Convex Optimization Algorithms for Machine Learning in 10 Slides

Presenter: Ian E.H. Yen

Jul. 15. 2015
Outline

1. Quadratic Problem—Linear System
2. Smooth Problem—Newton-CG
3. Composite Problem — Proximal-Newton-CD
4. Non-smooth, Non-separable—Augmented Lagrangian Method
Quadratic Problem

- Problem: \(\min_w f(w) = \frac{1}{2} w^T H w + g^T w + c \)
- Example:
 \[
 \min_w f(w) = \frac{1}{2} \| y - Xw \|^2 + \frac{1}{2} \| w \|^2 \tag{1}
 \]
- Solution: solve a linear system
 \[
 \nabla f(w) = 0 \Rightarrow Hw = -g \tag{2}
 \]
- How to solve?
 - In the example, \(H = X^T X + I \) and \(g = -Xy \).
 - \(X \) is \(n \times d \) → solving linear system directly requires \(O(d^3) \).
 - **Hessian-vector product** (\(Hv \)) only needs \(O(nnz(X)) \).
- **Conjugate Gradient (CG)** produces reasonable solution using few iters of Hessian-vector product.
Smooth Problem — Newton-CG

- Problem: \(\min_w f(w) \), where \(\nabla f(w) \), \(\nabla^2 f(w) \) are continuous.

- Ex.
 \[
 \min_w f(w) = \sum_{i=1}^{n} L(w^T x_i, y_i) + \frac{1}{2} \|w\|^2
 \] \hspace{1cm} (3)

 where \(L(z, y) = \ln(1 + \exp(-yz)) \) is logistic loss \(^1\).

- Newton-CG, where each iter \(t \) we solve a quadratic approximation to find the "Newton direction" \(\Delta w_{nt} \)

 \[
 \Delta w_{nt} = \arg\min_{\Delta w} \frac{1}{2} \Delta w^T H_t \Delta w + g_t^T \Delta w + f(w_t),
 \]

 and do line search to find step size \(\eta_t \). \((w_{t+1} = w_t + \eta_t \Delta w_{nt}) \)

- In (4), \(H_t = X^T DX + I \), where \(D \) is diagonal matrix with \(D_{ii} = L''(w_t^T x_i, y_i) \). \(\Rightarrow \) Hessian-vector product \(O(nnz(X)) \).

Outline

1. Quadratic Problem—Linear System
2. Smooth Problem—Newton-CG
3. Composite Problem — Proximal-Newton-CD
4. Non-smooth, Non-separable—Augmented Lagrangian Method
Composite Problem

- Problem: \(\min_w f(w) + h(w) \), where \(f(w) \) is smooth, \(h(w) \) is not smooth but **separable** w.r.t. "atoms".
- Ex. LASSO, L1-regularized Logistic Reg. \(^2\)

\[
\min_w f(w) = \sum_{i=1}^{n} L(w^T x_i, y_i) + \lambda \|w\|_1, \tag{4}
\]

- Ex. Dual of SVM \(^3\)

\[
\min_{\alpha} \frac{1}{2} \alpha^T Q \alpha - \sum_{i=1}^{n} \alpha_i \\
\text{s.t.} \quad 0 \leq \alpha_i \leq C, \; i = 1..n. \tag{5}
\]

- Ex. Matrix Completion \(^4\)

\[
\min_W \frac{1}{2} \sum_{i,j \in \Omega} (A_{ij} - W_{ij})^2 + \lambda \|W\|_* \tag{6}
\]

\(^4\) Hsieh et al.. "Nuclear norm minimization via active subspace selection." ICML 2014.
Composite Problem

- Problem: \(\min_w f(w) + h(w) \), where \(f(w) \) is smooth, \(h(w) \) is not smooth but separable w.r.t. "atoms".
- Insight: if \(f(w) \) is "atomic" quadratic function, composite problem is easy to solve. Ex.

\[
\text{sign}\left(\frac{-b}{a}\right) \text{softThd}\left(\frac{-b}{a}, \frac{\lambda}{a}\right) = \arg\min_x \frac{a}{2} x^2 + bx + \lambda |x|.
\]

(Google "proximal operator for ..." to find formula you need.)

- **Proximal-Newton-CD:**
 1. Construct local quadratic approximation \(q(\Delta w; w_t) \). Solve \(\Delta w^* = \arg\min_w q(\Delta w; w_t) + h(\Delta w + w_t) \). \hspace{1cm} (7)

via Coordinate Descent (optimize w.r.t. one atom at a time).
 2. Do line search to find \(\eta_t \) and \(w_{t+1} = w_t + \eta_t \Delta w^* \).
Composite Problem

Problem: \(\min_w f(w) + h(w) \), where \(f(w) \) is smooth, \(h(w) \) is not smooth but separable w.r.t. ”atoms”.

- **Proximal-Newton-CD:**
 1. Construct local quadratic approximation \(q(\Delta w; w_t) \). Solve
 \[
 \Delta w^* = \arg\min_w q(\Delta w; w_t) + h(\Delta w + w_t). \tag{8}
 \]
 via Coordinate Descent (optimize w.r.t. one atom at a time).
 2. Do line search to find \(\eta_t \) and \(w_{t+1} = w_t + \eta_t \Delta w^* \).

- **Key to efficiency:** whether \(\nabla q(.) = H_t \Delta w + g_t \) can be maintained efficiently after coordinate update.

- What if not? (ex. Multiclass, CRF) \(\Rightarrow \) **Prox-Quasi-Newton:** replace \(H_t \) with low-rank approximation \(B_t \) constructed from historical \(\nabla f(w_1), \ldots, \nabla f(w_{t-1}) \).

Outline

1. Quadratic Problem—Linear System
2. Smooth Problem—Newton-CG
3. Composite Problem — Proximal-Newton-CD
4. Non-smooth, Non-separable—Augmented Lagrangian Method
Non-smooth, Non-separable Problem

- What if the non-smooth function is non-separable?
- Linear Program:
 \[
 \min_{x, \xi \geq 0} \quad c^T x \\
 \text{s.t.} \quad Ax + \xi = b.
 \]
 \[\text{(9)}\]

- Robust PCA:
 \[
 \min_{L, S} \quad \|L\|_* + \lambda \|S\|_1 \\
 \text{s.t.} \quad L + S = X.
 \]
 \[\text{(10)}\]

- Reduce it to **composite problem** by Augmented Lagrangian Method!
Non-smooth, Non-separable Problem

- What if the non-smooth function is non-separable?

- Linear Program:

\[
\begin{align*}
\min_{x, \xi \geq 0} & \quad c^T x \\
\text{s.t.} & \quad Ax + \xi = b.
\end{align*}
\] (11)

- min-max of Lagrangian: (dual variable \(\alpha\))

\[
\begin{align*}
\min_{x, \xi \geq 0} \max_{\alpha} & \quad c^T x + \alpha^T (Ax - b + \xi) \\
\end{align*}
\] (12)

- Augmented Lagrangian Method:

\[
\begin{align*}
(x^*, \xi^*) = \argmin_{x, \xi \geq 0} & \quad c^T x + \alpha_t^T (Ax - b + \xi) + \frac{1}{2} \|Ax - b + \xi\|^2 \\
\alpha_{t+1} = & \quad \alpha_t + (Ax^* - b + \xi^*)
\end{align*}
\] (13)