50

100

150

250

300

350

0 30 100 150 200 250 300 350

Pokemon Generator

10-615 2022 Spring Project 2

Erica Weng Emma Kwan Zhiping Liu Lanxuan Zhou

1 Group Information

1.1 Group Number: 6
1.2 Group Members

e Lanxuan Zhou: Master of Information Systems Management (MISM),
Heinz College

e Zhiping Liu: Master of Information Systems Management (MISM), Heinz
College

e Erica Weng: Robotics Machine Learning, CMU Robotics Institute

e Emma Kwan: Information Systems, Dietrich College of Humanities and
Social Sciences

2 Description

2.1 Concept

With the development of various conditional generative adversarial networks
(Conditional-GAN), generating images based on all kinds of inputs become pos-
sible. As long as you design a well-structured networks and have enough time
to train your model, you will have a generator by which you turn something you
want into an image.

Pokemon is a video game series with 26-year history. In the game, there
are creatures called Pokemon. Based on their types, abilities, stats, and habitat
environments, they tend to have different images. The motivation of our project
is to let people design their own Pokemon by indicating Pokemon’s attributes
via Conditional-GAN.

2.2 Technique
2.2.1 Generative Adversarial Network

GAN is a new framework for estimating generative models via an adversarial
process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than G [1].
The reason why it is called adversarial is that there are two networks competing
with each other. During the training, the generator network is trying to fool the
discriminator network, and the discriminator is trying to distinguish generated
images from real images.

=)

@

_9

Real imag Sample 8 3
w 5

o

-

o

-

Discriminator
— Generator | — = Sample

ss0|
10}e18UaD)

Random input

Figure 1: Structure of GAN

Real ._:])
Images > Predicted Labels
9 Discriminator (Real / Generated)

Labels

Generator Generated
Noise Images

Figure 2: Structure of Conditional-GAN

A

2.2.2 Conditional-GAN

By training GAN, we will obtain a generator which can generate images with
random noise as the inputs. However, what if we want to input something to get
different images? Here we have Conditional-GAN. It is the conditional version
of generative adversarial nets, which can be constructed by simply feeding the
data, y, we wish to condition on to both the generator and discriminator[2].
By training with certain labels added to generator and discriminator, we can
control the output of generators with user inputs.

2.3 Process

We used the architecture provided on this website[3] for building a Conditional
GAN. However, this model used an MLP for both the discriminator as well as
the generator. The MLP architecture does not provide the necessary structure
to generate diverse, detailed images, so we were not able to get very good results.

https://learnopencv.com/conditional-gan-cgan-in-pytorch-and-tensorflow/

T T T T T
d
II:::::::::::klllllll.

F e

0

Figure 3: Initial Outputs

We referenced this website[4] as a reference for designing a convolutional
architecture for the generator as well as the discriminator. The Generator is
composed of a series of deconvolutional layers which upsample the image to
create a larger image with each layer, and the discriminator composed of a
series of convolutional layers with downsample the input until we receive a linear
embedding, from which the discriminator can make a classification decision.

2.4 Reflection

We have some of the ideas for next steps. First, we can try a smaller image
size. With a smaller image size, the model has to create less details, and thus
may be able to learn generation. Second, we can try to label Pokemon with
not only their primary types, as we have already done, but also their secondary
types. This way, each pokemon is matched to multiple types, and has multiple
“correct labels.” In addition to processing the additional labels, we would also
have to create a custom loss function to accept multiple correct target values for
certain pokemon images. This may help our model learn better, as there will be
more pokemon images per type, and thus the model will have more examples of
visual features to learn from for a certain type. Third, we can try to add different
images of the same Pokemon. We found datasets with multiple images of the
same pokemon, pictures taken from different angles of the pokemon in different
positions. These may be good augmentations to the dataset, and provide more
data for learning. Fourth, we can try to augment the dataset ourselves with
translations, rotations, and other transformations of the dataset. More data
may help the model learn quicker.

https://github.com/togheppi/cDCGAN/blob/master/CelebA_cDCGAN_pytorch.py

3 Result

i e o B B OB B
chelle NEE
a8 ol i il 8) O 4 ol ol il = = - BB B}

F|F|F| EEE Vi alalal
H|EE |y Vv v alalal
i Pom M

Gy o o x|k |k e »]s]s) 888
G [G [AR e w]s]s) 888
.ulu_ x|&lx o2 w]a)s) 888

s<lislf

Figure 11: Outputs with different user inputs

4 Code

Our codes are on Google Drive

5 Reference

References

[1] Tan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozairy, Aaron Courville, Yoshua Bengio Generative
Adversarial Nets

[2] Mehdi Mirza, Simon Osindero Conditional Generative Adversarial Nets
[3] Conditional GAN (cGAN) in PyTorch and TensorFlow
[4] Github togheppi/cDCGAN

https://drive.google.com/drive/folders/1xZW3-Itrg2nME6kevtsqzZx9Gn66QOYA?usp=sharing
https://learnopencv.com/conditional-gan-cgan-in-pytorch-and-tensorflow/
https://github.com/togheppi/cDCGAN/blob/master/CelebA_cDCGAN_pytorch.py

	Group Information
	Group Number: 6
	Group Members

	Description
	Concept
	Technique
	Generative Adversarial Network
	Conditional-GAN

	Process
	Reflection

	Result
	Code
	Reference

