
Art and Machine Learning
CMU 2022 Spring
Project 2

Ghost Lens

Group 15
Elena Gong (yezheng), Zixuan Zou (zixuanz)

Carnegie Institute of Technology
Master in Electrical & Computer Engineering

(Background applies to both members)



Description

Concept

Not everyone believes in the existence of ghosts, but we hear about the stories of ghosts or see them in
various forms of artworks from time to time. In the depictions of these stories, ghosts are always
considered to be related to fear, sadness and horrors. Despite knowing that ghosts are the embodiment of
the human soul after death, we still feel the distance due to the difference between humans and ghosts.
However, just like people who are alive, ghosts may just switch to a new form of life and continue to exist
in this world, and they have their own normal emotions and lives just like humans. Therefore, through this
project we want to get rid of the stereotypes of ghosts and provide people with a chance to take a look at
ghosts from a different perspective - through Ghost Lens, we are able to view ghosts just as all the other
creatures around us. In general, we want to discover the existence of ghosts in empty scenes around us
and portray their figures in the scenes. We hope that this project will remind the audience of the existence
of ghosts, change people's perception of ghosts, their fear of them, and see their presence as another form
of companionship and a new routine of daily life.

Technique

Image scraper - We tried to use RiddlerQ’s Google Image Downloader [1] to scrape images with specific
keywords.

Edge extraction - We preprocessed the images using OpenCV’s Canny Edge Detection method
cv2.canny(), and Adrian Rosebrock’s auto_canny() method [2] to automatically select the maximum and
minimum threshold values based on the median of the single channel pixel intensities.

Augmentor - We used Augmentor [3], an image augmentation library in Python, to perform various
operations on our input images, such as crop, flip, distort, and resize.

pix2pix - We trained several pix2pix [4] models over various sets of input images, mapping from objects
to ghosts, and from extracted edges of different types of ghost images to the original images.

Random Ghost Image Generator - We drew several images of ghosts using lines for better edge extraction
results, and used numpy’s random choice to select one of these images and Python’s Pillow library to
paste the image on a white canvas with size of background images.

Image Filter - We generated the final results through resizing and adjusting transparency of the output
image from the pix2pix model and applied it as the filter to the original background image using Python’s
Pillow library.

Process

We first tried to use RiddlerQ’s Google Image Downloader to collect images with the keyword “ghost”
from the internet, since we could not find any existing dataset of ghost images that we wanted. However,



this image scraper could only download the images on the first page of the google search results. The
images from the google keyword search also did not meet our requirements: most of them are either too
gory, creepy, horrifying, or weird. Our goal is to create ghosts that blend into the images, as if they exist
in the real world, so we would not want to use images that are too scary as our training data. Thus, we
decided to collect our own dataset of ghost images.

We collected ghost images with different styles, ran edge extraction on them, and compared the results.
We found that ghost images that have clear edges and are not too scary best fit our needs. Here are some
sample images from our dataset:

Since searching the internet to collect ideal ghost images by ourselves was pretty time consuming and
disturbing - there were many weird images online, we ended up having a relatively small dataset. For
better training results, we did some research and found that we could apply data augmentations to our
training set to increase the size [5]. We used Augmentor, an image augmentation library in Python, to
apply various augmentations to the images in our dataset, such as random distortion, rotation, and
resizing, etc. In the end, we had 300 ghost images in our training set.

Original Distortion Rotation Cropping

At the beginning, we wanted to add ghosts into images naturally by mapping some common objects in our
daily life to ghosts. We collected a dataset of images of traffic lights, and trained the pix2pix model to
learn a mapping from the extracted edges of traffic lights to ghost images. We were hoping the trained
model could find some underlying correlation between traffic lights and ghosts, and it simply did not
work. Here are some results from this failed attempt:



As we can see from the figure above, the trained model failed to produce meaningful results based on the
input of traffic lights edges, which made sense because there was not enough correlation between them.
So we decided to train models to map from extracted ghost edges to ghosts.

We then attempted to train the models with cute ghost images that map from extracted ghost edges to
ghosts. Compared to the ghost images examples shown above, these images usually have monochrome
backgrounds and very clear edges; the ghosts also look very similar, with white body and two black holes
as the eyes. We hoped that the model would be able to learn about these features from the selected input
images.



From the figure above that shows the result of the validation dataset after training 50 cute ghost images
for 200 epochs, we can see that the model successfully recovered the ghosts with details. However, when
we tested with images that took fire hydrants as the main subject, the model failed to detect the fire
hydrants as ghosts and only recovered the edges in the image, as shown in the figure below.

From these results we noticed that the cartoon ghost images might not be the best choice for training data
as we thought. Thus, we decided to switch back to the ghost dataset we collected and augmented and
eventually used it for our final results.

We then used extracted ghost edges and the original ghost images as our training set for pix2pix.



There are 300 images in our dataset, and we used an 80/20 ratio for training and validation. After running
for 100 epochs, the trained model was able to map edges of ghosts to ghosts for our test set, as shown in
the figure below:



We then experimented with different styles of hand-drawn ghosts - we drew some ghosts by hand, ran
edge extraction, and used them as the input. We found that ghosts with simple shapes and clear edges had
the best output from this model.

We then experimented with the loadSize and fineSize parameters in the code to test with different output
sizes. The output images are 256x256 by default, and we compared the results of sizes 512x512, 768x768,
and 1024x1024.



256x256 512x512 768x768 1024x1024

By comparing the output images with different sizes, we noticed that even though the locations of the
ghosts can be more easily detected by the trained model for images with higher resolutions, images with
lower resolutions seemed to be more natural. We also noticed that some images may look the best with
lower resolution, while the others may look the best with higher resolution. We ran the tests for all sizes
and models, and selected the best results for later steps.

For the final results, we first tried to generate a white canvas that matches the size of each background,
and randomly selected one of our hand-drawn ghosts and also randomized the size and location of this
ghost on the canvas. However, this approach did not work well because sometimes the ghosts were
resized to small figures or placed at the corner of the canvas so that they were not detected and portrayed
correctly. In our previous experiments, ghosts were usually detected successfully when they were the
main subjects of the images or they were set at the center of the images.

We next tried to directly resize the best output images to match the background images with different
combinations of ghosts and scenes. We found that some of the results looked harmonious, but some
resized ghost outputs took up too large a proportion of the entire image, and the location of them didn’t
match with the background. In order to further improve our results, we generated a “ghostish” background



filter by using a white canvas as input. We apply this image as a filter to the background images; then we
resized the ghosts and placed them in the image according to the scene and the story it may evoke.
Through this method we were able to generate several meaningful images that showed the fusion of
ghosts and scenes that the audience can imagine the story behind.

Reflection

We chose the final results based on the following criterias: the position of the ghosts should fit the other
objects and characters in the image; the ghosts should naturally blend into the background; the scenes that
images depicted should show resonance. In order to achieve these goals, we tried many different
techniques that we learned inside and outside the class. We believe that the technique that we chose for
our final results served well for our project idea.
During the process of experiments and research, we came up with the new idea that we can also detect the
objects that can potentially be transformed into ghosts, which could be a future research idea that would
focus more on generating horror images related to ghosts. We have learned a lot about the techniques we
used and explored during the process, and more importantly we learned that we need to flexibly adjust our
goal according to the problems and available resources we have to achieve the best result we can expect.
In terms of our project, we also become more convinced that ghosts are just like all of us, and they are
also living their lives around us.



RESULT



CODE

https://github.com/elena-hanni/10615-Project2-GhostLens.git

REFERENCE

[1] “RiddlerQ/simple_image_download: Python script that lets you auto download images from google
images using tags.” GitHub, https://github.com/RiddlerQ/simple_image_download. Accessed 26
February 2022.

[2] Rosebrock, Adrian. “Zero-parameter, automatic Canny edge detection with Python and OpenCV.”
PyImageSearch, 6 April 2015,
https://pyimagesearch.com/2015/04/06/zero-parameter-automatic-canny-edge-detection-with-python-and-
opencv/. Accessed 26 February 2022.

[3] “mdbloice/Augmentor: Image augmentation library in Python for machine learning.” GitHub,
https://github.com/mdbloice/Augmentor. Accessed 26 February 2022.

[4] “phillipi/pix2pix: Image-to-image translation with conditional adversarial nets.” GitHub,
https://github.com/phillipi/pix2pix. Accessed 26 February 2022.

[5] “Ask for help about the size of dataset and the num of epoches. · Issue #283 ·
junyanz/pytorch-CycleGAN-and-pix2pix.” GitHub, 31 May 2018,
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/283. Accessed 26 February 2022.

https://github.com/elena-hanni/10615-Project2-GhostCamera.git

