
ART AND MACHINE LEARNING

CMU 2022 SPRING

PROJECT 2

COVER ARTIST
Generating album cover art using StyleCLIPDraw

“Lose you to love me” - Selena Gomez

Group 8
Aarthi Ramsundar: Senior in AI, SCS, some ML experience

Nikitha Murikinati: Senior in CS, SCS, some ML experience

Qi Xuan Teo: Masters in ML, SCS, some ML experience

Audrey Zhang: Masters in Data Analytics, Heinz, some ML experience

DESCRIPTION

Concept

Our team was brought together by our shared interest in music. We were interested in the

relationships between the themes in popular songs and the cover art that is used to represent

the song to the public. For this project, we wanted to find a way to automatically create visual

art based on themes in songs, extrapolated from the song lyrics. To further tie a particular

song's themes to visual design, we would also use several existing covers for thematically similar

songs as the style images for our target song's cover. Our project thus involves art generation

with multi-modal inputs (text and several images). We planned to use StyleCLIPDraw to

generate images using these inputs.

Technique

Album Data Collection

To collect details about various songs, we leveraged the Spotify library, using the Spotify API in

order to get information about song titles, artists, Spotfify URIs, and album cover art. We then

web scraped song lyrics off of Genius using the artist and song names. Songs were filtered out if

they did not have lyrics or a cover image available. We were able to gather a collection of about

10k songs through this process. The choice of songs was taken from a Kaggle dataset that

contained Spotify URIs we used to query the Spotify API.

Lyric Summary

The lyrics for a song are typically quite long in length. There are also many repeated lyrics in

each song. To condense the information of the text input and shorten the length of the input

string to the StyleCLIPDraw algorithm, we explored several text summarization techniques,

limiting the output summary to 10-20 words. First, we cleaned the lyrics to remove tags such as

[chorus] and [bridge], then corrected some formatting issues from the web scrape. We then

used two different algorithms (extractive and abstractive) to summarize the song lyrics, and

pre-processed this step so the summaries can be directly used as input to the StyleCLIPDraw

pipeline. The extractive algorithm tokenized the lyrics and then used NLTK’s probabilistic

frequency distribution in order to determine two lines in the lyrics to represent the summary.

For the abstractive summary experiment, we used the T5 for Conditional Generation (base)

pre-trained model to generate lyric summaries.

Finding Similar Covers

The inputs for the style-transfer aspect of our project were existing album covers for songs that

have similar themes to the target song. To get the similarity between songs, we used the

https://genius.com/
https://www.kaggle.com/mrmorj/dataset-of-songs-in-spotify

FastText algorithm to generate word embeddings for the song lyrics, after tokenizing the words

and removing stopwords. We picked FastText since the algorithm takes into account sub-words

(character n-grams) when creating embeddings. This allows the algorithm to better handle

out-of-vocabulary words than other text embedding algorithms. This was particularly relevant

for our project as song lyrics are often contracted, misspelled, or involve onomatopoeia to

capture vocalizations.

After calculating the embeddings for the lyric summaries, the average embeddings for each

summary were used to get the pairwise cosine similarity between songs. A higher cosine

similarity score indicates more similarity between two songs, and the top-5 similar songs for

each row in the dataset (i.e. each song) were added to the dataset for later use.

Generating Album Art

The algorithm used to generate album art using lyric summaries and album covers of similar

songs is StyleCLIPDraw. We adapted the algorithm to be able to process multiple style images as

inputs, using different ways of combining the style embeddings of different images. We

experimented with averaging styles, suming losses across multiple styles, alternating styles by

interweaving style tensors (by rows or by columns), and clumping styles by concatenating

fractional style tensors (by axis 1 or axis 2). The experiments and select results are further

described below.

PROCESS

Dataset Selection & Data Collection

Before deciding on music album art generation, we also had a similar idea of generating book

covers using the text and the existing cover art of other similar books. We found a Kaggle

dataset with book cover information (n=32,600), then used the GoogleBooks API to collect a

brief description of each book. Unfortunately, not all books have a description available, so our

final dataset with non-missing book descriptions was 16,455 rows. As a group, we felt that it

would be challenging to work with a dataset where many of the descriptions were missing and

decided to explore song album cover generation instead.

To get song album cover and lyric information, we used the Spotify API and web scraped off

genius.com to get the relevant data needed for this project. The initial set of songs was pulled

from this Kaggle dataset and cross-referenced with Spotify using the Spotify URIs. Using this

method, we were able to get more complete data for our observations. We ran the pipeline for

around 10k songs to get the appropriate information. Since this method proved to create fewer

missing observations, we decided to use this dataset to generate song album covers.

https://www.kaggle.com/lukaanicin/book-covers-dataset?fbclid=IwAR38OKsHf-zcSF7G-2PKMQSdwZSz97rUe_qj1uMsGoMQdbRKx8PeCxoRy68
https://genius.com/
https://www.kaggle.com/mrmorj/dataset-of-songs-in-spotify

Lyric Summarization

There are two main approaches in current text summary algorithms: extractive summary, and

abstractive summary. Extractive summary pulls one or several sentences directly from the input

text to summarize the text, often relying on between-sentence similarity scores to identify the

sentence(s) that share the most similarity with all other sentences in the text. Abstractive

summary, on the other hand, generates one or several new sentences upon processing the

input text. We experimented with both methods for lyric summarization. The summary models

were run independently of our final album art generation pipeline to pre-process the input

data, and avoid adding computational time for each iteration of StyleCLIPDraw.

Extractive summary:

For the extractive summary experiments, we first tokenized the lyrics and created a NLTK

frequency distribution in order to weight tokens based on their frequency. Then each sentence’s

score was calculated using these weights. The sentences with the 2 highest scores were selected

as part of the summary.

Abstractive summary:

For the abstractive summary experiment, we used the T5 for Conditional Generation (base)

pre-trained model to generate lyric summaries. The T5 model is a transformer model that uses a

maximum likelihood objective function during the generative phase. This can help increase

coherency in the output summary.

The generated results were mixed in quality. This is likely because music lyrics have an

inherently different structure than normal text. Thus, algorithms trained on text such as

Wikipedia articles may not work too well with lyrics. Our team decided that it might make more

sense to use the extractive summary results as input text for the album art generation.

StyleCLIPDraw

Our team modified the StyleCLIPDraw algorithm to be able to combine styles from multiple

image inputs. We experimented with different methods of combining style inputs, including:

1. Averaging out styles. While the original StyleCLIPDraw uses the VGG19 feature extractor

to get feature styles in a 3-dimensional tensor, we extend this to multiple style images by

applying the feature extractor on each individual style image, before taking the mean of

the styles.

2. Summing losses. We calculate style features for each style image. During each iteration,

we calculate losses for each style, and sum them up to get a total loss.

3. Alternating styles by axis 1. One possible weakness of our previous methods is that

averaging out scores may lead to different features ‘canceling’ each other out during the

mean operation. We would ideally want different aspects of each style to be combined,

rather than to have a fraction of each aspect. We were inspired by a blog post to

attempt to combine styles over a certain axis. Since our style tensor is effectively

two-dimensional (it is a three-dimensional tensor with the size of the first dimension =

1), we can reconstitute our style tensor row-by-row or column-by-column, selecting

every k-th row/column from one style image, and so on.

4. Alternating styles by axis 2. This is similar to method 3, but done over a different axis.

5. Clumping styles by axis 1. We combine styles in clumps rather than alternating axes. The

axis in question was length 1000, and we had two style images, we would select the first

500 entries of the style tensor from the first image, and the next 500 from the other.

6. Clumping styles by axis 2. This is similar to method 5, but done over another axis.

We generated an image based on the prompt “A monkey playing guitar”, using the lion and

TikTok style images.

First row (left to right): ‘lion’ Style Image, Experiment 1, 2, 3

Second row (left to right): ‘TikTok’ Style Image, Experiment 4, 5, 6

We noticed that our experiments done on axis 1 led to weird colors emerging, such as green,

blue or red, which indicated that such methods may not be combining style images correctly.

Among our other experiments, experiments 4 and 6 seem to better combine multiple styles,

since the images appear more striking, have more vivid colors, and generally seem to combine

elements of both styles rather than merely being a weaker implementation of a single-style

drawing. After analyzing several test image outputs from these experiments, we ultimately

decided on experiment 6 as the method of combining different style images.

We experimented with different multi-input style transfer techniques using both StyleCLIPDraw

and StyleCLIPDraw Slow pipelines. The creators of StyleCLIPDraw suggested that while

StyleCLIPDraw Slow takes longer to run, it is able to produce a stylistically better result.

Therefore, we attempted to adapt StyleCLIPDraw Slow to take in multiple style images as input

using the six style combination methods described earlier. We ran the slow pipeline for a few

examples using each technique, and varied the number of iterations per run. When comparing

the results of the slow pipeline with the results of the original pipeline with the same inputs, we

did not notice any significant improvement in performance and observed that it still took

significantly longer for each result to be generated. As a result, we decided to use the standard

StyleCLIPDraw version for our final pipeline rather than the slow version.

Top: 2 style image inputs

Bottom Left: Result of 2 images (Top) with the prompt "A monkey playing guitar" inputted to

Modified StyleCLIPDraw (version 1)

Bottom Right: Result of 2 images (Top) with the prompt "A monkey playing guitar" inputted to

Modified StyleCLIPDraw Slow (version 1)

We also experimented with using varying numbers of style input images to test output quality.

We conducted experiments that inputted between 1 and 9 style images to observe how the

algorithm behaved. We noticed that for up to three style images, performance was relatively

good and the result was able to reflect the text input as well as the style inputs. However,

beyond three style images, we observed that the style of the image did not appear to combine

the style inputs well and was often visually displeasing. We also observed that when a higher

number of style images were inputted, the result was less reflective of the text prompt and

harder to understand. As a result, we limited the number of style inputs to a maximum of three

when working with song lyric inputs.

From left to right: Style images of bear, boat and city, as well as result of 3 images with the

prompt "A horse is eating a cupcake" inputted to Modified StyleCLIPDraw (version 6)

Left: 9 style images inputs

Right: Result of 9 images (Left) with the prompt "A horse is eating a cupcake" inputted to

Modified StyleCLIPDraw (version 6)

Reflection

While we achieved certain results that we felt were relatively presentable, we still feel that our

results would not be feasibly considered a like-for-like replacement for album cover art

generation. While our experiments with the original sample prompts (e.g. “A man is watching

TV”) highlighted a few issues, the actual results using our summary methods truly exemplified

the issues. We will touch on a few of these below.

1. Differences between album covers and drawings

StyleCLIPDraw, as its name suggests, is based upon CLIPDraw, which uses brushstrokes to

recreate drawings. However, most album images tend to be based in the medium of

photos. As such, it is impossible to get a like-for-like recreation of album covers. Album

covers often also focus heavily on human faces and contain text, which are difficult for

the model to handle. We sometimes noticed random English characters in the output of

our model, which contain no semantic meaning. It might be better for our model to

either obtain a textless version of the album art, or to somehow train a language model

to identify the text on album covers, and use that to generate our own album cover text.

2. StyleCLIPDraw is overly literal

StyleCLIPDraw excels in drawing output based upon a prompt. However, song titles

and/or lyrics are often unable to entirely encapsulate the meaning of a piece. In

addition, StyleCLIPDraw is unable to capture metaphors in the lyrics (Ex: "bad blood").

This means that the prompts we give StyleCLIPDraw would either be overly

descriptive/literal, or contain too much semantic information for StyleCLIPDraw to

digest.

Ultimately, this resulted in a much higher number of trials to achieve presentable image results,

due to either hyperparameter tuning, randomness, or inherent weaknesses with the prompt

(some songs are easier to draw about than others). Although we eventually found multiple

results that we were happy with, there was definitely a higher rate of failure for our task as

compared to the original setting. We feel that we have made tangible improvements to the

project in the form of expanding StyleCLIPDraw to have multiple inputs, and we have also

demonstrated the possibility of using the method to generate different forms of art. While

StyleCLIPDraw may not be suited to the task of album art generation, we might observe better

results in other contexts (e.g. converting short stories into children’s picture books using styles

of certain authors).

RESULT

Since the dataset consisted of several thousand songs, many of which were less well-known, we

selected a few songs that were more popular and ran the main StyleCLIPDraw function on

generated lyric summaries and suggested style images. As decided based on our previous tests,

we clumped style images along the 2nd axis to generate the style tensor for the algorithm

(experiment 6). We experimented with using the extractive summary, abstractive summary, and

song title as text inputs, and tried various combinations with different numbers of input style

images. We also ran a quick hyperparameter search on a subset of these songs, but found no

noticeable improvements.

We noticed that there is a large degree of variance in the quality of the output. This is

inherently due to randomness - the best album covers have similar style images recommended,

with relatively little words on the cover. However, since our method of suggesting style images

does not take into consideration the similarity of the images, we occasionally get contrasting

images that result in less satisfying output. Interestingly, we noticed that our results for Selena

Gomez’s Lose You to Love Me have great similarities to the actual album cover, with matching

color scheme and a motif of a female figure. We believe that this shows the promise of the

method, and that even better results may be obtained through fine tuning and more

task-specific training. A selection of our results are presented below.

“Lose You to Love Me” - Selena Gomez

Inputs: song title + 2 style images

From left to right: style images 1 and 2, and output image

“I Write Sins Not Tragedies” - Panic at the Disco

Inputs: extractive summary + 2 style images

“Well, this calls for a toast, so pour the champagne. Pour the champagne”

From left to right: style images 1 and 2, and output image

“Smash Mouth” - All star

Inputs: abstractive summary + 3 style images

“bob greene says he's never been bored with the backstreets”

From left to right: style images 1, 2, and 3, and output image

The rest of our results can be located at this link:

https://docs.google.com/presentation/d/1-PY08hozY0WV7Ni_sLPW8NVW1c1U8sxN7woVwJKu

NnE/edit?usp=sharing

CODE

Github repository: https://github.com/aud-z/cover_art_generation

https://docs.google.com/presentation/d/1-PY08hozY0WV7Ni_sLPW8NVW1c1U8sxN7woVwJKuNnE/edit?usp=sharing
https://docs.google.com/presentation/d/1-PY08hozY0WV7Ni_sLPW8NVW1c1U8sxN7woVwJKuNnE/edit?usp=sharing
https://github.com/aud-z/cover_art_generation

REFERENCES

Agarwal, Vardan. “Combining Numerous Artistic Styles in Tensorflow.” Medium, Towards Data

Science, Jun 1 2020,

https://towardsdatascience.com/combining-numerous-artistic-styles-in-tensorflow-6e12a99b10

3f

Badawi, Anas. Song Lyric Compilation Based on Machine Learning.

https://github.com/anasbadawy/Song-Lyrics-Compilation-based-on-Machine-Learning

Facebook Inc., FastText, 2022 https://fasttext.cc/docs/en/english-vectors.html

Goutham, Ramsri. “Simple abstractive text summarization with pretrained T5 - Text-To-Text

Transfer Transformer”, Medium, Towards Data Science, Apr 16, 2020,

https://towardsdatascience.com/simple-abstractive-text-summarization-with-pretrained-t5-text

-to-text-transfer-transformer-10f6d602c426

Khan, Maaz. “How to Leverage Spotify API + Genius Lyrics for Data Science Tasks in Python.”

Medium, The Startup, 21 Nov. 2021,

https://medium.com/swlh/how-to-leverage-spotify-api-genius-lyrics-for-data-science-tasks-in-p

ython-c36cdfb55cf3.

Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text

transformer." arXiv preprint arXiv:1910.10683 (2019).

Shaldenbrand, Peter, et al. StyleCLIPDraw, Sep 2011,

https://github.com/pschaldenbrand/StyleCLIPDraw

