0 1
0 1

]
x +

[
2
2

]
[2](x) =

[
0 1
0 1

]
x +

[
2
2

]

Example run:

[〈11340〉](x) =
[
0 0
0 0

]
x +

[
2
0

]



Switching to mixed-base encoding

Interpretations:

[f](x) =

[
1 0
0 1

]
x +

[
1
1

]
[t](x) =

[
0 0
0 1

]
x +

[
0
1

]

[/](x) =

[
0 0
0 0

]
x [.](x) =

[
1 0
0 0

]
x

[0](x) =

[
1 0
0 1

]
x +

[
0
2

]
[1](x) =

[
0 1
0 1

]
x +

[
2
2

]
[2](x) =

[
0 1
0 1

]
x +

[
2
2

]

Example run:

[〈17010〉](x) =
[
0 0
0 0

]
x +

[
1
0

]



Switching to mixed-base encoding

Interpretations:

[f](x) =

[
1 0
0 1

]
x +

[
1
1

]
[t](x) =

[
0 0
0 1

]
x +

[
0
1

]

[/](x) =

[
0 0
0 0

]
x [.](x) =

[
1 0
0 0

]
x

[0](x) =

[
1 0
0 1

]
x +

[
0
2

]
[1](x) =

[
0 1
0 1

]
x +

[
2
2

]
[2](x) =

[
0 1
0 1

]
x +

[
2
2

]

Example run:

[〈25515〉](x) =
[
0 0
0 0

]
x +

[
0
0

]



Switching to mixed-base encoding (cont.)

Farkas’ map (2005):

F (n) =





n−1
3 if n ≡ 1 (mod 3)

n
2 if n ≡ 0 or n ≡ 2 (mod 6)
3n+1

2 if n ≡ 3 or n ≡ 5 (mod 6)

Mixed-base system:

1. → .
0f. → 0.
1f. → 1.
1t. → 12.
2t. → 22.

f0 → 0f
f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

/0 → /t
/1 → /ff
/2 → /ft



Switching to mixed-base encoding (cont.)

Interpretations:

[f](x) =




− − − 2 −
− 2 0 − −
2 − − − −
− − − − −
− − − − −




x⊕




0
−
−
−
−




[t](x) =




− − − − 2
0 2 0 − 0
2 − 2 − −
− − − − −
− − − − −




x⊕




0
−
−
−
−




[/](x) =




0
2
−
−
4




[.](x) =




0 − − − −
− − − − −
− − − − −
− − − − −
− − − − −




x

[0](x) =




0 4 0 − −
− 4 − − −
− 4 0 − −
0 3 0 − −
− − − − −




x

[1](x) =




1 − − − −
− 4 0 − −
− 4 0 − −
0 − − − −
0 3 0 − −




x

[2](x) =




0 − 0 − −
− 4 − − −
0 − 1 − 0
− − − − −
0 − 0 − 0




x

Theorem. For all n ∈ N+, the trajectory FN(n) contains 1.

Proof. We proceed by induction. For n = 1 the result holds since FN(1) = (1, 0, 0, . . . ).
Assuming it holds for all positive integers less than n, we will show that it holds for n.
In particular, we will show that the trajectory of n reaches a number strictly smaller
than n, which implies by the induction hypothesis that the trajectory contains 1. We
split into three cases.

(i) Assume n ≡ 1 (mod 3). Then F (n) = (n− 1)/3 is smaller than n.

(ii) Assume n ≡ 0 or n ≡ 2 (mod 6). Then F (n) = n/2 is smaller than n.

(iii) Assume n ≡ 3 or n ≡ 5 (mod 6). Denote n by N1, and consider the trajectory
FN(N1) = (N1, N2, N3, . . . ). Let

k = sup

{
i ∈ N+

∣∣∣∣ Nj =
3Nj−1 + 1

2
for all 1 < j ≤ i

}
.

We cannot have k =∞, i.e., F cannot apply N 7→ (3N +1)/2 indefinitely, since
for such a sequence we have

Nj + 1 =

(
3

2

)
(Nj−1 + 1) =

(
3

2

)j−1

(N1 + 1).

As all the elements in the trajectory have to be integers, k − 1 cannot exceed
the number of times that N1 + 1 can be divided by 2, so k is finite. Consider

Nk+1 =

(
3

2

)k

(N1 + 1)− 1.

It is of the form 3k · L− 1 for some positive integer L, so we know that either
Nk+1 ≡ 2 (mod 6) or Nk+1 ≡ 5 (mod 6). Due to the way k is defined, Nk+1

cannot be congruent to 5 (mod 6), so we have Nk+1 ≡ 2 (mod 6). In particular,
Nk+1 is even, so

(
3
2

)k
(N1 + 1) is odd, which in turn implies that N1+1

2k
is odd,

i.e., we have N1 = 2k · (2M + 1)− 1 for some natural number M . Then, Nk+1

satisfies
Nk+1 = 3k · (2M + 1)− 1 = 3k · 2M + 3k − 1.

Since Nk+1 ≡ 2 (mod 6), we can deduce that

F (Nk+1) =
Nk+1

2
=

3k · 2M + 3k − 1

2
≡ 1 (mod 3),

and furthermore,

F 2(Nk+1) =
3k·2M+3k−1

2 − 1

3
= 3k−1 · 2M + 3k−1 − 1 ≡ 2 (mod 6).

Repeatedly applying F in the above manner gives F 2k(Nk+1) = 2M . Since
k ≥ 1, we have 2M < 2k · (2M + 1)− 1 = N1 = n, and so the trajectory FN(n)
reaches a number strictly smaller than n.

1


