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Incentive compatibility (IC)

Agents maximize utility by reporting type truthfully
Fundamental concept in mechanism design

Many real-world mechanisms are not IC



Discriminatory auctions

Multi-unit variant of first-price auction

Not incentive compatible

Used to sell treasury bills since 1929



Discriminatory auctions

Multi-unit variant of first-price auction

Not incentive compatible

Used to sell treasury bills since 1929
and electricity in the UK



Generalized 2nd-price

Used for sponsored search

Not incentive compatible



Multi-item, multi-agent 
auctions
Nearly all fielded combinatorial auctions

(such as sourcing auctions)
aren’t incentive compatible



Why aren’t real-world auctions IC?

Rules are easier to explain

Bids used to tune future parameters

Might leak private values

Agents not risk neutral



Approximate incentive compatibility
Auction is 𝜸-IC when for each agent 𝑖:

If everyone except agent 𝑖 is truthful,
she can only increase exp. utility by γ when lies about type
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Approximate incentive compatibility
Auction is 𝜸-IC when for each agent 𝑖:

If everyone except agent 𝑖 is truthful,
she can only increase exp. utility by γ when lies about type

Overriding goal: Given samples from dist. over agents’ types,
estimate IC approximation factor (𝛾) using samples
Complements literature on sample-based revenue maximization
Likhodedov, Sandholm, AAAI'04, ’05; Balcan, Blum, Hartline, Mansour, FOCS’05; Elkind, 
SODA’07; Cole, Roughgarden, STOC’14; Mohri, Medina, ICML’14; Huang, Mansour, 
Roughgarden, EC’15; Morgenstern, Roughgarden, NeurIPS’15, COLT’16; Roughgarden,  
Schrijvers, EC’16; Devanur, Huang, Psomas, STOC’16; Balcan, Sandholm, V., NeurIPS’16; 
Gonczarowski, Nisan, STOC’17; Cai, Daskalakis, FOCS’17; Balcan, Sandholm, V., EC’18; …



Why estimate IC approximation factor?

Some mechanisms might have terrible worst case IC apx factor,
but are (nearly) IC for distribution over agents’ types at hand

Use mechanism might have discarded as non-IC,
remaining optimistic that agents will be truthful



Why estimate IC approximation factor?

In mechanism design via machine learning:
Add constraint requiring this estimate be small
[Feng, Narasimhan, Parkes, AAMAS’18; Golowich, Narasimhan, Parkes, IJCAI’18; Dütting, Feng, 
Narasimhan, Parkes, Ravindranath, ICML‘19]

Is resulting mechanism (nearly) IC?



Background

𝑛 agents with types in [0,1]!

Standard assumption:
Agents’ types drawn from probability distribution 𝒕", … , 𝒕# ~𝒟

In this talk, 𝒟 is product distribution: 𝒕$~𝒟$ and 𝒟 = 𝒟"×⋯×𝒟#
𝒟%$ =×&'$𝒟&



Incentive compatibility

Auction is incentive compatible (IC) if for any agent:
In expectation over other’s types,

utility maximized by reporting type truthfully,
so long as others also truthful

Utility of agent 𝑖: 𝑢 𝑡$ , �̃�$ , 𝒕%$
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Incentive compatibility

Auction is incentive compatible (IC) if for any agent:
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utility maximized by reporting type truthfully,
so long as others also truthful

Utility of agent 𝑖: 𝑢 𝑡$ , �̃�$ , 𝒕%$
Others’ types



Incentive compatibility

Auction is incentive compatible (IC) if for any agent:
In expectation over other’s types,

utility maximized by reporting type truthfully,
so long as others also truthful

Mechanism is IC if for any agent 𝑖 and any 𝑡$ , �̃�$,
𝔼𝒕!" 𝑢 𝑡$ , 𝑡$ , 𝒕%$ ≥ 𝔼𝒕!" 𝑢 𝑡$ , �̃�$ , 𝒕%$

“Ex-interim” IC

Utility from
truthful report

Utility from
strategic report



Approximate incentive compatibility

Auction is 𝛄-IC if for any agent 𝑖 and any 𝑡$ , �̃�$,
𝔼𝒕!" 𝑢 𝑡$ , 𝑡$ , 𝒕%$ ≥ 𝔼𝒕!" 𝑢 𝑡$ , �̃�$ , 𝒕%$ − γ

Kothari, Parkes, Suri, EC’03; Archer, Papadimitriou, Talwar, Tardos, Internet Mathematics ’04; Conitzer
and Sandholm, IJCAI’07; Dekel, Fischer, Procaccia, JCSS’10; Lubin, Parkes, Current Science ’12; 
Mennle and Seuken, EC’14; Dütting, Fischer, Jirapinyo, Lai, Lubin, Parkes TEAC’15; Azevedo, Budish, 
Review of Economic Studies ’18; Feng, Narasimhan, Parkes, AAMAS’18; Golowich, Narasimhan, 
Parkes, IJCAI’18; Dütting, Feng, Narasimhan, Parkes, Ravindranath, ICML’19

Our goal: Estimate IC approximation factor (𝛾) using samples

Utility from
truthful report

Utility from
strategic report



Our estimate
Our estimate (first try):
Maximum utility agent 𝑖 can gain by misreporting her type,

on average over samples 𝒕%$
("), … , 𝒕%$

+ ~𝒟%$:

max
,", .,"∈ℝ#

1
𝑁
=
&1"

+

𝑢 𝑡$ , �̃�$ , 𝒕%$
& − 𝑢 𝑡$ , 𝑡$ , 𝒕%$

&

Utility from
strategic 

report

Utility from 
truthful 
report
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Not convex 
and many 

discontinuities



Our estimate
Our estimate >𝜸 (first try):
Maximum utility agent 𝑖 can gain by misreporting her type,

on average over samples 𝒕%$
("), … , 𝒕%$

+ ~𝒟%$,
if true & reported types from uniform grid 𝒢
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Our estimate
Our estimate >𝜸 (first try):
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Challenge:
Might miss pairs of true & reported types with large utility gains

:



Our estimate
Our estimate >𝜸 (first try):
Maximum utility agent 𝑖 can gain by misreporting her type,

on average over samples 𝒕%$
("), … , 𝒕%$

+ ~𝒟%$,
if true & reported types from uniform grid 𝒢

@𝛾 = max
,", .,"∈𝒢

1
𝑁
=
&1"

+

𝑢 𝑡$ , �̃�$ , 𝒕%$
& − 𝑢 𝑡$ , 𝑡$ , 𝒕%$

&

Key question:
𝛾 − @𝛾 ≤ ?

:



Uniform grid

Challenge:
Utility functions are volatile

First-price auction:
Highest bidder wins
Pays highest bid

Bid �̃�!

First-price auction
utility 𝑢 𝑡! ,%, 𝒕"!

Maximum 
competing bid



Uniform grid

Challenge:
Utility functions are volatile, especially on average over samples

Max competing 
bids across 

samples

Bid �̃�!

First-price auction average 
utility #

$
∑%&#$ 𝑢 𝑡! ,%, 𝒕"!

%



Uniform grid

Coarse discretization can lead to poor utility estimation

Bid �̃�!

First-price auction average 
utility #

$
∑%&#$ 𝑢 𝑡! ,%, 𝒕"!

%



When is the distribution “nice” 
enough to use a grid?



Dispersion

Functions 𝑓", … , 𝑓+: ℝ! → ℝ are 𝒘, 𝒌 -dispersed if:
Every 𝑤-ball contains discontinuities of ≤ 𝑘 functions 
[Balcan, Dick, V., FOCS’18]

Plot ∑𝑓$:

Not dispersed Dispersed



Dispersed utility functions

Definition. 𝒕%$
("), … , 𝒕%$

(+) induce 𝑳-Lipschitz (𝒘, 𝒌)-dispersion if:
1. For any 𝑡$, 𝑢 𝑡$ ,N, 𝒕%$

" , … , 𝑢 𝑡$ ,N, 𝒕%$
+ are:

Utility as a function of the bid �̃�!



Dispersed utility functions

Definition. 𝒕%$
("), … , 𝒕%$

(+) induce 𝑳-Lipschitz (𝒘, 𝒌)-dispersion if:
1. For any 𝑡$, 𝑢 𝑡$ ,N, 𝒕%$

" , … , 𝑢 𝑡$ ,N, 𝒕%$
+ are:

Piecewise 𝐿-Lipschitz and (𝑤, 𝑘)-dispersed
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Dispersed utility functions

Definition. 𝒕%$
("), … , 𝒕%$

(+) induce 𝑳-Lipschitz (𝒘, 𝒌)-dispersion if:
1. For any 𝑡$, 𝑢 𝑡$ ,N, 𝒕%$

" , … , 𝑢 𝑡$ ,N, 𝒕%$
+ are:

Piecewise 𝐿-Lipschitz and (𝑤, 𝑘)-dispersed
2. For any �̃�$, 𝑢 N, �̃�$ , 𝒕%$

" , … , 𝑢 N, �̃�$ , 𝒕%$
+ are: 

Utility as a function of the value 𝑡!



Dispersed utility functions

Definition. 𝒕%$
("), … , 𝒕%$

(+) induce 𝑳-Lipschitz (𝒘, 𝒌)-dispersion if:
1. For any 𝑡$, 𝑢 𝑡$ ,N, 𝒕%$

" , … , 𝑢 𝑡$ ,N, 𝒕%$
+ are:

Piecewise 𝐿-Lipschitz and (𝑤, 𝑘)-dispersed
2. For any �̃�$, 𝑢 N, �̃�$ , 𝒕%$

" , … , 𝑢 N, �̃�$ , 𝒕%$
+ are: 

Piecewise 𝐿-Lipschitz and (𝑤, 𝑘)-dispersed

• Prove that WHP, for all infinitely-many function sequences:
dispersion holds for “good” values of 𝑤 and 𝑘
• Show discontinuities are shared across function sequences



Guarantees

Our estimate >𝜸:
Maximum utility agent 𝑖 can gain by misreporting her type,

on average over samples 𝒕%$
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+ ~𝒟%$,
if true & reported types from uniform grid 𝒢

Theorem:
If WHP, for all 𝑖, 𝒕%$

("), … , 𝒕%$
(+) induce 𝐿-Lipschitz (𝑤, 𝑘)-dispersion
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Estimation error: WHP, @𝛾 − 𝛾 = Q𝑂 𝐿𝑤 + 3
+
+ 4

+
𝑑 = standard ML measure of utility functions’ intrinsic complexity
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Estimation error: WHP, @𝛾 − 𝛾 = Q𝑂 𝑳𝒘 + 𝒌
𝑵
+ 4

+

Proof idea:
• If snap types to grid, average utility only changes by ≤ 𝑳𝒘 + 𝒌

𝑵
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Estimation error: WHP, @𝛾 − 𝛾 = Q𝑂 𝐿𝑤 + 3
+
+ 𝒅

𝑵

Proof idea:
• If snap types to grid, average utility only changes by ≤ 𝐿𝑤 + 3

+

• 𝒅
𝑵

additional error incurred from sampling

Guarantees

Theorem:
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("), … , 𝒕%$
(+) induce 𝐿-Lipschitz (𝑤, 𝑘)-dispersion

⇒ Can estimate using 𝑤-grid



Estimation error: @𝛾 − 𝛾 = Q𝑂 𝐿𝑤 + 3
+
+ 4

+

When 𝑤 = 𝑂 "
+
, 𝑘 = 𝑂 𝑁 :

We prove these (𝑤, 𝑘) values hold when distribution is nice

Guarantees

Estimation error: WHP, @𝛾 − 𝛾 = Q𝑂 𝐿𝑤 + 3
+
+ 4

+

When 𝑤 = 𝑂 "
+
, 𝑘 = 𝑂 𝑁 :

We prove these (𝑤, 𝑘) values hold when distribution is nice

Error

𝑁

Theorem:
If WHP, for all 𝑖, 𝒕%$

("), … , 𝒕%$
(+) induce 𝐿-Lipschitz (𝑤, 𝑘)-dispersion

⇒ Can estimate using 𝑤-grid



Applications

When does dispersion hold?
[0, 𝜅] = range of density functions defining agents’ type distributions

First-price auction

Error: @𝛾 − 𝛾 = Q𝑂 #9:;<=> ? @!$

(#>9ABC;>)

Also analyze combinatorial first-price auctions



Applications

When does dispersion hold?
[0, 𝜅] = range of density functions defining agents’ type distributions

Generalized second-price auction

Error: @𝛾 − 𝛾 = Q𝑂 #9:;<=> %/'? @!$
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Applications

When does dispersion hold?
[0, 𝜅] = range of density functions defining agents’ type distributions

Discriminatory and uniform price auctions
Generalization of first-price auction to multi-unit settings

Error: @𝛾 − 𝛾 = Q𝑂 #9:;<=> #D<E=> '? @!$

(#>9ABC;>)



Conclusion

• Provide techniques for estimating how far mechanism is from IC
• Introduce empirical variant of approximate IC
• Bound estimate’s error using dispersion
• Guarantees for:
• First-price (combinatorial) auction
• Generalized second-price auction
• Discriminatory auction
• Uniform price auction
• Second-price auction under spiteful agents



Future directions

What if samples strategically manipulated?
Also applies to literature on revenue maximization via machine learning 
Likhodedov, Sandholm, AAAI'04, ’05; Elkind, SODA’07; Cole, Roughgarden, STOC’14; Mohri, 
Medina, ICML’14; Huang, Mansour, Roughgarden, EC’15; Morgenstern, Roughgarden, 
NeurIPS’15, COLT’16; Devanur, Huang, Psomas, STOC’16; Balcan, Sandholm, V., NeurIPS’16; 
Gonczarowski, Nisan, STOC’17; Cai, Daskalakis, FOCS’17; Balcan, Sandholm, V., EC’18; …

What about when report space not real-valued?
E.g., school choice mechanisms: report preference order over schools



Estimating Approximate 
Incentive Compatibility

Maria-Florina Balcan, Tuomas Sandholm,
and Ellen Vitercik

Berkeley (EECS) → Stanford (MS&E and CS)

Working paper, preliminary version in
Conference on Economics and Computation (EC)


