
Fundamentals of Restricted-Orientation Convexity∗

Eugene Fink† Derick Wood‡

Abstract

A restricted-orientation convex set, also called an O-convex set, is a set of points
whose intersection with lines from some fixed set is empty or connected. The notion
of O-convexity generalizes standard convexity and orthogonal convexity.

We explore some of the basic properties of O-convex sets in two and higher di-
mensions. We also study O-connected sets, which are a subclass of O-convex sets,
with several special properties. We introduce and investigate restricted-orientation
analogs of lines, flats, and hyperplanes, and characterize O-convex and O-connected
sets in terms of their intersections with hyperplanes. We then explore properties of O-
connected curves; in particular, we show when replacing a segment of an O-connected
curve with a new curvilinear segment yields an O-connected curve and when the cate-
nation of several curvilinear segments forms an O-connected segment. We use these
results to characterize an O-connected set in terms of O-connected segments, joining
pairs of its points, that are wholly contained in the set.

We also identify some of the major properties of standard convex sets that hold
for O-convexity. In particular, we demonstrate that the intersection of a collection of
O-convex sets is an O-convex set, every O-connected curvilinear segment is a segment
of some O-connected curve, and, for every two points of an O-convex set, there is an
O-convex segment joining them that is wholly contained in the set.

1 Introduction

The study of convex sets is a branch of geometry that has numerous connections with
other areas of mathematics, including analysis, linear algebra, statistics, number theory,
and combinatorics [5, 10, 9]. The importance of convexity theory stems from the fact that
convex sets arise frequently in many areas of mathematics and are often amenable to rather
elementary reasoning. The concept of convexity serves to unify a wide range of mathematical
phenomena.
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The application of convexity theory to practical problems [15] led to the exploration of
nontraditional notions of convexity, such as orthogonal convexity [12, 13, 14], finitely oriented
convexity [7, 24, 17], restricted-orientation convexity [16, 20, 21], NESW convexity [11, 22],
and link convexity [1, 23, 21]. These nontraditional convexities have been used in pixel
graphics, locked transaction systems, VLSI design, motion planning, and other areas.

Güting introduced the notion of restricted orientations in two dimensions in his doctoral
thesis [7]. He investigated computational properties of polygons whose edges are parallel to
the elements of some fixed finite set of lines, called an orientation set [6, 8].

Rawlins applied restricted orientations in his definition of two new types of generalized
convexity, which he called O-convexity and strong O-convexity [16]. O-convexity, also called
restricted-orientation convexity, was defined in terms of the intersection of a geometric object
with lines parallel to the elements of a fixed orientation set O (see Section 2). Rawlins and
Wood showed that the notion of O-convexity generalizes standard convexity and orthogonal
convexity, and that the properties of O-convex sets are similar to the properties of standard
convex sets [18, 20]. Schuierer continued their exploration and presented an extensive study
of geometric and computational properties of O-convex sets in his doctoral thesis [21].

In this paper, the second in a series [3, 2], we demonstrate that the notion of O-convexity
can be extended to higher dimensions. This extension yields a generalization of planar O-
convexity and standard higher-dimensional convexity. In the first paper of the series [3], we
described a generalization of strong O-convexity [16] to higher dimensions and explored the
properties of strongly O-convex sets [4]. In the third paper [2], we describe a restricted-
orientation generalization of halfspaces and investigate properties of these generalized half-
spaces.

We restrict our attention to the exploration of closed sets. We conjecture that most of
the results hold for nonclosed sets as well; however, some of our proofs work only for closed
sets.

Closed-Set Assumption: We consider only closed geometric objects. An ob-
ject is closed if, for every convergent sequence of its points, the limit of the
sequence belongs to the object.

The paper is organized as follows. In Section 2, we briefly describe the notion of O-
convexity in two dimensions and present basic properties of planar O-convex sets. In Sec-
tion 3, we generalize O-convexity and its basic properties to higher dimensions. In Sec-
tion 4, we describe O-connected sets, which are a subclass of O-convex sets, with several
special properties. In Section 5, we explore properties of O-connected curves. In Section 6,
we present visibility results for O-convex and O-connected sets. Finally, we conclude, in
Section 7, with a discussion of open problems and of future work.

2 O-convexity in two dimensions

We begin by reviewing the notion of O-convexity in two dimensions [16] and presenting
some of the basic properties of planar O-convex sets. Rawlins introduced this notion as a
generalization of orthogonal convexity [14] and standard convexity. He defined O-convex
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Figure 1: Planar O-convexity.

sets in terms of their intersection with straight lines, by analogy with one of the definitions
of standard convexity. Rawlins, Wood, and Schuierer explored properties of O-convex sets in
two dimensions and showed that many properties of these sets are similar to the properties
of standard convex sets [18, 20, 21].

We can describe convex sets through their intersections with straight lines: a set of points
is convex if its intersection with every line is empty or connected. We define O-convexity by
considering the intersection of a set of points with lines from a certain set (rather than all
lines). In other words, we select some collection of lines and say that a set is O-convex if its
intersection with every line from this collection is empty or connected.

To define this restricted collection of lines, we first introduce the notion of an orientation
set. An orientation set O is a (finite or infinite) closed set of lines through some fixed point o.
An example of a finite orientation set is shown in Figure 1(a). A straight line parallel to one
of the lines of O is called an O-line. For example, the dashed lines in Figures 1(b)–(e) are
O-lines. We use the collection of all O-lines in defining O-convexity.

Definition 1 (O-Convexity) A closed set is O-convex if its intersection with every O-line
is empty or connected.

For the orientation set in Figure 1(a), the sets shown in Figures 1(b) and 1(c) are O-
convex (some O-lines intersecting these sets are shown by dashed lines). On the other
hand, the set in Figure 1(d) is not O-convex, since its intersection with the dashed O-line is
disconnected. Note that the set in Figure 1(d) is a rotation of the set in Figure 1(c). This
observation shows that rotations may not preserve O-convexity.

Unlike standard convex sets, O-convex sets may be disconnected. In Figure 1(e), we
show a disconnected O-convex set, which consists of two rectangles.

We now prove some basic properties of planar O-convex sets [20].

Lemma 1

1. Every translation of an O-convex set is O-convex.

2. Every standard convex set is O-convex.

3. (Intersection) If C is a collection of O-convex sets, then the intersection
⋂

C of these
sets is also an O-convex set.

4. A disconnected set is O-convex if and only if every connected component of the set is
O-convex and no O-line intersects two components.

5. If O is not empty, then every connected O-convex set is simply connected.
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Proof.
(1) By definition, every translation of an O-line is an O-line. Therefore, if the inter-

section of a set with every O-line is empty or connected, then the same holds for every
translation of the set.

(2) The intersection of a convex set with every straight line is empty or connected.
In particular, the intersection of a convex set with every O-line is empty or connected.
Therefore, a convex set is O-convex.

(3) If C is a collection of O-convex sets, then, for each O-line l, the intersection of every
element of C with l is empty or connected; therefore, the intersection of

⋂
C with l is also

empty or connected. We conclude that the intersection of
⋂

C with every O-line is empty
or connected, which means that

⋂
C is O-convex.

(4) If a set P is the union of disjoint O-convex components and no O-line intersects two
components, then the intersection of P with every O-line is empty or connected; therefore,
P is O-convex.

If one of the components of the set P is not O-convex, then the intersection of this
component with some O-line is disconnected. The intersection of P with this O-line is also
disconnected; therefore, P is not O-convex. Finally, if some O-line intersects two (or more)
components, then the intersection of P with this line is disconnected; therefore, we again
conclude that P is not O-convex.

(5) If a set P is connected and not simply connected, then P has a hole and there is
some O-line that cuts the hole. The intersection of P with this line is disconnected; thus, P
is not O-convex. 2

3 O-convexity in higher dimensions

We now extend the notion of O-convexity to d-dimensional space Rd. We assume that
space Rd is fixed; however, all our results are independent of the particular value of d. We
introduce a set O of hyperplanes through a fixed point o, show how this set gives rise to
O-lines, and define d-dimensional O-convex sets in terms of their intersections with O-lines.
We then explore basic properties of O-convexity in Rd.

A hyperplane in d dimensions is a subset of Rd that is a (d − 1)-dimensional space. For
example, hyperplanes in three dimensions are the usual planes. Analytically, a hyperplane
is a set of points satisfying a linear equation, a0 + a1x1 + a2x2 + ... + adxd = 0, in Cartesian
coordinates. Two hyperplanes are parallel if they are translations of each other. Analytically,
two hyperplanes are parallel if their equations differ only by the value of a0.

Definition 2 (Orientation set and O-hyperplanes) An orientation set O in d dimen-
sions is a closed set of hyperplanes through a fixed point o. A hyperplane parallel to one of
the elements of O is called an O-hyperplane.

Note that every translation of an O-hyperplane is an O-hyperplane and a particular choice
of the point o is not important.

In Figure 2, we give two examples of finite orientation sets in three dimensions. The first
set contains three mutually orthogonal planes; we call it an orthogonal-orientation set. The
second orientation set consists of four planes.
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Figure 3: O-convexity in three dimensions.

O-lines in Rd are formed by the intersections of O-hyperplanes. In other words, a
straight line is an O-line if it is the intersection of several O-hyperplanes. Note that, since
translations of O-hyperplanes are always O-hyperplanes, translations of O-lines are O-lines.

Since every O-hyperplane is parallel to one of the hyperplanes of the orientation set O,
every O-line is parallel to some line formed by the intersection of several elements of O. For
example, the intersections of the four planes of the orientation set given in Figure 2(b) form
six different lines through o and every O-line for this orientation set is parallel to one of
these six lines.

We define O-convexity in higher dimensions in the same way as in two dimensions.

O-Convexity A closed set in Rd is O-convex if its intersection with every O-line is empty
or connected.

For example, the sets in Figures 3(b)–(e) are O-convex for the orthogonal-orientation set
shown in Figure 3(a). On the other hand, the set in Figure 3(f) is not O-convex, because its
intersection with the dashed O-line is disconnected.

Let us now recall the properties of planar O-convexity given in Section 2 (see Lemma 1).
We can readily generalize Properties 1–4 to higher dimensions: these properties hold in Rd

and their proofs are the same as the proofs in R2. The most important of them is Property 3,
which is a generalization of the intersection property of standard convex sets: the intersection
of a collection of O-convex sets is O-convex.

Property 5 does not hold in Rd: a connected O-convex set may not be simply connected.
For example, the set in Figure 3(d) is O-convex with respect to the orthogonal-orientation
set and it is not simply connected.

We next characterize higher-dimensional O-convex sets in terms of their intersections
with O-hyperplanes.
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Lemma 2 A set is O-convex if and only if its intersection with every O-hyperplane is O-
convex.

Proof. All O-hyperplanes are convex and, hence, they are O-convex. Since the intersection
of two O-convex sets is O-convex, we conclude that the intersection of an O-convex set with
every O-hyperplane is O-convex.

Suppose, conversely, that the intersection of a set P with every O-hyperplane isO-convex.
To demonstrate that the intersection of P with every O-line l is empty or connected, we
choose some O-hyperplane H that contains l. Since P ∩ H is O-convex, the intersection of
P ∩ H with l is empty or connected. We now note that P ∩ H ∩ l = P ∩ l, which implies
that the intersection of P with l is also empty or connected. 2

4 O-Connectedness

We have seen that O-convex sets may not be connected (see Figure 3e), whereas standard
convex sets are always connected. We now describe a subclass of O-convex sets that has
the connectedness property: all sets of this subclass are connected, just like standard convex
sets. We define these sets in terms of their intersection with flats formed by the intersections
of O-hyperplanes.

A flat, also known as an affine variety, in d dimensions is a subset of Rd that is itself
a lower-dimensional space. For example, points, straight lines, two-dimensional planes, and
hyperplanes are flats. The whole space Rd is also a flat. Analytically, a k-dimensional flat
is represented in Cartesian coordinates as a system of (d− k) independent linear equations.
Two flats are parallel if they are translations of each other (note that parallel flats are of the
same dimension).

We now define O-flats.

Definition 3 (O-flats) A flat formed by the intersection of several O-hyperplanes is an
O-flat. O-hyperplanes themselves and the whole space Rd are also O-flats.

Since every O-hyperplane is parallel to one of the hyperplanes of the orientation set O,
every O-flat is parallel to some flat formed by the intersection of several elements of O.

For example, the orthogonal-orientation set in three dimensions (Figure 2a) gives rise to
the following O-flats through o: the whole spaceR3, the three mutually orthogonalO-planes,
the three O-lines formed by the intersections of these planes, and the point o.

The next result readily follows from the definition of O-flats.

Lemma 3

1. Every translation of an O-flat is an O-flat.

2. The intersection of a collection of O-flats is either empty or an O-flat.

We define O-connected sets in terms of path-connectedness of their intersection with
O-flats. A set is path-connected if every two points of the set can be connected by a path
that is wholly contained in the set. (This property is stronger than usual connectedness.)
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Figure 4: O-connectedness in three dimensions.

Definition 4 (O-Connectedness) A closed set is O-connected if its intersection with
every O-flat is empty or path-connected; that is, every two points of the intersection can be
connected by a path that is wholly contained in the intersection.

For example, the set in Figure 4(b) is O-connected for the orthogonal-orientation set
shown in Figure 4(a). On the other hand, the set in Figure 4(c) is not O-connected because
it is disconnected, the set in Figure 4(d) is not O-connected because its intersection with
the dashed O-line is disconnected, and the set in Figure 4(e) is not O-connected because its
intersection with the dashed O-plane is disconnected.

In two dimensions, every path-connected O-convex set is O-connected, since the in-
tersections of a path-connected O-convex set with O-lines and with the whole plane R2

are path-connected. In higher dimensions, a path-connected O-convex set may not be O-
connected. For example, the set in Figure 4(e) is a path-connected O-convex set that is not
O-connected.

The next result immediately follows from the definition of O-connectedness.

Lemma 4

1. Every translation of an O-connected set is O-connected.

2. Every convex set is O-connected and every O-connected set is O-convex.

The intersection of O-connected sets may not be O-connected. For example, the inter-
section of the set in Figure 4(b) with some straight lines is disconnected, even though this
set and all straight lines are O-connected. Because of this “drawback” of O-connectedness,
we do not consider it a “true” generalization of convexity.

We can characterize O-connected sets in terms of their intersections with O-hyperplanes,
much in the same way as we characterized O-convex sets (see Lemma 2).

Theorem 5 A set is O-connected if and only if it is path-connected and its intersection with
every O-hyperplane is empty or O-connected.

Proof. Suppose that P is an O-connected set. We show that P ’s intersection with every
O-hyperplane H is O-connected by demonstrating that, for every O-flat η, the intersection
of P ∩H with η is empty or path-connected. Since H∩ η is empty or an O-flat (Lemma 3)
and P is O-connected, the intersection of H ∩ η with P is empty or path-connected. We
now note that this intersection is identical to the intersection of P ∩H with η; therefore, the
intersection of P ∩ H with η is empty or path-connected.
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Figure 5: Orthogonal projections of O-connected and O-convex sets onto O-planes.

Suppose, conversely, that P is a path-connected set and its intersection with every O-
hyperplane is O-connected. To demonstrate that the intersection of P with every O-flat η
is path-connected, we choose some O-hyperplane H that contains η. Since P ∩ H is O-
connected, the intersection of P ∩H with η is empty or path-connected. We next note that
P ∩H ∩ η = P ∩ η; therefore, the intersection of P with η is empty or path-connected. 2

If the orientation set O is composed of mutually orthogonal hyperplanes, O-connected
sets have one more interesting property: an orthogonal projection of an O-connected set
onto an O-flat is O-connected. We illustrate this property in Figure 5(a), where a three-
dimensional O-connected cross is projected into a planar O-connected cross.

Theorem 6 If an orientation set O is composed of mutually orthogonal hyperplanes, then
the orthogonal projection of every O-connected set onto every O-flat is O-connected.

Proof. Let P be an O-connected set, η be an O-flat, and Pη be the orthogonal projection
of P onto η. Note that Pη is path-connected, because it is a projection of a path-connected
set. We now show that, for every O-flat η1 6= Rd, the intersection of Pη and η1 is empty or
path-connected.

The O-flat η1 is the intersection of several O-hyperplanes, η1 = H1 ∩ H2 ∩ ... ∩ Hn. If
one of these hyperplanes does not intersect η, then the intersection of Pη and η1 is empty.
If all these hyperplanes contain η, then η ⊆ η1. In this case, the intersection of Pη and η1 is
the set Pη itself; therefore, this intersection is path-connected.

Finally, we consider the case when the hyperplanesH1,H2, ...,Hn all intersect η and some
of them, say H1,H2, ...,Hk, do not contain η. Since the orientation set O is composed of mu-
tually orthogonal hyperplanes, the O-hyperplanes H1,H2, ...,Hk are all orthogonal to η (see
Figure 6). We consider the O-flat η2 = H1∩H2∩ ...∩Hk. We note that Pη∩η1 = Pη∩η2∩η;
therefore, Pη ∩ η1 is the projection of P ∩ η2 onto η (Figure 6). Since P is O-connected,
the intersection of P with the O-flat η2 is empty or path-connected. Since Pη ∩ η1 is the
projection of P ∩ η2, we conclude that the intersection of Pη and η1 is also empty or path-
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connected. 2

If elements of the orientation set O are not mutually orthogonal, the projection of an
O-connected set onto an O-flat may not be O-connected. We provide an example of such
a situation in Figure 5(b), where the orientation set contains two planes. The set shown in
Figure 5(b) is O-connected; however, its projection onto the O-plane H is not O-connected,
since the intersection of this projection with the O-line l is disconnected.

The orthogonal projection of an O-convex set onto an O-flat may not be O-convex,
even for the orthogonal-orientation set. For example, the projection of the O-convex set in
Figure 5(c) onto the O-plane H is not O-convex, since the intersection of this projection
with the O-line l is disconnected.

5 O-connected curves

We now study properties of O-connected curves and curvilinear segments, and generalize
some properties of planar O-connected curves [20, 21] to higher dimensions.

Definition 5 (Curves and their segments) A curve in d dimensions is the image of a
continuous mapping from a straight line into Rd. A segment of the curve is the image of a
segment of the line.

We restrict our attention to the exploration of simple O-connected curves, where a simple
curve is defined as follows.

Definition 6 (Simple curves) A curve c is simple if, for every two points p and q of c,
the shortest path from p to q that is wholly contained in c is a segment of c.

Informally, this definition says that the shortest way to reach p from q while remaining in c
is to follow c. Self-intersecting curves are not simple: if p and q are points on the different
sides of a loop, the shortest path from p to q does not traverse the loop. Some unusual curves
are not simple even though they are not self-intersecting. For example, a Peano curve that
covers all points of a unit square is not simple even though it may not be self-intersecting.

Note that every straight line is an O-connected curve. In Figure 7, we show two examples
of more complex O-connected curves, which run along the edges of the dotted cubes.

We now explore basic properties of simple O-connected curves. We begin by charac-
terizing O-connected curves and curvilinear segments in terms of their intersection with
O-hyperplanes.
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Figure 7: O-connected curves.

Lemma 7 A simple curve (curvilinear segment) is O-connected if and only if its intersection
with every O-hyperplane is empty or connected.

Proof. The “only if” part directly follows from the definition of O-connected sets. Suppose,
conversely, that the intersection of a simple curve (curvilinear segment) c with every O-
hyperplane is connected. We show that c is O-connected by demonstrating that, for every
O-flat η and every two points p, q ∈ c ∩ η, the segment c[p, q] of the curve c is wholly in η,
which implies that the intersection of c with every O-flat η is path-connected.

If η is an O-flat, then η is the intersection of several O-hyperplanes. For each of these
hyperplanes, its intersection with the curve c is connected. Since c is simple, this observation
implies that c[p, q] is wholly contained in all these hyperplanes; thus, c[p, q] is wholly in η. 2

Observe that Lemma 7 holds only for simple curves. If a curve is not simple, it may not
be O-connected even if its intersection with every O-hyperplane is connected. For example,
consider a Peano curve in R3 that covers all points of a ball’s boundary. The intersection
of this curve with every plane is empty or connected (a circle); however, the curve is not O-
connected, since its intersections with O-lines through the center of the ball are disconnected.

We next show that a segment of an O-connected curve is always O-connected and, con-
versely, every O-connected curvilinear segment can be extended to an O-connected curve.

Lemma 8 (Segment extension)

1. For every simple O-connected curve c and every two points p and q of c, the seg-
ment c[p, q] of the curve c is O-connected.

2. For every simple O-connected segment c[p, q], there is a simple O-connected curve c
such that c[p, q] is a segment of c.

Proof.
(1) Let c be an O-connected curve. We have shown in the proof of Lemma 7 that, for

every O-flat η and every two points u, v ∈ c ∩ η, the segment c[u, v] of the curve c is wholly
contained in η. In particular, this observation holds for every two points u, v ∈ c[p, q] ∩ η.
Therefore, the intersection of c[p, q] with every O-flat η is path-connected; thus, c[p, q] is
O-connected.

(2) Let c[p, q] be an O-connected curvilinear segment and l be the straight line through
its endpoints p and q (see Figure 8a). We consider the curve c obtained from l by replacing
the straight segment between p and q with the curvilinear segment c[p, q] (this curve is shown
by solid lines in Figure 8).
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We prove that the curve c is O-connected by demonstrating that, for every O-hyperplane
H and every two points u, v ∈ c ∩ H, the segment c[u, v] of the curve c is wholly in H.
We then conclude that the intersection of c with every O-hyperplane H is connected, which
implies that c is O-connected (Lemma 7).

If u and v are in c[p, q], then the segment of c[p, q] between u and v (that is, the seg-
ment c[u, v]) is wholly in H, because c[p, q] ∩ H is connected and c[p, q] is simple.

If u and v are in l, then l ⊆ H and, hence, p and q are in H. Since the intersection of
c[p, q] and H is connected and c[p, q] is simple, we conclude that c[p, q] is wholly in H. Thus,
in this case, the curve c is wholly contained in H and, hence, c[u, v] is wholly in H.

Finally, we consider the case when u is in c[p, q] and v is in l (that is, v is in one of the
two rays extending c[p, q], as shown in Figure 8b). Without loss of generality, we assume
that p (rather than q) is between u and v on the curve c (see Figure 8b). If p 6∈ H, then the
intersection of the segment c[p, q] and the O-hyperplane H′ through p parallel to H is not
connected (see Figure 8c), contradicting the O-connectedness of c[p, q]. We conclude that
p ∈ H; therefore, the straight segment joining v and p and the segment of c[p, q] between
p and u are in H. Thus, the segment of c between u and v (that is, the segment c[u, v]) is
wholly in H. 2

We next show that, if we cut a segment from an O-connected curve and replace it with
another O-connected segment, then the resulting curve is also O-connected (see Figure 9a).

Theorem 9 (Cutting and pasting) Let p and q be two points of a simple O-connected
curve c. If we replace the part of the curve c between p and q with some other simple
O-connected segment, then the resulting curve c′ is also O-connected.

Proof. We show that the curve c′ is O-connected by demonstrating that, for every O-
hyperplane H and every two points u, v ∈ c′∩H, the segment c′[u, v] of the curve c′ is wholly
in H. Then, the intersection of c′ with every O-hyperplane H is connected, which implies
that c′ is O-connected (Lemma 7).

We denote the three parts of c′ by c1, c′[p, q], and c2, as shown in Figure 9(b). Note that
c1 and c2 are O-connected, because they are segments of the O-connected curve c (Lemma 8).
We use a case analysis, similar to the proof of Part 2 of Lemma 8. The cases are determined
by the positions of the points u and v.

If u and v are in c′[p, q], then the segment of c′[p, q] between u and v is wholly in H,
because c′[p, q] ∩ H is connected and c′[p, q] is simple.

Similarly, if u, v ∈ c1 (or u, v ∈ c2), then the segment of the curve between u and v is
wholly in H, because c1 is O-connected and, hence, c1 ∩ H is connected.
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Figure 9: Proof of Theorem 9.

If u ∈ c1 and v ∈ c2, then the segment of the O-connected curve c between u and v
is wholly in H; therefore, p and q are in H. Since the segment c′[p, q] is O-connected and
its endpoints, p and q, are in H, we conclude that c′[p, q] is in H. Thus, the segment of c′

between u and v is wholly in H.
Finally, we consider the case when u ∈ c′[p, q] and v ∈ c1 (or v ∈ c2), as shown in

Figure 9(c). We first demonstrate, by contradiction, that p ∈ H. Suppose that p 6∈ H. If
p and q are “on the same side” of H (see Figure 8c), then the intersection of c′[p, q] and
the O-hyperplane H′ through p (or through q) parallel to H is not connected (Figure 8c),
contradicting the O-connectedness of c′[p, q]. On the other hand, if p and q are “on different
sides” of H, or if q ∈ H (see Figure 8d), then the intersection of the curve c and the O-
hyperplane H is not connected, since c contains the points v, p, and q (in this order), which
again contradicts the O-connectedness of c. We conclude that p ∈ H; therefore, the segment
of c′[p, q] between u and p and the segment of c1 between p and v are both in H. Thus, the
segment of c′ between u and v is wholly in H. 2

Finally, we state a condition under which the catenation of several curvilinear segments
is an O-connected segment (see Figure 10a).

Lemma 10 (Catenation) Let p0, p1, ..., pn be a sequence of points connected by simple
curvilinear segments c[p0, p1], c[p1, p2], ..., c[pn−1, pn]. The union of these segments is an O-
connected segment if and only if the following two conditions hold:

1. Each of the segments is O-connected.

2. For every O-hyperplane H, if H intersects two segments, c[pk−1, pk] and c[pm, pm+1]
(where k ≤ m), then the points pk, pk+1, ..., pm are contained in H.

Proof. The union of the segments c[p0, p1], c[p1, p2],..., c[pn−1, pn] is a curvilinear segment.
We denote this segment by c[p0, pn].

Suppose that the segment c[p0, pn] is O-connected. Then, by Lemma 8, every subsegment
c[pk, pk+1] of the segment c[p0, pn] is O-connected. The intersection of c[p0, pn] with every O-
hyperplane H is connected; therefore, if H intersects subsegments c[pk−1, pk] and c[pm, pm+1],
then the points pk, ..., pm are in H (see Figure 10a).

To prove the converse, suppose that the segments c[p0, p1], c[p1, p2], ..., c[pn−1, pn] are all
straight segments (see Figure 10b). Then, Condition 2 of the lemma immediately implies
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that the intersection of the polygonal line c[p0, pn] with every O-hyperplane is connected.
Therefore, by Lemma 7, c[p0, pn] is O-connected. If we now replace every straight segment
c[pk, pk+1] with an arbitrary O-connected segment, the resulting new segment c[p0, pn] is also
O-connected by Lemma 9. 2

6 Visibility

We present two notions of generalized visibility and characterize O-convex and O-connected
sets in terms of this generalized visibility.

In standard convexity, two points of a set are visible to each other if the straight segment
joining them is wholly contained in the set. For example, the points p and s of the set in
Figure 11(b) are visible to each other, whereas p and q are not. We can characterize convex
sets in terms of visibility: a set is convex if and only if every two points of the set are visible
to each other.

Since O-convexity is weaker than standard convexity, some points of an O-convex set
may not be visible to each other. For example, the set in Figure 11(b) is O-convex for the
orthogonal-orientation set shown in Figure 11(a), and the points p and q in that set are not
visible to each other.

We define weaker visibility, which enables us to characterize O-convex sets: we say that
two points are visible to each other if there is an O-convex curvilinear segment joining them
that is wholly in the set. For example, we can join the points p and q in Figure 11(b) by the
O-convex polygonal line (p, s, t, u, q), which is contained in the set.

We can describe path-connected O-convex sets in terms of this generalized visibility much
in the same way as we describe standard convex sets through standard visibility.

Theorem 11 (Visibility for O-convex sets) A path-connected set is O-convex if and
only if every two points of the set can be joined by an O-convex curvilinear segment that is
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wholly contained in the set.

Proof. Suppose that every two points of a set P can be joined by an O-convex segment
that is wholly contained in P . We observe that, if a line through two points p and q of
P is an O-line, then the only O-convex curvilinear segment joining p and q is the straight
segment; therefore, this straight segment joining p and q is wholly in P . This observation
implies that the intersection of every O-line with P is connected; thus, P is O-convex.

Suppose, conversely, that a set P is path-connected and O-convex. To demonstrate that
every two points p and q of P can be joined by an O-convex segment that is wholly contained
in P , we consider a shortest curvilinear segment c[p, q] joining p and q in P . (Since all sets
in our exploration are assumed to be closed, there is such a shortest segment.) We prove, by
contradiction, that c[p, q] is O-convex.

Suppose that the segment c[p, q] is not O-convex. Then, the intersection of c[p, q] with
some O-line l is disconnected (see Figure 12). Therefore, for some points u, v ∈ c[p, q]∩ l, the
segment of the line l between p and q is not in c[p, q]. Since P is O-convex, this segment is
wholly in P . Replacing the subsegment of c[p, q] between u and v with the straight segment,
we obtain a shorter path from p to q in P , contradicting the assumption that c[p, q] is a
shortest path. 2

We can characterize O-connected sets in a similar way, if we define visibility in terms
of O-connected segments joining points of a set. This type of visibility is stronger than
O-convex visibility: two points sometimes cannot be joined by an O-connected segment
even when they can be joined by an O-convex segment. For example, the points p and q in
Figure 11(b) cannot be joined by an O-connected segment contained in the set, because the
intersection of the O-plane H (Figure 11c) with every segment joining these two points is
disconnected.

Theorem 12 (Visibility for O-connected sets) A set is O-connected if and only if
every two points of the set can be joined by an O-connected curvilinear segment that is
wholly contained in the set.

Proof. Suppose that every two points p and q of a set P can be joined by an O-connected
segment. If p and q are in some O-flat, then the O-connected segment joining them is wholly
in this flat (see the proof of Lemma 7). We conclude that the intersection of P with every
O-flat is path-connected and, hence, P is O-connected.

We use induction on the dimension d to prove that, conversely, every two points of an
O-connected set P can be joined by an O-connected path in P . In two dimensions, every
two points of an O-connected set can be joined by an O-convex path that is wholly in the
set (Theorem 11) and every O-convex path is O-connected, which establishes an induction
base.
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Figure 13: Constructions in the proof of Theorem 12.

The proof of the induction step consists of three parts. First, we show that, if two points
p and q of an O-connected set P in d dimensions are contained in some O-hyperplane, then
they can be joined by an O-connected path in P . We then consider the case when there is
no O-hyperplane through p and q, introduce the notion of the O-block of p and q, and show
that there is a path from p to q that is wholly contained in P ∩ O-block(p, q). Finally, we
use this result to construct an O-connected path in P from p to q.

Suppose that points p and q of P belong to some O-hyperplane H. We may view H as
an independent (d − 1)-dimensional space and define an orientation set OH in this space.
We define an OH-flat as an O-flat contained in H; the (d− 2)-dimensional OH-flats through
some fixed point form the orientation set OH. We illustrate this definition in Figure 13(a):
the O-plane H contains three O-lines through o, which form the three-element orientation
set OH .

The OH-flats have all necessary properties of O-flats [2]:

1. Every translation of an OH-flat within the space H is an OH-flat.

2. A set η ∈ H is an OH-flat if and only if it is either H itself or the intersection of
(d− 2)-dimensional OH-flats (OH-hyperplanes).

The orientation set OH gives rise to OH-connected sets in the space H, which are defined
in terms of the path-connectedness of their intersections with OH-flats. Since OH-flats are
O-flats, a set in H is OH-connected if and only if it is O-connected.

The intersection of P withH is O-connected (Theorem 5) and, hence, it is OH-connected.
By the induction hypothesis, the points p and q can be connected by an OH-connected
segment in P ∩H; therefore, they can be connected by an O-connected segment in P .

Now suppose that there is no O-hyperplane through points p and q of P . We define the
O-block of p and q [3] and show that there is a path from p to q in P ∩ O-block(p, q).

Let Sp be the intersection of all the halfspaces, containing q, whose boundaries are O-
hyperplanes through p. The set Sp is a polyhedral angle with vertex p (see Figure 13b).
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Similarly, let Sq be the intersection of all the halfspaces, containing p, whose boundaries are
O-hyperplanes through q (see Figure 13c). The O-block of p and q is the intersection of
Sp and Sq (see Figure 13d). Observe that every O-connected path from p to q is wholly in
O-block(p, q), since the intersection of such a path with every O-hyperplane is connected.

To show that there is a path, from p to q, that is wholly in P ∩O-block(p, q), we consider
some path c[p, q] ⊆ P from p to q. If c[p, q] is not wholly in Sp, we select a point x in the
intersection of c[p, q] with the boundary of Sp such that the segment of c[p, q] between x and
q is wholly in Sp (see Figure 13e). We note that there is some O-hyperplane H through p
and x; therefore, we can join p and x by an O-connected path in P ∩ H. We replace the
segment of c[p, q] between p and x with this O-connected path, thus obtaining a new path,
say c1[p, q], from p to q, which is wholly contained in P ∩ Sp (see Figure 13f).

If c1[p, q] is not wholly in Sq, we select a point y in the intersection of c1[p, q] with
the boundary of Sq such that the segment of c1[p, q] between p and y is wholly in Sq (see
Figure 13g). We replace the segment of c1[p, q] between y and q with an O-connected path
in P , thus obtaining a new path, from p to q, which is wholly in P ∩ O-block(p, q).

We now construct an O-connected path in P from p to q. We consider some path from
p to q in P ∩O-block(p, q) and choose a point z in this path such that the distance between
p and z is equal to the distance between z and q. We now consider some path from p to z
in P ∩O-block(p, z) and some path from z to q in P ∩O-block(z, q), and choose a point in
each of these two paths, in the same way as we chose the point z in the path from p to q.

We recursively repeat this point-selection operation; on the n-th level of recursion, we
obtain 2n − 1 intermediate points, connected by 2n segments that form a path from p to q.
The distances between consecutive points converge to zero as n tends to infinity. Observe
that, by construction, the intersection of this path with every O-hyperplane through any of
the 2n − 1 intermediate points is connected.

The closure of the set of points selected in infinitely many recursive steps is a path, from
p to q, contained in P . The intersection of this path with every O-hyperplane is connected
and, hence, the path is O-connected. 2

7 Concluding remarks

We generalized O-convexity to three and higher dimensions and demonstrated that the
properties of O-convex sets are similar to the properties of standard convex sets. The
main property of convex sets that we lose in O-convexity is connectedness: a convex set is
always connected, whereas an O-convex set may be disconnected. To bridge this difference,
we introduced O-connected sets, which are always connected, and demonstrated that their
properties are also similar to the properties of standard convex sets.

The work presented in this paper is just beginning; it leaves many open research problems,
which we are currently trying to solve.

For example, we have not established the contractability of O-connected sets. Intuitively,
a set is contractable if it is connected and does not have holes. For example, flats and balls
are contractable. On the other hand, a hollow sphere is not contractable, because it has a
cavity inside. A doughnut (torus) is not contractable either, because it has a hole through
it. To put it more formally, a set is contractable if it can be continuously transformed
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Figure 14: The contraction of a set to a point.

o

Figure 15: An O-connected set that is not contractable.

(contracted) to a point in such a way that all intermediate stages of the transformation are
contained in the original set (see Figure 14).

In two dimensions, contractability is equivalent to simple connectedness. In higher di-
mensions, however, contractability is a stronger property than simple connectedness. For
example, a hollow sphere is simply connected, even though it is not contractable.

Convex sets are always contractable. Connected O-convex sets in two dimensions are
also contractable, if the orientation set O contains at least one line (see Lemma 1). This
property of O-convex sets, however, does not hold in higher dimensions. In Figure 3(d), we
provide an example of a connected O-convex set that is not contractable.

If the orientation set O contains too few hyperplanes, then even O-connected sets may
not be contractable. Here, by too few we mean that the intersections of O-hyperplanes
do not form O-lines. For example, consider the orientation set in R3 that contains only
one plane (see Figure 15). Then, there are no O-lines and some O-connected sets are not
contractable. We show one such set in Figure 15: it is O-connected, since its intersection
with every O-plane is path-connected; however, it is not contractable.

We conjecture that, if the set of O-lines is nonempty, then every O-connected set is
contractable. This result would generalize Property 5 of planar O-convex sets (see Lemma 1).

As another example of an open problem, we have not characterized the boundaries of
O-convex polytopes. In two dimensions, if the orientation set contains n lines, the boundary
of every O-convex polygon can be partitioned into at most n O-convex polygonal lines [16].
We conjecture that a similar result holds in higher dimensions: for every finite orientation
set O, there is some fixed number n such that the boundary of every O-convex polytope can
be partitioned into at most n connected O-convex regions.

We also have not studied the computational aspects of O-convexity, such as verifying O-
convexity and O-connectedness of a polytope and computing the O-convex hull. Finally, we
may explore other generalizations of convexity, such as NESW convexity [16, 19], in higher
dimensions.
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