Analysis of Algorithms: Solutions 3

Problem 1

Determine asymptotic upper and lower bounds for each of the following recurrences.

(a)
$$T(n) = 27T(n/3) + n$$

$$T(n) = n + 27T(\frac{n}{3})$$

$$= n + 27(\frac{n}{3} + 27T(\frac{n}{3^2}))$$

$$= n + 27\frac{n}{3} + 27^2T(\frac{n}{3^2})$$

$$= n + 27\frac{n}{3} + 27^2(\frac{n}{3^2} + 27T(\frac{n}{3^3}))$$

$$= n + 27\frac{n}{3} + 27^2\frac{n}{3^2} + 27^3T(\frac{n}{3^3})$$

$$\dots$$

$$= n + 27\frac{n}{3} + 27^2\frac{n}{3^2} + 27^3\frac{n}{3^3} + 27^4\frac{n}{3^4} + \dots + 27^{\log_3 n}\frac{n}{3^{\log_3 n}}$$

$$= n + 9n + 9^2n + 9^3n + 9^4n + \dots + 9^{\log_3 n}n$$

$$= n(1 + 9 + 9^2 + 9^3 + 9^4 + \dots + 9^{\log_3 n})$$

$$= n\frac{9^{\log_3 n + 1} - 1}{9 - 1}$$

$$= n\frac{9n^2 - 1}{8}$$

$$= \Theta(n^3)$$

(b)
$$T(n) = 27T(n/3) + n^3$$

 $T(n) = n^3 + 27T(\frac{n}{3})$
 $= n^3 + 27((\frac{n}{3})^3 + 27T(\frac{n}{3^2}))$
 $= n^3 + 27(\frac{n}{3})^3 + 27^2T(\frac{n}{3^2})$
 $= n^3 + 27(\frac{n}{3})^3 + 27^2((\frac{n}{3^2})^3 + 27T(\frac{n}{3^3}))$

$$= n^{3} + 27(\frac{n}{3})^{3} + 27^{2}(\frac{n}{3^{2}})^{3} + 27^{3}T(\frac{n}{3^{3}})$$
...

$$= n^{3} + 27(\frac{n}{3})^{3} + 27^{2}(\frac{n}{3^{2}})^{3} + 27^{3}(\frac{n}{3^{3}})^{3} + 27^{4}(\frac{n}{3^{4}})^{3} + \dots + 27^{\log_{3}n}(\frac{n}{3^{\log_{3}n}})^{3}$$

$$= \underbrace{n^{3} + n^{3} + n^{3} + n^{3} + \dots + n^{3}}_{\log_{3}n+1}$$

$$= n^3 (\log_3 n + 1)$$
$$= \Theta(n^3 \cdot \lg n)$$

(c)
$$T(n) = 3T(n/9) + \sqrt{n}$$

$$T(n) = \sqrt{n} + 3T(\frac{n}{9})$$

$$= \sqrt{n} + 3(\sqrt{\frac{n}{9}} + 3T(\frac{n}{9^2}))$$

$$= \sqrt{n} + 3\sqrt{\frac{n}{9}} + 3^2T(\frac{n}{9^2})$$

$$= \sqrt{n} + 3\sqrt{\frac{n}{9}} + 3^2(\sqrt{\frac{n}{9^2}} + 3T(\frac{n}{9^3}))$$

$$= \sqrt{n} + 3\sqrt{\frac{n}{9}} + 3^2\sqrt{\frac{n}{9^2}} + 3^3T(\frac{n}{9^3})$$

$$\dots$$

$$= \sqrt{n} + 3\sqrt{\frac{n}{9}} + 3^2\sqrt{\frac{n}{9^2}} + 3^3\sqrt{\frac{n}{9^3}} + 3^4\sqrt{\frac{n}{9^4}} + \dots + 3^{\log_9 n}\sqrt{\frac{n}{9\log_9 n}}$$

$$= \sqrt{n} + \sqrt{n} + \sqrt{n} + \sqrt{n} + \dots + \sqrt{n}$$

$$= \sqrt{n}(\log_9 n + 1)$$

$$= \Theta(\sqrt{n} \cdot \lg n)$$

(d)
$$T(n) = T(\sqrt{n}) + 1$$

We "unwind" the recurrence until reaching some constant value of n, say, until $n \leq 2$:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le 2\\ T(\sqrt{n}) + 1 & \text{if } n > 2 \end{cases}$$

For convenience, assume that $n = 2^{2^k}$, for some natural value k.

$$T(2^{2^{k}}) = 1 + T(\sqrt{2^{2^{k}}})$$

$$= 1 + T(2^{2^{k-1}})$$

$$= 1 + 1 + T(\sqrt{2^{2^{k-1}}})$$

$$= 1 + 1 + T(2^{2^{k-2}})$$

$$= 1 + 1 + 1 + T(\sqrt{2^{2^{k-2}}})$$

$$= 1 + 1 + 1 + T(2^{2^{k-3}})$$

$$\cdots$$

$$= \underbrace{1 + 1 + 1 + \dots + 1}_{k} + T(2)$$

$$= k + \Theta(1)$$

$$= \Theta(k)$$

Finally, we note that $k = \lg \lg n$, which means that $T(n) = \Theta(\lg \lg n)$.

(e)
$$T(n) = T(n-1) + n^2$$

$$T(n) = n^{2} + T(n-1)$$

$$= n^{2} + ((n-1)^{2} + T(n-2))$$

$$= n^{2} + (n-1)^{2} + T(n-2)$$

$$= n^{2} + (n-1)^{2} + ((n-2)^{2} + T(n-3))$$

$$= n^{2} + (n-1)^{2} + (n-2)^{2} + T(n-3)$$

$$...$$

$$= n^{2} + (n-1)^{2} + (n-2)^{2} + (n-3)^{2} + (n-4)^{2} + ... + 1^{2}$$

$$= \frac{n(n+1)(2n+1)}{6}$$

$$= \Theta(n^{3})$$

Problem 2

Consider the following sorting algorithm:

STOOGE-SORT(A, i, j)

- 1. **if** A[i] > A[j]
- 2. **then** exchange $A[i] \leftrightarrow A[j]$
- 3. **if** $i + 1 \ge j$
- 4. then return
- 5. $k \leftarrow |(j-i+1)/3|$
- 6. STOOGE-SORT(A, i, j k) \triangleright first two-thirds
- 7. STOOGE-SORT(A, i + k, j) \triangleright last two-thirds
- 8. Stooge-Sort(A, i, j k) \triangleright first two-thirds again
- (a) Argue that STOOGE-SORT(A, 1, n) correctly sorts the input array A[1..n].

We prove the correctness of the algorithm by induction. Clearly, the algorithm works for one-element and two-element arrays, which provides the induction base. Now suppose that it works for all arrays shorter than A[i..j] and let us show that it also works for A[i..j].

After the execution of Line 6, A[i...(j-k)] is sorted, which means that every element of A[(i+k)...(j-k)] is no smaller than every element of A[i...(i+k-1)]; we write it as $A[(i+k)...(j-k)] \ge A[i...(i+k-1)]$. Thus, A[(i+k)...j] has at least length(A[(i+k)...(j-k)]) = j-i-2k+1 elements each of which is no smaller than each element of A[i...(i+k-1)].

After the execution of Line 7, A[(i+k)..j] is sorted, which implies that

- (1) A[(j-k+1)..j] is sorted, and
- (2) $A[(j-k+1)..j] \ge A[(i+k)..(j-k)]$

Since A[(i+k)..j] has at least (j-i-2k+1) elements no smaller than each element of A[i..(i+k-1)] and $length(A[(j-k+1)..j]) \leq j-i-2k+1$, we conclude that

(3)
$$A[(j-k+1)..j] \ge A[i..(i+k-1)].$$

Putting together (2) and (3), we conclude that

(4)
$$A[(j-k+1)..j] \ge A[i..(j-k)].$$

After the execution of Line 8, the array A[i..(j-k)] is sorted. Putting this observation together with (1) and (4), we see that the whole array A[i..j] is sorted.

(b) Give the recurrence for the worst-case running time of STOOGE-SORT and a tight asymptotic (Θ -notation) bound on the worst-case running time.

The algorithm first performs a constant-time computation (Lines 1-5), and then recursively calls itself three times (Lines 6-8), each time on an array whose size is 2/3 of the original array's size. Thus, the recurrence is as follows:

$$T(n) = 3T(\frac{2}{3}n) + \Theta(1).$$

This recurrence describes both the worst-case and best-case running time, since the algorithm's behavior does not depend on the order of elements in the input array. We use the iteration method to solve it:

$$T(n) = 1 + 3T(\frac{2}{3}n)$$

$$= 1 + 3 + 9T(\frac{4}{9}n)$$

$$\dots$$

$$= 1 + 3 + 3^{2} + \dots + 3^{\log_{3/2} n}$$

$$= \frac{3^{\log_{3/2} n + 1} - 1}{3 - 1}$$

$$= \Theta(3^{\log_{3/2} n})$$

$$= \Theta(3^{(\log_{3} n)/(\log_{3} 3/2)})$$

$$= \Theta(n^{1/(\log_{3} 3/2)})$$

$$= \Theta(n^{2.71}).$$

(c) Compare the worst-case running time of Stooge-Sort with that of Insertion-Sort and Merge-Sort. Is it a good algorithm?

STOOGE-SORT is slower than the other sorting algorithms. Even Insertion-Sort has the complexity $O(n^2)$, which is much better than $\Theta(n^{2.71})$.

Problem 3

The following algorithm inputs a natural number n and returns a natural number m.

```
 \begin{array}{c} \text{Slow-Counter}(n) \\ \textbf{for } i \leftarrow 1 \textbf{ to } n \\ \textbf{do for } j \leftarrow 1 \textbf{ to } n \\ \textbf{do } S \leftarrow \emptyset \quad \rhd \text{ make the set } S \text{ empty} \\ \textbf{for } k \leftarrow 1 \textbf{ to } i - 1 \\ \textbf{do } S \leftarrow S \cup \{A[k,j]\} \quad \rhd \text{ add the } A[k,j] \text{ value to } S \\ \textbf{for } k \leftarrow 1 \textbf{ to } j - 1 \\ \textbf{do } S \leftarrow S \cup \{A[i,k]\} \quad \rhd \text{ add the } A[i,k] \text{ value to } S \\ A[i,j] \leftarrow \text{Max}(S) + 1 \\ m \leftarrow A[n,n] \\ \textbf{return } m \end{array}
```

Give a much faster algorithm that computes the same value m.

Every element A[i, j] of the resulting matrix is 1 greater than its preceding neighbors A[i-1, j] and A[i, j-1]. For example, if n=8, then the matrix is as follows:

```
1
   2
                           8
      3
           4
                   6
2
   3
      4
           5
               6
                   7
                       8
                           9
3
  4
      5
           6
               7
                   8
                       9
                           10
4
  5
      6
          7
               8
                  9
                       10
                          11
  6
      7
5
           8
               9
                  10
                      11
                           12
6
  7
      8
           9
              10
                  11
                       12
                           13
7
   8
      9
          10
              11
                  12
                       13
                           14
              12
  9
      10
          11
                  13
                      14
                           15
```

Thus, m is always 2n-1, and we may replace SLOW-Counter with the following algorithm:

```
FAST-COUNTER(n) return 2n-1
```