ART AND MACHINE LEARNING
CMU 2022 SPRING
FINAL PROJECT

TEXT TO PIXTO PITCH

Img :
https://interlude.hk/when-the-eye-meets-the-ear-how-are-intricate-music-concepts-repre
sented-in-visual-arts/

PRAJWAL DESHKAR

https://interlude.hk/when-the-eye-meets-the-ear-how-are-intricate-music-concepts-represented-in-visual-arts/
https://interlude.hk/when-the-eye-meets-the-ear-how-are-intricate-music-concepts-represented-in-visual-arts/

DESCRIPTION

Text to Pix to Pitch is an experiment which aim to convert text and music into Visual and
Musical art representation. It consists of two deep learning models first is GPT3 for Text
to Image and CGAN for generating music which match the emotion of the art form.

Concept

| always wanted to explore relation between visual art and music, because visual art and music
have numerous parallels because they share elements such as harmony, balance, rhythm, and
repetition. Hence | thought of experimenting if these similarities in visual art can help machine
learning algorithm explore relation between visual art and music.

Technique

For first part | have used various pertained model, mainly | used GPT3 algorithm to generate
images from text. | used various online tools but mainly as well.

For second part that is PIX to PITCH, | used CGAN typically a PIX to PIX type which takes
learns relation between two images. It is a type of GAN that involves the conditional
generation of images by a generator model. A generative adversarial network (GAN) is a
Machine Learning framework used to train generative models.

Process

First part that is TEXT to PIX was not challenging, because | used written model which were
available online or the one which | trained in my first project so it was not a difficult part for me.
Second part that is generating Music which is in line with the kind of painting was a crucial part
because professor asked me that how will your machine learning model learn that emotional
relation. The emotional relation between visual art and music was where | figure it out from one
paper can be done through CGANS.

| found data site from so and so library which has painting paired with emotionally similar music
but it was in form of MIDI file. Really needed to pre-process my data properly and strategise
thing in a way that | feed my machine learning model a data which can provide maximum
information to it. Really | thought of pairing my paintings with real form of media file which
consist of amplitude and fluctuations but | thought that information about frequency was missing
and which is a very vital information to generate music so | skipped using a view from and
decided to use a spectrogram which has more data because it shows saturation frequency as
well as rhythm of the music so | decided to use spectrogram as a second image to pair with the
painting.

After pre-processing my data | had pairs of image ready where is spectrogram and painting on
which | trained my C GAN. | was expecting it to in that relation between colours in painting and
frequency because darker the frequency of darker the colour that side and that's how that

correlation can be octane between two images and surprisingly it learnt that and | got the output
which is mentioned below.

Validation

Mona Lisa
The tritone sound is of anticipation the look on her face is somber so it doesn’t look positive it
looks almost like she’s ready to hear bad news and hoping she doesn’t

Boy sitting in cafe

It appears and sounds like he’s anticipating for his friends to show up and for the to go and play
a game of some sort

Horror

This appears and sounds like a rave invitation that is a circuit party that has a theme to gothic
enthusiasts

RESULT

BOY SITTING IN CAFE

Input Text

Boy Sitting_in Cafe

HORROR

Input Text

HORROR

NNNNNNNNNNNNNNNNNNNNNNNN

https://soundcloud.com/stoute_music/boy-sitting-in-cafe/s-d6go71RKyeI?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
https://soundcloud.com/stoute_music/horror/s-pJFrkmbaGTV?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing

MONA LISA
CODE

DRIVE FOLDER :

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

https://drive.google.com/drive/folders/190IPXjsblJFk-GlugtfDEfPKdCrAnsGZusp=sharing
RAW CODE:

GENERATOR MODEL :

import torch
import torch.nn as nn

Block(nn.Module):
__init__(self, in_channels, out channels, down= , act="relu",
use_dropout= X
super(Block, self).__init__ ()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out channels, 4, 2, 1, bias=

padding_mode="reflect")
if down
else nn.ConvTranspose2d(in_channels, out channels, 4, 2, 1, bias=
nn.BatchNorm2d(out_channels),
nn.RelLU() if act == "relu" else nn.LeakyRel.U(0.2),

self.use_dropout = use_dropout

self.dropout = nn.Dropout(0.5)
self.down = down

MONA LISA

https://soundcloud.com/stoute_music/monal-lisa?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
https://drive.google.com/drive/folders/190IPXjsblJFk-GIugtfDEfPKdCrAnsGZusp=sharing

forward(self, x):
x = self.conv(x)

return self.dropout(x) if self.use dropout else x

Generator(nn.Module):

__init__(self, in_channels=3, features=64):

super().__init__()
self.initial_down = nn.Sequential(

nn.LeakyRel U(0.2),
)

use_dropout=)
self.down2 = Block(
features * 2, features * 4, down=
)
self.down3 = Block(
features * 4, features * 8, down=
)
self.down4 = Block(
features * 8, features * 8, down=
)
self.down5 = Block(
features * 8, features * 8, down=
)
self.down6 = Block(
features * 8, features * 8, down=

)

self.bottleneck = nn.Sequential(

self.up1 = Block(features * 8, features * 8, down=

features * 8 * 2, features * 8, down=

self.up4 = Block(

self.down1 = Block(features, features * 2, down=

features * 8 * 2, features * 8, down=

nn.Conv2d(in_channels, features, 4, 2, 1, padding _mode="reflect"),

, act="leaky",

, act="leaky", use dropout=

, act="leaky", use_ dropout=

, act="leaky", use dropout=

, act="leaky", use dropout=

, act="leaky", use dropout=

nn.Conv2d(features * 8, features * 8, 4, 2, 1), nn.ReLU()

, act="relu",

, act="relu", use dropout=

, act="relu", use dropout=

, act="relu", use dropout=

if _name ==" main_ "

self.up5 = Block(

self.up6 = Block(

features * 4 * 2, features * 2, down=

self.up7 = Block(features * 2 * 2, features, down=

d7 = self.down6(d6)
bottleneck = self.bottleneck(d7)
up1 = self.up1(bottleneck)
up2 = self.up2(torch.cat([up1, d7], 1)
up3 = self.up3(torch.cat([up2, d6], 1)
up4 = self.up4(torch.cat([up3, d5], 1)
up5 = self.up5(torch.cat([up4, d4], 1)
up6 = self.up6(torch.cat([up5, d3], 1)
)
1

)
)
)
;
up? = self.up7(torch.cat([up6, d2], 1))

return self.final_up(torch.cat([up7, d1], 1))

test():

x = torch.randn((1, 3, 256, 256))
model = Generator(in_channels=3, features=64)
preds = model(x)

print(preds.shape)

features * 8 * 2, features * 4, down=

, act="relu", use dropout=

, act="relu", use dropout=

, act="relu",

DISCRIMINATOR MODEL :
import torch
import torch.nn as nn

CNNBlock(nn.Module):
__init__(self, in_channels, out_channels, stride):

super(CNNBIlock, self). __init ()
self.conv = nn.Sequentialf(
nn.Conv2d(|
in_channels, out channels, 4, stride, 1, bias= , padding_mode="reflect"

nn.BatchNorm2d(out_channels),
nn.LeakyRel U(0.2),

forward(self, x):

return self.conv(x)

Discriminator(nn.Module):
__init__(self, in_channels=3, features=[64, 128, 256, 512]):
super().__init__(
self.initial = nn.Sequentialf
nn.Conv2d(|
in_channels * 2,
features[0],
kernel_size=4,
stride=2,
padding=1,
padding _mode="reflect",

)
nn.LeakyRel U(0.2),

in_channels = features|0]
for feature in features[1:]:
layers.append(|
CNNBIlock(in_channels, feature, stride=1 if feature == features[-1] else 2),

in_channels = feature

layers.append(

nn.Conv2d(|
in_channels, 1, kernel size=4, stride=1, padding=1, padding _mode="reflect"

self. model = nn.Sequential(*layers)

forward(self, x, y):
x = torch.cat([x, y], dim=1)
x = self.initial(x)
x = self.model(x)

test():
x = torch.randn((1, 3, 256, 256))
y = torch.randn((1, 3, 256, 256))
model = Discriminator(in_channels=3)
preds = model(x, y)
print(model
print(preds.shape)

if _name ==" main "

from dataset import MapDataset
from generator_model import Generato
from discriminator_model import Discriminato
from torch.utils.data import Datal.oade
from tqdm import tqdm

from torchvision.utils import save image

torch.backends.cudnn.benchmark =

train_fn(
disc, gen, loader, opt disc, opt gen, |1 _loss, bce, g scaler, d scaler,

loop = tqdm(loader, leave=

for idx, (x, y) in enumerate(loop):
x = x.to(config.DEVICE)
y = y.to(config.DEVICE)

with torch.cuda.amp.autocast():
y_fake = gen(x)
D_real = disc(x, y)
D_real_loss = bce(D_real, torch.ones_like(D_real))
D_fake = disc(x, y_fake.detach()
D_fake loss = bce(D_fake, torch.zeros_like(D_fake))
D loss = (D real loss + D fake loss)/ 2

disc.zero_grad()

d_scaler.scale(D_loss).backward()
d_scaler.step(opt_disc)
d_scaler.update()

with torch.cuda.amp.autocast():
D_fake = disc(x, y_fake)
G _fake loss = bce(D_fake, torch.ones_like(D_fake))
L1 =11_loss(y_fake, y) * config.L1 LAMBDA
G loss = G _fake loss + L1

opt_gen.zero_grad()
g_scaler.scale(G_loss).backward()
g_scaler.step(opt_gen)
g_scaler.update()

if idx % 10 == 0:
loop.set_postfix(
D_real=torch.sigmoid(D_real).mean().item(),
D_fake=torch.sigmoid(D_fake).mean().item(),

load_checkpoint(
config. CHECKPOINT DISC, disc, opt_disc, config.LEARNING RATE,

train_dataset = MapDataset(root dir=config. TRAIN DIR)
train_loader = Datal.oader(|

train_dataset,

batch_size=config.BATCH_ SIZE,

shuffle=

num_workers=config.NUM WORKERS,

g_scaler = torch.cuda.amp.GradScaler()

d_scaler = torch.cuda.amp.GradScaler()
val_dataset = MapDataset(root_dir=config.VAL_ DIR)

for epoch in range(config.NUM EPOCHS):.

disc, gen, train_loader, opt disc, opt gen, L1 LOSS, BCE, g scaler, d scaler,

if config.SAVE_MODEL epoch % 5 == 0:
save_checkpoint(gen, opt_gen, filename=config. CHECKPOINT _GEN)
save checkpoint(disc, opt_disc, flename=config. CHECKPOINT DISC)

save some_examples(gen, val loader, epoch, folder="evaluation")

if _name ==" main_ "

REFERENCES

1. PIX to PIX

2. https://lwww.google.com/search?g=wombo&og=wombo&ags=chrome..69i57j69i59i433i512j0i
433i51212j69i59j69i6012j69i61.4807j1j9&sourceid=chrome&ie=UTF-8#:~:text=WOMBO%20Dr
€am%20%2D%20Al,www.wombo.art

3. https://oa.upm.es/63694/1/TFM_ELENA_RIVAS_RUZAFA pdf

4. https://arxiv.org/abs/1611.07004

https://www.youtube.com/watch?v=SuddDSqGRzg
https://www.google.com/search?q=wombo&oq=wombo&aqs=chrome..69i57j69i59i433i512j0i433i512l2j69i59j69i60l2j69i61.4807j1j9&sourceid=chrome&ie=UTF-8#:~:text=WOMBO%20Dream%20%2D%20AI,www.wombo.art
https://www.google.com/search?q=wombo&oq=wombo&aqs=chrome..69i57j69i59i433i512j0i433i512l2j69i59j69i60l2j69i61.4807j1j9&sourceid=chrome&ie=UTF-8#:~:text=WOMBO%20Dream%20%2D%20AI,www.wombo.art
https://www.google.com/search?q=wombo&oq=wombo&aqs=chrome..69i57j69i59i433i512j0i433i512l2j69i59j69i60l2j69i61.4807j1j9&sourceid=chrome&ie=UTF-8#:~:text=WOMBO%20Dream%20%2D%20AI,www.wombo.art
https://oa.upm.es/63694/1/TFM_ELENA_RIVAS_RUZAFA.pdf
https://arxiv.org/abs/1611.07004

