Analysis of Algorithms: Solutions 6

				X			X			
				X			X			
				X			X			
				X		X	X			
				X	X	X	X			
				X	X	X	X		Х	
		X		X	X	X	X	X	X	
X		X	X	X	X	X	X	X	X	
2	3	4	 5	6	 7	 8	9	10	11	
grades										

Problem 1

Suppose we apply the Connected-Components algorithm to an undirected graph G, with vertices $G[V] = \{a, b, c, d, e, f, g, h, i, j, k\}$, and its edges E[G] are processed in the following order: (e, g), (a, d), (i, k), (c, g), (b, f), (b, h), (f, k), (a, k), (f, h), (d, i). Using Figure 22.1 in the textbook as a model, illustrate the steps of Connected-Components on this graph.

Edge	Disjoint sets										
initial sets	$\{a\}$ $\{b\}$	$\{c\}$ $\{d\}$	$\{e\}$	<i>{f}</i>	$\{g\}$	$\{h\}$	$\{i\}$	<i>{j}</i>	$\overline{\{k\}}$		
(e,g)	$\{a\}$ $\{b\}$	$\{c\}$ $\{d\}$	$\{e,g\}$	$\{f\}$		$\{h\}$	$\{i\}$	$\{j\}$	$\{k\}$		
(a,d)	$\{a,d\}$ $\{b\}$	$\{c\}$	$\{e,g\}$	$\{f\}$		$\{h\}$	$\{i\}$	$\{j\}$	$\{k\}$		
(i,k)	$\{a,d\}$ $\{b\}$	$\{c\}$	$\{e,g\}$	$\{f\}$		$\{h\}$	$\{i,k\}$	$\{j\}$			
(c,g)	$\{a,d\}$ $\{b\}$	$\{c,e,g\}$		$\{f\}$		$\{h\}$	$\{i,k\}$	$\{j\}$			
(b,f)	$\{a,d\}$ $\{b,f\}$	$\{c,e,g\}$				$\{h\}$	$\{i,k\}$	$\{j\}$			
(b,h)	$\{a,d\}$ $\{b,f,h\}$	$\{c,e,g\}$					$\{i,k\}$	$\{j\}$			
(f,k)	$\{a,d\} \{b,f,h,i,k\}$	$\{c,e,g\}$						$\{j\}$			
(a,k)	$\{a,b,d,f,h,i,k\}$	$\{c,e,g\}$						$\{j\}$			
(f,h)	$\{a,b,d,f,h,i,k\}$	$\{c,e,g\}$						$\{j\}$			
(d,i)	$\{a,b,d,f,h,i,k\}$	$\{c,e,g\}$						$\{j\}$			

Problem 2

Consider the disjoint-set forest shown below, where numbers are the ranks of elements, and suppose that you apply three successive operations to this forest: FIND-Set(a), UNION(l,d), and UNION(d,e). Give a picture of the disjoint forest after each of these operations.

FIND-SET(a):

Union(l, d):

Union(d, e):

Problem 3

The transpose of a graph G is the result of reversing all edges in G. Write an algorithm that computes the transpose of a given graph.

We denote the array of initial adjacency lists by Adj-Initial and the array of transposed adjacency lists by Adj-Transpose. The time complexity of the algorithm is $\Theta(V+E)$.

```
Transpose(G)

for each u \in V[G]

do initialize an empty list Adj-Transpose[u]

for each u \in V[G]

do for each v \in Adj-Initial[u]

do add u to Adj-Transpose[v]
```

Problem 4

Suppose that the rank of each node in a disjoint-set forest must be the exact height of the node, rather than an upper bound on the height. Then, FIND-SET has to change the ranks of the nodes on the compressed path.

Describe a modified representation of the disjoint-set forest, which supports this operation, and the corresponding modifications of Make-Set, Union, and Find-Set. What is the time complexity of the resulting implementation, in terms of m and n?

The modified representation is similar to the standard disjoint-set forest. The difference is that each node x includes a list children[x], which contains all children of x. The running time of this implementation is $O(m \cdot n)$; it is much slower than the standard implementation.

```
FIND-SET(x)
MAKE-SET(x)
                                                    y \leftarrow parent[x]
parent[x] \leftarrow x
rank[x] \leftarrow 0
                                                    if y \neq parent[y]
                                                        \triangleright neither x nor parent[x] is the root
initialize an empty list children[x]
                                                       then remove x from children[y]
Union(x, y)
                                                              RECOMPUTE-RANK[y]
LINK(FIND-SET(x), FIND-SET(y))
                                                             parent[x] \leftarrow \text{FIND-Set}(y)
                                                             add x to children[parent[x]]
Link(x, y)
                                                             if rank[parent[x]] < rank[x] + 1
if rank[x] > rank[y]
                                                                 then rank[parent[x]] = rank[x] + 1
  then parent[y] \leftarrow x
                                                    return parent[x]
         add y to children[x]
  else parent[x] \leftarrow y
                                                    RECOMPUTE-RANK(y)
         add x to children[y]
                                                    rank[y] \leftarrow 0
if rank[x] = rank[y]
                                                    for each z \in children[y]
  then rank[y] \leftarrow rank[y] + 1
                                                         do if rank[y] < rank[z] + 1
                                                               then rank[y] \leftarrow rank[z] + 1
```