Analysis of Algorithms: Solutions 6

P4 P P PE P < o}
P4 P4 P4 PE o PE P e

Problem 1

Suppose we apply the CONNECTED-COMPONENTS algorithm to an undirected graph G, with
vertices G[V]| = {a,b,c,d,e, f,g,h,i,7,k}, and its edges E[G] are processed in the follow-
ing order: (e,g), (a,d), (i,k), (c,9), (b, f), (b, h), (f, k), (a,k), (f, h),(d, 7). Using Figure 22.1
in the textbook as a model, illustrate the steps of CONNECTED-COMPONENTS on this graph.

Edge Disjoint sets
initial sets | {a} ~ {b} {c} {d} A{e} {r} {g} {n} {3 {5} {k}
(e,9) | {a} {0} {c} {d} {eg} {/} {hy {i {5} {k}
(a,d) | {a,d} {b} {c} {e.9r {/f} {hy {i} {5} {k}
(i,k) | {a,d} {b} {c} {e.gr {/f} {hy {i,k} {5}
(c.9) |{a,d} {0} {c.e,9} {r} {hy {i,k} {5}
(b, f) | {a,d} {b, [} {c.e,9} {hy {ik} {5}
(b;h) | {a,d} {b, [, h} {c.e,9} {t.k} {7}
(f,k) | {a,d} b f,h,isk} {c,e g} {4}
(a,k) | {a,b,d, f,h, 1, k} {c.e,9} {4}
(f,h) | {a,b,d, f,h,i k} {c,e, 9} {7}
(d,i) | {a,b,d, f,h, i, k} {c.e,9} {4}

Problem 2

Consider the disjoint-set forest shown below, where numbers are the ranks of elements, and
suppose that you apply three successive operations to this forest: FIND-SET(a), UNION(, d),
and UNION(d, e). Give a picture of the disjoint forest after each of these operations.

1(b) o@ 0 o@>/2 0(i) 1(i) o(k)

FIND-SET(a
0 1
k 0 0(e)
(1,d):

0 @1/@;/@0\\&

o(¢)

UNION

UNION(d, €):

)
3 1
o m%

Problem 3
The transpose of a graph G is the result of reversing all edges in . Write an algorithm that
computes the transpose of a given graph.

We denote the array of initial adjacency lists by Adj-Initial and the array of transposed
adjacency lists by Adj-Transpose. The time complexity of the algorithm is O(V + F).

TRANSPOSE(G)
for each u € V|G|
do initialize an empty list Adj- Transpose|u]
for each u € V|G|
do for each v € Adj-Initial]u]
do add u to Adj-Transpose[v]

Problem 4
Suppose that the rank of each node in a disjoint-set forest must be the exact height of the
node, rather than an upper bound on the height. Then, FIND-SET has to change the ranks
of the nodes on the compressed path.

Describe a modified representation of the disjoint-set forest, which supports this opera-
tion, and the corresponding modifications of MAKE-SET, UNION, and FIND-SET. What is
the time complexity of the resulting implementation, in terms of m and n?

The modified representation is similar to the standard disjoint-set forest. The difference is
that each node z includes a list children|x], which contains all children of z. The running
time of this implementation is O(m-n); it is much slower than the standard implementation.

MAKE-SET(z) FIND-SET(z)

parent|z] < x y < parent|x]

rank|z] < 0 if y # parent[y|

initialize an empty list children|x] > neither x nor parent[x] is the root
then remove z from children[y]

UNION(z, y)

RECOMPUTE-RANK][y]

LINK(FIND-SET(z), FIND-SET(y)) parent]z] « FIND-SET(y)

LiNK(z, y) add z to children[parent|x]]
if rank{z] > rankly] if rank[parent[z]] < ranklz] + 1
then parently| «+ z then rank{parent[z]] = rank[z] + 1
add y to children|x] return parent|z|

else parent|z] + y
add z to children|y]
if rank[z] = rankly]
then rankly] < rankly] + 1

RECOMPUTE-RANK(y)
rankly] < 0
for each z € children[y]
do if rank[y] < rank[z] + 1
then rankly] < rank[z] + 1

