Estimating Approximate Incentive Compatibility

Maria-Florina Balcan, Tuomas Sandholm,

and Ellen Vitercik

Berkeley (EECS) → Stanford (MS&E and CS)

Working paper, preliminary version in Conference on Economics and Computation (EC)

Agents maximize utility by reporting type truthfully Fundamental concept in mechanism design

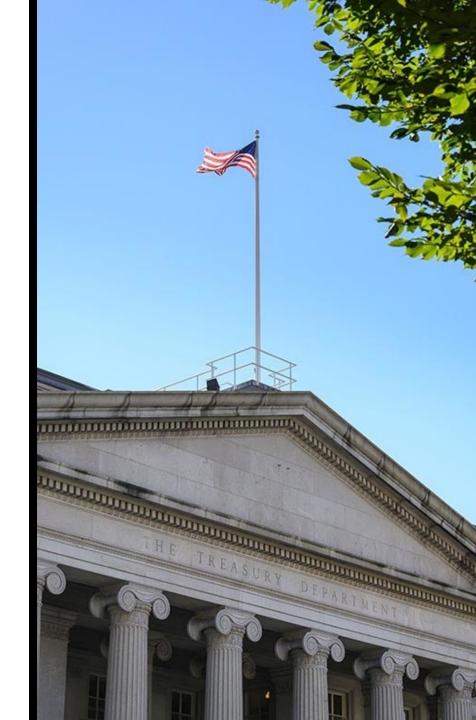
Many real-world mechanisms are **not** IC

Discriminatory auctions

Multi-unit variant of first-price auction

Not incentive compatible

Used to sell treasury bills since 1929

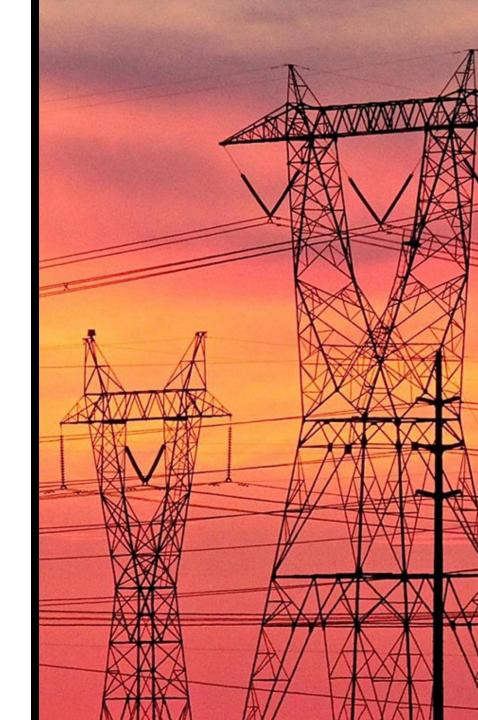


Discriminatory auctions

Multi-unit variant of first-price auction

Not incentive compatible

Used to sell treasury bills since 1929 and electricity in the UK



Generalized 2nd-price

Used for sponsored search

Not incentive compatible

flowers					
Q All	Images	🐼 Maps	Ø Shopping	I News	: More

About 6,950,000,000 results (0.81 seconds)

1800Flowers.com | 1-800-FLOWERS.COM® | Sam Available

Ad www.1800flowers.com/ -

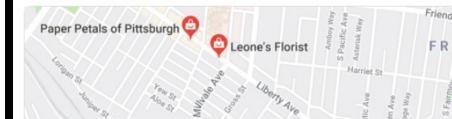
100% Satisfaction Guarantee! Shop **Flowers** & Gifts For Any Occasion. E Countries. 24/7 Customer Service. Truly Original Gifts. Fresh **Flower** Gua Deal of The Week · Birthday Flowers & Gifts · Same Day Delivery · Rose

\$19.99 - Same Day Flowers | Hand Delivery In 4 Ho Ad www.fromyouflowers.com/ -

★★★★★ Rating for fromyouflowers.com: 4.5 - 78,554 reviews Same Day Hand Delivery - 20% Off All Items - Fast, Easy & Affordable. H Satisfaction with Online Flower Retailers in 2019 by J.D. Power. Satisfact Day Delivery. \$19.99. Types: Flowers, Gift Baskets, Chocolate Covered ⁻ Sympathy & Funeral · \$19.99 Flowers · Birthday · Love & Romance Value Arrangement - from \$19.99 - Florist Designed Bouquet · More ▼

FTD® Official Site | Fresh Flowers For Any Occasion

Celebrating Over 100 Years Of Fresh Flower Deliveries. Same & Next Da Send Your Loved Ones Hand-Crafted Flowers & Arrangements, Delivere



Multi-item, multi-agent auctions

Nearly all fielded combinatorial auctions (such as sourcing auctions) aren't incentive compatible

Why aren't real-world auctions IC?

Rules are **easier** to explain

Bids used to tune **future** parameters

Might leak **private** values

Agents not **risk** neutral

Approximate incentive compatibility

Auction is **γ-IC** when for each agent *i*: If everyone except agent *i* is truthful, she can only increase exp. utility by γ when lies about type

Kothari, Parkes, Suri, EC'03; Archer, Papadimitriou, Talwar, Tardos, Internet Mathematics '04; Conitzer and Sandholm, IJCAI'07; Dekel, Fischer, Procaccia, JCSS'10; Lubin, Parkes, Current Science '12; Mennle and Seuken, EC'14; Dütting, Fischer, Jirapinyo, Lai, Lubin, Parkes TEAC'15; Azevedo, Budish, Review of Economic Studies '18; Feng, Narasimhan, Parkes, AAMAS'18; Golowich, Narasimhan, Parkes, IJCAI'18; Dütting, Feng, Narasimhan, Parkes, Ravindranath, ICML'19

Approximate incentive compatibility

Auction is **γ-IC** when for each agent *i*: If everyone except agent *i* is truthful, she can only increase exp. utility by γ when lies about type

Overriding goal: Given **samples** from dist. over agents' types, estimate IC approximation factor (γ) using samples

Complements literature on sample-based **revenue maximization** Likhodedov, Sandholm, AAAI'04, '05; Balcan, Blum, Hartline, Mansour, FOCS'05; Elkind, SODA'07; Cole, Roughgarden, STOC'14; Mohri, Medina, ICML'14; Huang, Mansour, Roughgarden, EC'15; Morgenstern, Roughgarden, NeurIPS'15, COLT'16; Roughgarden, Schrijvers, EC'16; Devanur, Huang, Psomas, STOC'16; Balcan, Sandholm, **V.**, NeurIPS'16; Gonczarowski, **Nisan**, STOC'17; Cai, Daskalakis, FOCS'17; Balcan, Sandholm, **V.**, EC'18; ...

Why estimate IC approximation factor?

Some mechanisms might have terrible **worst case** IC apx factor, but are (nearly) IC for distribution over agents' types at hand

Use mechanism might have discarded as non-IC, remaining optimistic that agents will be truthful

Why estimate IC approximation factor?

In mechanism design via machine learning: Add constraint requiring this estimate be small

[Feng, Narasimhan, Parkes, AAMAS'18; Golowich, Narasimhan, Parkes, IJCAI'18; Dütting, Feng, Narasimhan, Parkes, Ravindranath, ICML'19]

Is resulting mechanism (nearly) IC?

Background

n agents with types in $[0,1]^M$

Standard assumption:

Agents' types drawn from probability distribution $(t_1, ..., t_n) \sim D$ In this talk, D is product distribution: $t_i \sim D_i$ and $D = D_1 \times \cdots \times D_n$ $D_{-i} = \times_{i \neq i} D_i$

Auction is **incentive compatible** (IC) if for any agent: In expectation over other's types, utility maximized by reporting type truthfully, so long as others also truthful

Utility of agent *i*: $u(t_i, \tilde{t}_i, t_{-i})$

Auction is **incentive compatible** (IC) if for any agent: In expectation over other's types, utility maximized by reporting type truthfully, so long as others also truthful

Utility of agent *i*: $u(t_i, \tilde{t}_i, t_{-i})$ True type

Auction is **incentive compatible** (IC) if for any agent: In expectation over other's types, utility maximized by reporting type truthfully, so long as others also truthful

Utility of agent *i*: $u(t_i, \tilde{t}_i, t_{-i})$ Reported type

Auction is **incentive compatible** (IC) if for any agent: In expectation over other's types, utility maximized by reporting type truthfully, so long as others also truthful

Utility of agent *i*: $u(t_i, \tilde{t}_i, t_{-i})$ Others' types

Auction is **incentive compatible** (IC) if for any agent: In expectation over other's types, utility maximized by reporting type truthfully, so long as others also truthful

Mechanism is IC if for any agent *i* and any $t_i, \tilde{t}_i, \mathbb{E}_{t_{-i}}[u(t_i, t_i, t_{-i})] \ge \mathbb{E}_{t_{-i}}[u(t_i, \tilde{t}_i, t_{-i})]$

Utility from truthful report Utility from strategic report

"Ex-interim" IC

Approximate incentive compatibility

Auction is γ -IC if for any agent i and any $t_i, \tilde{t}_i, \mathbb{E}_{t_{-i}}[u(t_i, t_i, t_{-i})] \ge \mathbb{E}_{t_{-i}}[u(t_i, \tilde{t}_i, t_{-i})] - \gamma$

Utility from truthful report Utility from strategic report

Kothari, Parkes, Suri, EC'03; Archer, Papadimitriou, Talwar, Tardos, Internet Mathematics '04; Conitzer and Sandholm, IJCAI'07; Dekel, Fischer, Procaccia, JCSS'10; Lubin, Parkes, Current Science '12; Mennle and Seuken, EC'14; Dütting, Fischer, Jirapinyo, Lai, Lubin, Parkes TEAC'15; Azevedo, Budish, Review of Economic Studies '18; Feng, Narasimhan, Parkes, AAMAS'18; Golowich, Narasimhan, Parkes, IJCAI'18; Dütting, Feng, Narasimhan, Parkes, Ravindranath, ICML'19

Our goal: Estimate IC approximation factor (γ) using samples

Our estimate (first try):

Maximum utility agent *i* can gain by misreporting her type, on average over samples $\mathbf{t}_{-i}^{(1)}, \dots, \mathbf{t}_{-i}^{(N)} \sim \mathcal{D}_{-i}$: $\max_{t_i, \tilde{t}_i \in \mathbb{R}^M} \left\{ \frac{1}{N} \sum_{j=1}^N u\left(t_i, \tilde{t}_i, \mathbf{t}_{-i}^{(j)}\right) - u\left(t_i, t_i, \mathbf{t}_{-i}^{(j)}\right) \right\}$ Utility from strategic truthful report

Our estimate (first try):

Maximum utility agent *i* can gain by misreporting her type, on average over samples $t_{-i}^{(1)}, ..., t_{-i}^{(N)} \sim \mathcal{D}_{-i}$: $\max_{t_i, \tilde{t}_i \in \mathbb{R}^M} \left\{ \frac{1}{N} \sum_{i=1}^N u\left(t_i, \tilde{t}_i, \boldsymbol{t}_{-i}^{(j)}\right) - u\left(t_i, t_i, \boldsymbol{t}_{-i}^{(j)}\right) \right\}$ **Not convex** and many discontinuities

Our estimate $\widehat{\gamma}$:

Maximum utility agent *i* can gain by misreporting her type, on average over samples $t_{-i}^{(1)}, \dots, t_{-i}^{(N)} \sim \mathcal{D}_{-i}$, if true & reported types from uniform grid \mathcal{G}

$$\hat{\gamma} = \max_{t_i, \tilde{t}_i \in \mathcal{G}} \left\{ \frac{1}{N} \sum_{j=1}^N u\left(t_i, \tilde{t}_i, \boldsymbol{t}_{-i}^{(j)}\right) - u\left(t_i, t_i, \boldsymbol{t}_{-i}^{(j)}\right) \right\}$$

Our estimate $\widehat{\gamma}$:

Maximum utility agent *i* can gain by misreporting her type, on average over samples $t_{-i}^{(1)}, \dots, t_{-i}^{(N)} \sim \mathcal{D}_{-i}$, if true & reported types from uniform grid \mathcal{G}

$$\hat{\gamma} = \max_{t_i, \tilde{t}_i \in \mathcal{G}} \left\{ \frac{1}{N} \sum_{j=1}^N u\left(t_i, \tilde{t}_i, \boldsymbol{t}_{-i}^{(j)}\right) - u\left(t_i, t_i, \boldsymbol{t}_{-i}^{(j)}\right) \right\}$$

Challenge:

Might miss pairs of true & reported types with large utility gains

Our estimate $\widehat{\gamma}$:

Maximum utility agent *i* can gain by misreporting her type, on average over samples $t_{-i}^{(1)}, \dots, t_{-i}^{(N)} \sim \mathcal{D}_{-i}$, if true & reported types from uniform grid \mathcal{G}

$$\hat{\gamma} = \max_{t_i, \tilde{t}_i \in \mathcal{G}} \left\{ \frac{1}{N} \sum_{j=1}^N u\left(t_i, \tilde{t}_i, \boldsymbol{t}_{-i}^{(j)}\right) - u\left(t_i, t_i, \boldsymbol{t}_{-i}^{(j)}\right) \right\}$$

Key question:

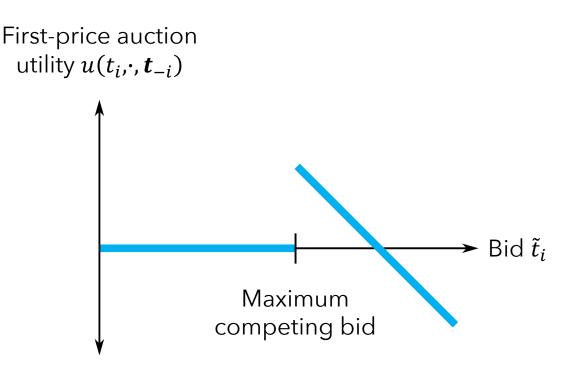
 $|\gamma - \hat{\gamma}| \leq ?$

Uniform grid

Challenge:

Utility functions are volatile

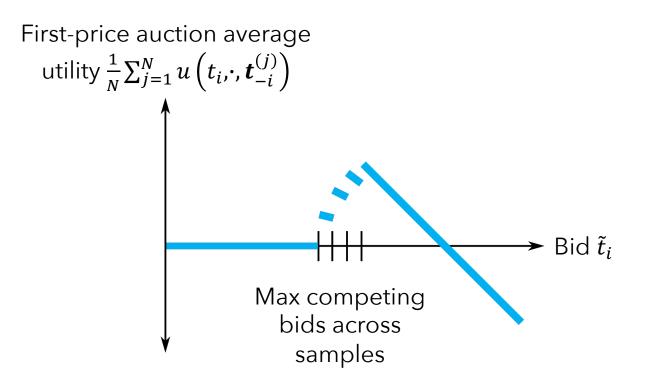
First-price auction: Highest bidder wins Pays highest bid



Uniform grid

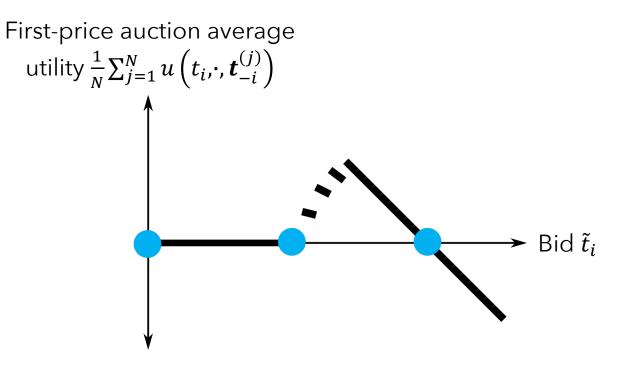
Challenge:

Utility functions are volatile, especially on average over samples



Uniform grid

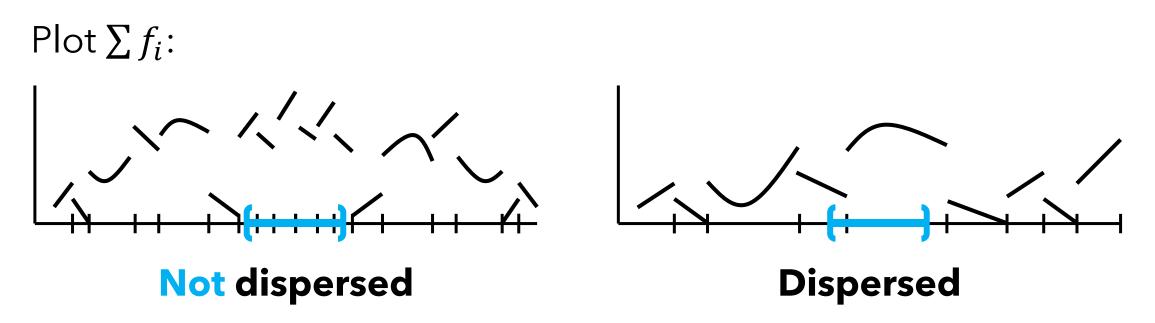
Coarse discretization can lead to poor utility estimation



When is the distribution "nice" enough to use a grid?

Dispersion

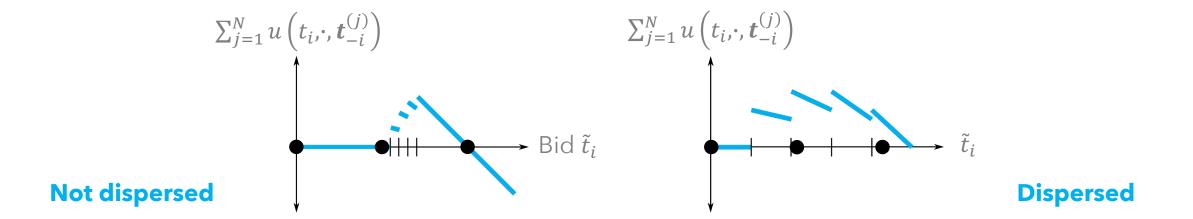
Functions $f_1, ..., f_N : \mathbb{R}^M \to \mathbb{R}$ are (w, k)-dispersed if: Every w-ball contains discontinuities of $\leq k$ functions [Balcan, Dick, V., FOCS'18]



Definition. $t_{-i}^{(1)}, \dots, t_{-i}^{(N)}$ induce *L*-Lipschitz (w, k)-dispersion if: 1. For any $t_i, u\left(t_i, \cdot, t_{-i}^{(1)}\right), \dots, u\left(t_i, \cdot, t_{-i}^{(N)}\right)$ are:

Utility as a function of the bid \tilde{t}_i

Definition. $t_{-i}^{(1)}, ..., t_{-i}^{(N)}$ induce *L*-Lipschitz (*w*, *k*)-dispersion if: 1. For any $t_i, u\left(t_i, \cdot, t_{-i}^{(1)}\right), ..., u\left(t_i, \cdot, t_{-i}^{(N)}\right)$ are: Piecewise *L*-Lipschitz and (*w*, *k*)-dispersed



Definition. $\boldsymbol{t}_{-i}^{(1)}, ..., \boldsymbol{t}_{-i}^{(N)}$ induce *L*-Lipschitz (*w*, *k*)-dispersion if: 1. For any $t_i, u\left(t_i, \cdot, \boldsymbol{t}_{-i}^{(1)}\right), ..., u\left(t_i, \cdot, \boldsymbol{t}_{-i}^{(N)}\right)$ are: Piecewise *L*-Lipschitz and (*w*, *k*)-dispersed 2. For any $\tilde{t}_i, u\left(\cdot, \tilde{t}_i, \boldsymbol{t}_{-i}^{(1)}\right), ..., u\left(\cdot, \tilde{t}_i, \boldsymbol{t}_{-i}^{(N)}\right)$ are:

Utility as a function of the value t_i

Definition. $\boldsymbol{t}_{-i}^{(1)}, ..., \boldsymbol{t}_{-i}^{(N)}$ induce *L*-Lipschitz (*w*, *k*)-dispersion if: 1. For any $t_i, u\left(t_i, \cdot, \boldsymbol{t}_{-i}^{(1)}\right), ..., u\left(t_i, \cdot, \boldsymbol{t}_{-i}^{(N)}\right)$ are: Piecewise *L*-Lipschitz and (*w*, *k*)-dispersed 2. For any $\tilde{t}_i, u\left(\cdot, \tilde{t}_i, \boldsymbol{t}_{-i}^{(1)}\right), ..., u\left(\cdot, \tilde{t}_i, \boldsymbol{t}_{-i}^{(N)}\right)$ are: Piecewise *L*-Lipschitz and (*w*, *k*)-dispersed

- Prove that WHP, for all **infinitely-many** function sequences: dispersion holds for "good" values of w and k
 - Show discontinuities are shared across function sequences

Our estimate $\hat{\gamma}$:

Maximum utility agent *i* can gain by misreporting her type, on average over samples $t_{-i}^{(1)}, ..., t_{-i}^{(N)} \sim \mathcal{D}_{-i}$, if true & reported types from uniform grid \mathcal{G}

Theorem:

If WHP, for all $i, t_{-i}^{(1)}, ..., t_{-i}^{(N)}$ induce L-Lipschitz (w, k)-dispersion

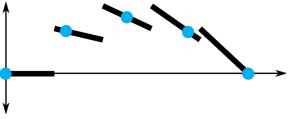


Our estimate $\hat{\gamma}$:

Maximum utility agent *i* can gain by misreporting her type, on average over samples $t_{-i}^{(1)}, \dots, t_{-i}^{(N)} \sim \mathcal{D}_{-i}$, if true & reported types from uniform grid \mathcal{G}

Theorem:

If WHP, for all $i, t_{-i}^{(1)}, ..., t_{-i}^{(N)}$ induce L-Lipschitz (w, k)-dispersion \Rightarrow Can estimate using w-grid



Theorem:

If WHP, for all *i*, $t_{-i}^{(1)}$, ..., $t_{-i}^{(N)}$ induce *L*-Lipschitz (*w*, *k*)-dispersion $\Rightarrow \text{ Can estimate using } w \text{-grid}$ Estimation error: WHP, $|\hat{\gamma} - \gamma| = \tilde{O}\left(Lw + \frac{k}{N} + \sqrt{\frac{d}{N}}\right)$

d = standard ML measure of utility functions' intrinsic complexity

Theorem:

If WHP, for all $i, t_{-i}^{(1)}, ..., t_{-i}^{(N)}$ induce *L*-Lipschitz (w, k)-dispersion \Rightarrow Can estimate using *w*-grid Estimation error: WHP, $|\hat{\gamma} - \gamma| = \tilde{O}\left(Lw + \frac{k}{N} + \sqrt{\frac{d}{N}}\right)$

Proof idea:

• If snap types to grid, average utility only changes by $\leq Lw + \frac{k}{N}$

Theorem:

If WHP, for all $i, t_{-i}^{(1)}, ..., t_{-i}^{(N)}$ induce L-Lipschitz (w, k)-dispersion \Rightarrow Can estimate using w-grid Estimation error: WHP, $|\hat{\gamma} - \gamma| = \tilde{O}\left(Lw + \frac{k}{N} + \sqrt{\frac{d}{N}}\right)$

Proof idea:

- If snap types to grid, average utility only changes by $\leq Lw + \frac{k}{N}$
- $\sqrt{\frac{d}{N}}$ additional error incurred from sampling

Theorem:

If WHP, for all $i, t_{-i}^{(1)}, ..., t_{-i}^{(N)}$ induce *L*-Lipschitz (w, k)-dispersion \Rightarrow Can estimate using *w*-grid **Estimation error:** WHP, $|\hat{\gamma} - \gamma| = \tilde{O}\left(Lw + \frac{k}{N} + \sqrt{\frac{d}{N}}\right)$ Error

When
$$w = O\left(\frac{1}{\sqrt{N}}\right)$$
, $k = O\left(\sqrt{N}\right)$:

We prove these (w, k) values hold when distribution is nice

Applications

When does dispersion hold?

 $[0, \kappa]$ = range of density functions defining agents' type distributions

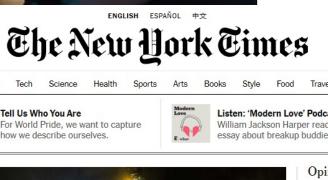
First-price auction

Error:
$$|\hat{\gamma} - \gamma| = \tilde{O}\left(\frac{(\text{#agents}) + \kappa^{-1}}{\sqrt{(\text{#samples})}}\right)$$

Also analyze **combinatorial** first-price auctions

Learn

Pris



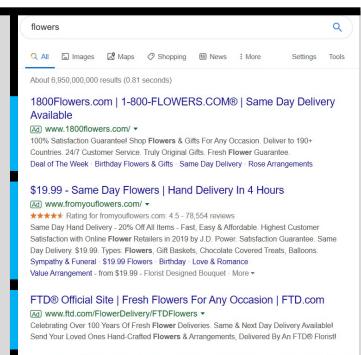
Applications

When does dispersion hold?

 $[0, \kappa]$ = range of density functions defining agents' type distributions

Generalized second-price auction

Error:
$$|\hat{\gamma} - \gamma| = \tilde{O}\left(\frac{(\text{#agents})^{3/2} + \kappa^{-1}}{\sqrt{(\text{#samples})}}\right)$$



Applications

When does dispersion hold?

 $[0, \kappa]$ = range of density functions defining agents' type distributions

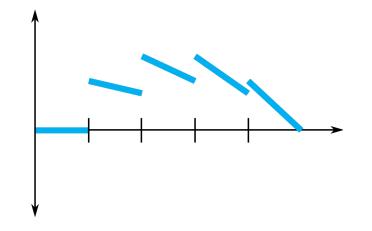
Discriminatory and uniform price auctions

Generalization of first-price auction to multi-unit settings

Error:
$$|\hat{\gamma} - \gamma| = \tilde{O}\left(\frac{(\text{#agents})(\text{#units})^2 + \kappa^{-1}}{\sqrt{(\text{#samples})}}\right)$$

Conclusion

- Provide techniques for estimating how far mechanism is from IC
- Introduce empirical variant of approximate IC
- Bound estimate's error using dispersion
- Guarantees for:
 - First-price (combinatorial) auction
 - Generalized second-price auction
 - Discriminatory auction
 - Uniform price auction
 - Second-price auction under spiteful agents



Future directions

What if samples strategically manipulated?

Also applies to literature on revenue maximization via machine learning Likhodedov, Sandholm, AAAI'04, '05; Elkind, SODA'07; Cole, Roughgarden, STOC'14; Mohri, Medina, ICML'14; Huang, Mansour, Roughgarden, EC'15; Morgenstern, Roughgarden, NeurIPS'15, COLT'16; Devanur, Huang, Psomas, STOC'16; Balcan, Sandholm, V., NeurIPS'16; Gonczarowski, Nisan, STOC'17; Cai, Daskalakis, FOCS'17; Balcan, Sandholm, V., EC'18; ...

What about when report space not real-valued?

E.g., school choice mechanisms: report preference order over schools

Estimating Approximate Incentive Compatibility

Maria-Florina Balcan, Tuomas Sandholm,

and Ellen Vitercik

Berkeley (EECS) → Stanford (MS&E and CS)

Working paper, preliminary version in Conference on Economics and Computation (EC)