
Asymptotically Exact, Embarrassingly Parallel MCMC

Willie Neiswanger
Machine Learning Department

Carnegie Mellon University
willie@cs.cmu.edu

Chong Wang
chongw@cs.princeton.edu

Eric P. Xing
School of Computer Science
Carnegie Mellon University

epxing@cs.cmu.edu

Abstract

Communication costs, resulting from synchro-
nization requirements during learning, can
greatly slow down many parallel machine
learning algorithms. In this paper, we present
a parallel Markov chain Monte Carlo (MCMC)
algorithm in which subsets of data are pro-
cessed independently, with very little com-
munication. First, we arbitrarily partition
data onto multiple machines. Then, on each
machine, any classical MCMC method (e.g.,
Gibbs sampling) may be used to draw samples
from a posterior distribution given the data
subset. Finally, the samples from each ma-
chine are combined to form samples from the
full posterior. This embarrassingly parallel
algorithm allows each machine to act inde-
pendently on a subset of the data (without
communication) until the final combination
stage. We prove that our algorithm generates
asymptotically exact samples and empirically
demonstrate its ability to parallelize burn-in
and sampling in several models.

1 Introduction

Markov chain Monte Carlo (MCMC) methods are pop-
ular tools for performing approximate Bayesian infer-
ence via posterior sampling. One major benefit of these
techniques is that they guarantee asymptotically exact
recovery of the posterior distribution as the number
of posterior samples grows. However, MCMC meth-
ods may take a prohibitively long time, since for N
data points, most methods must perform O(N) opera-
tions to draw a sample. Furthermore, MCMC methods
might require a large number of “burn-in” steps before
beginning to generate representative samples. Further
complicating matters is the issue that, for many big
data applications, it is necessary to store and process

data on multiple machines, and so MCMC must be
adapted to run in these data-distributed settings.

Researchers currently tackle these problems indepen-
dently, in two primary ways. To speed up sampling,
multiple indepedent chains of MCMC can be run in
parallel [20, 11, 13]; however, each chain is still run on
the entire dataset, and there is no speed-up of the burn-
in process (as each chain must still complete the full
burn-in before generating samples). To run MCMC
when data is partitioned among multiple machines,
each machine can perform computation that involves a
subset of the data and exchange information at each
iteration to draw a sample [10, 14, 18]; however, this re-
quires a significant amount of communication between
machines, which can greatly increase computation time
when machines wait for external information [1, 7].

We aim to develop a procedure to tackle both prob-
lems simultaneously, to allow for quicker burn-in and
sampling in settings where data are partitioned among
machines. To accomplish this, we propose the following:
on each machine, run MCMC on only a subset of the
data (independently, without communication between
machines), and then combine the samples from each
machine to algorithmically construct samples from the
full-data posterior distribution. We’d like our proce-
dure to satisfy the following four criteria:

1. Each machine only has access to a portion of the
data.

2. Each machine performs MCMC independently, with-
out communicating (i.e. “embarrassingly parallel”).

3. Each machine can use any type of MCMC to gener-
ate samples.

4. The combination procedure yields provably asymp-
totically exact samples from the full-data posterior.

The third criterion allows existing MCMC algorithms
or software packages to be run directly on subsets of the
data—the combination procedure then acts as a post-
processing step to transform the samples to the correct
distribution. Note that this procedure is particularly

suitable for use in a MapReduce [4] framework. Also
note that, unlike current strategies, this procedure does
not involve multiple “duplicate” chains (as each chain
uses a different portion of the data and samples from
a different posterior distribution), nor does it involve
parallelizing a single chain (as there are multiple chains
operating independently). We will show how this allows
our method to, in fact, parallelize and greatly reduce
the time required for burn-in.

In this paper we will (1) introduce and define the sub-
posterior density—a modified posterior given a subset
of the data—which will be used heavily, (2) present
methods for the embarrassingly parallel MCMC and
combination procedure, (3) prove theoretical guaran-
tees about the samples generated from our algorithm,
(4) describe the current scope of the presented method
(i.e. where and when it can be applied), and (5) show
empirical results demonstrating that we can achieve
speed-ups for burn-in and sampling while meeting the
above four criteria.

2 Embarrassingly Parallel MCMC

The basic idea behind our method is to partition a set of
N i.i.d. data points xN = {x1, · · · , xN} into M subsets,
sample from the subposterior—the posterior given a
data subset with an underweighted prior—in parallel,
and then combine the resulting samples to form samples
from the full-data posterior p(θ|xN), where θ ∈ Rd

and p(θ|xN) ∝ p(θ)p(xN |θ) = p(θ)
∏N
i=1 p(xi|θ).

More formally, given data xN partitioned into M sub-
sets {xn1 , . . . , xnM }, the procedure is:

1. For m = 1, . . . ,M (in parallel):
Sample from the subposterior pm, where

pm(θ) ∝ p(θ) 1
M p(xnm |θ). (1)

2. Combine the subposterior samples to produce sam-
ples from an estimate of the subposterior density
product p1···pM , which is proportional to the full-
data posterior, i.e. p1···pM (θ) ∝ p(θ|xN).

We want to emphasize that we do not need to iterate
over these steps and the combination stage (step 3) is
the only step that requires communication between ma-
chines. Also note that sampling from each subposterior
(step 2) can typically be done in the same way as one
would sample from the full-data posterior. For exam-
ple, when using the Metropolis-Hastings algorithm, one

would compute the likelihood ratio as p(θ∗)
1
M p(xnm |θ∗)

p(θ)
1
M p(xnm |θ)

instead of p(θ
∗)p(xN |θ∗)

p(θ)p(xN |θ) , where θ∗ is the proposed move.

In the next section, we show how the combination stage
(step 3) is carried out to generate samples from the
full-data posterior using the subposterior samples.

3 Combining Subposterior Samples

Our general idea is to combine the subposterior sam-
ples in such a way that we are implicitly sampling
from an estimate of the subposterior density product
function ̂p1···pM (θ). If our density product estimator
is consistent, then we can show that we are drawing
asymptotically exact samples from the full posterior.
Further, by studying the estimator error rate, we can
explicitly analyze how quickly the distribution from
which we are drawing samples is converging to the
true posterior (and thus compare different combination
algorithms).

In the following three sections we present procedures
that yield samples from different estimates of the den-
sity product. Our first example is based on a simple
parametric estimator motivated by the Bernstein-von
Mises theorem [12]; this procedure generates approx-
imate (asymptotically biased) samples from the full
posterior. Our second example is based on a nonpara-
metric estimator, and produces asymptotically exact
samples from the full posterior. Our third example is
based on a semiparametric estimator, which combines
beneficial aspects from the previous two estimators
while also generating asymptotically exact samples.

3.1 Approximate posterior sampling with a
parametric estimator

The first method for forming samples from the full
posterior given subposterior samples involves using
an approximation based on the Bernstein-von Mises
(Bayesian central limit) theorem, an important result in
Bayesian asymptotic theory. Assuming that a unique,
true data-generating model exists and is denoted θ0,
this theorem states that the posterior tends to a normal
distribution concentrated around θ0 as the number
of observations grows. In particular, under suitable
regularity conditions, the posterior P (θ|xN) is well
approximated by Nd(θ0, F−1N) (where FN is the fisher
information of the data) when N is large [12]. Since we
aim to perform posterior sampling when the number of
observations is large, a normal parametric form often
serves as a good posterior approximation. A similar
approximation was used in [2] in order to facilitate fast,
approximately correct sampling. We therefore estimate
each subposterior density with p̂m(θ) = Nd(θ|µ̂m, Σ̂m)

where µ̂m and Σ̂m are the sample mean and covariance,
respectively, of the subposterior samples. The product
of the M subposterior densities will be proportional
to a Gaussian pdf, and our estimate of the density
product function p1···pM (θ) ∝ p(θ|xN) is

̂p1···pM (θ) = p̂1···p̂M (θ) ∝ Nd
(
θ|µ̂M , Σ̂M

)
,

where the parameters of this distribution are

Σ̂M =

(
M∑
m=1

Σ̂−1m

)−1
(2)

µ̂M = Σ̂M

(
M∑
m=1

Σ̂−1m µ̂m

)
. (3)

These parameters can be computed quickly and, if
desired, online (as new subposterior samples arrive).

3.2 Asymptotically exact posterior sampling
with nonparametric density product
estimation

In the previous method we made a parametric assump-
tion based on the Bernstein-von Mises theorem, which
allows us to generate approximate samples from the
full posterior. Although this parametric estimate has
quick convergence, it generates asymptotically biased
samples, especially in cases where the posterior is par-
ticularly non-Gaussian. In this section, we develop a
procedure that implicitly samples from the product
of nonparametric density estimates, which allows us
to produce asymptotically exact samples from the full
posterior. By constructing a consistent density product
estimator from which we can generate samples, we en-
sure that the distribution from which we are sampling
converges to the full posterior.

Given T samples1 {θmtm}
T
tm=1 from a subposterior pm,

we can write the kernel density estimator p̂m(θ) as,

p̂m(θ) =
1

T

T∑
tm=1

1

hd
K

(‖θ − θmtm‖
h

)

=
1

T

T∑
tm=1

Nd(θ|θmtm , h
2Id),

where we have used a Gaussian kernel with bandwidth
parameter h. After we have obtained the kernel density
estimator p̂m(θ) for M subposteriors, we define our
nonparametric density product estimator for the full
posterior as

̂p1···pM (θ) = p̂1···p̂M (θ)

=
1

TM

M∏
m=1

T∑
tm=1

Nd(θ|θmtm , h
2Id)

∝
T∑

t1=1

···
T∑

tM=1

wt· Nd
(
θ
∣∣∣θ̄t·, h2

M
Id

)
. (4)

1For ease of description, we assume each machine gener-
ates the same number of samples, T . In practice, they do
not have to be the same.

This estimate is the probability density function (pdf)
of a mixture of TM Gaussians with unnormalized mix-
ture weights wt·. Here, we use t· = {t1, . . . , tM} to de-
note the set of indices for the M samples {θ1t1 , . . . , θ

M
tM }

(each from a separate machine) associated with a given
mixture component, and we define

θ̄t· =
1

M

M∑
m=1

θmtm (5)

wt· =

M∏
m=1

Nd
(
θmtm |θ̄t·, h

2Id
)
. (6)

Although there are TM possible mixture components,
we can efficiently generate samples from this mixture
by first sampling a mixture component (based on its
unnormalized component weight wt·) and then sam-
pling from this (Gaussian) component. In order to
sample mixture components, we use an independent
Metropolis within Gibbs (IMG) sampler. This is a
form of MCMC, where at each step in the Markov
chain, a single dimension of the current state is pro-
posed (i.e. sampled) independently of its current value
(while keeping the other dimensions fixed) and then
is accepted or rejected. In our case, at each step, a
new mixture component is proposed by redrawing one
of the M current sample indices tm ∈ t· associated
with the component uniformly and then accepting or
rejecting the resulting proposed component based on
its mixture weight. We give the IMG algorithm for
combining subposterior samples in Algorithm 1.2

In certain situations, Algorithm 1 may have a low
acceptance rate and therefore may mix slowly. One
way to remedy this is to perform the IMG combina-
tion algorithm multiple times, by first applying it to
groups of M̃ < M subposteriors and then applying
the algorithm again to the output samples from each
initial application. For example, one could begin by
applying the algorithm to all M

2 pairs (leaving one
subposterior alone if M is odd), then repeating this
process—forming pairs and applying the combination
algorithm to pairs only—until there is only one set of
samples remaining, which are samples from the density
product estimate.

3.3 Asymptotically exact posterior sampling
with semiparametric density product
estimation

Our first example made use of a parametric estimator,
which has quick convergence, but may be asymptot-
ically biased, while our second example made use of

2Again for simplicity, we assume that we generate T
samples to represent the full posterior, where T is the
number of subposterior samples from each machine.

Algorithm 1 Asymptotically Exact Sampling via Non-
parametric Density Product Estimation

Input: Subposterior samples: {θ1t1}
T
t1=1 ∼ p1(θ), . . . ,

{θMtM }
T
tM=1 ∼ pM (θ)

Output: Posterior samples (asymptotically, as
T →∞): {θi}Ti=1 ∼ p1···pM (θ) ∝ p(θ|xN)

1: Draw t· = {t1, . . . , tM}
iid∼ Unif({1, . . . , T})

2: for i = 1 to T do
3: Set h← i−1/(4+d)

4: for m = 1 to M do
5: Set c· ← t·
6: Draw cm ∼ Unif({1, . . . , T})
7: Draw u ∼ Unif([0, 1])
8: if u < wc·/wt· then

9: Set t· ← c·
10: end if
11: end for
12: Draw θi ∼ Nd(θ̄t·, h

2

M Id)
13: end for

a nonparametric estimator, which is asymptotically
exact, but may converge slowly when the number of di-
mensions is large. In this example, we implicitly sample
from a semiparametric density product estimate, which
allows us to leverage the fact that the full posterior has
a near-Gaussian form when the number of observations
is large, while still providing an asymptotically unbi-
ased estimate of the posterior density, as the number
of subposterior samples T →∞.

We make use of a semiparametric density estimator
for pm that consists of the product of a parametric
estimator f̂m(θ) (in our case Nd(θ|µ̂m, Σ̂m) as above)
and a nonparametric estimator r̂(θ) of the correction

function r(θ) = pm(θ)/f̂m(θ) [6]. This estimator gives a
near-Gaussian estimate when the number of samples is
small, and converges to the true density as the number
of samples grows. Given T samples {θmtm}

T
tm=1 from a

subposterior pm, we can write the estimator as

p̂m(θ) = f̂m(θ) r̂(θ)

=
1

T

T∑
tm=1

1

hd
K

(‖θ − θmtm‖
h

)
f̂m(θ)

f̂m(θmtm)

=
1

T

T∑
tm=1

Nd(θ|θmtm , h
2Id)Nd(θ|µ̂m, Σ̂m)

Nd(θmtm |µ̂m, Σ̂m)
,

where we have used a Gaussian kernel with bandwidth
parameter h for the nonparametric component of this
estimator. Therefore, we define our semiparametric

density product estimator to be

̂p1···pM (θ) = p̂1···p̂M (θ)

=
1

TM

M∏
m=1

T∑
tm=1

Nd(θ|θmtm , hId)Nd(θ|µ̂m, Σ̂m)

hdNd(θmtm |µ̂m, Σ̂m)

∝
T∑

t1=1

···
T∑

tM=1

Wt· Nd (θ|µt·,Σt·) .

This estimate is proportional to the pdf of a mixture
of TM Gaussians with unnormalized mixture weights,

Wt· =
wt· Nd

(
θ̄t·|µ̂M , Σ̂M + h

M Id

)
∏M
m=1Nd(θmtm |µ̂m, Σ̂m)

,

where θ̄t· and wt· are given in Eqs. 5 and 6. We can
write the parameters of a given mixture component
Nd(θ|µt·,Σt·) as

Σt· =

(
M

h
Id + Σ̂−1M

)−1
,

µt· = Σt·

(
M

h
Idθ̄t· + Σ̂−1M µ̂M

)
,

where µ̂M and Σ̂M are given by Eq. 2 and 3. We can
sample from this semiparametric estimate using the
IMG procedure outlined in Algorithm 1, replacing the
component weights wt· with Wt· and the component
parameters θ̄t· and h

M Id with µt· and Σt·.

We also have a second semiparametric procedure that
may give higher acceptance rates in the IMG algo-
rithm. We follow the above semiparametric procedure,
where each component is a normal distribution with
parameters µt· and Σt·, but we use the nonparametric
component weights wt· instead of Wt·. This procedure
is also asymptotically exact, since the semiparamet-
ric component parameters µt· and Σt· approach the
nonparametric component parameters θ̄t· and h

M Id as
h→ 0, and thus this procedure tends to the nonpara-
metric procedure given in Algorithm 1.

4 Method Complexity

Given M data subsets, to produce T samples in d di-
mensions with the nonparametric or semiparametric
asymptotically exact procedures (Algorithm 1) requires
O(dTM2) operations. The variation on this algorithm
that performs this procedure M−1 times on pairs of
subposteriors (to increase the acceptance rate; detailed
in Section 3.2) instead requires only O(dTM) opera-
tions.

We have presented our method as a two step procedure,
where first parallel MCMC is run to completion, and

then the combination algorithm is applied to the M
sets of samples. We can instead perform an online
version of our algorithm: as each machine generates a
sample, it immediately sends it to a master machine,
which combines the incoming samples3 and performs
the accept or reject step (Algorithm 1, lines 3-12). This
allows the parallel MCMC phase and the combination
phase to be performed in parallel, and does not re-
quire transfering large volumes of data, as only a single
sample is ever transferred at a time.

The total communication required by our method is
transferring O(dTM) scalars (T samples from each
of M machines), and as stated above, this can be
done online as MCMC is being carried out. Further,
the communication is unidirectional, and each machine
does not pause and wait for any information from other
machines during the parallel sampling procedure.

5 Theoretical Results

Our second and third procedures aim to draw asymp-
totically exact samples by sampling from (fully or par-
tially) nonparametric estimates of the density product.
We prove the asymptotic correctness of our estimators,
and bound their rate of convergence. This will ensure
that we are generating asymptotically correct samples
from the full posterior as the number of samples T
from each subposterior grows.

5.1 Density product estimate convergence
and risk analysis

To prove (mean-square) consistency of our estimator,
we give a bound on the mean-squared error (MSE), and
show that it tends to zero as we increase the number of
samples drawn from each subposterior. To prove this,
we first bound the bias and variance of the estimator.
The following proofs make use of similar bounds on
the bias and variance of the nonparametric and semi-
parametric density estimators, and therefore the theory
applies to both the nonparametric and semiparametric
density product estimators.

Throughout this analysis, we assume that we have T
samples {θmtm}

T
tm=1 ⊂ X ⊂ Rd from each subposterior

(m = 1, . . . ,M), and that h ∈ R+ denotes the band-
width of the nonparametric density product estimator
(which is annealed to zero as T →∞ in Algorithm 1).
Let Hölder class Σ(β, L) on X be defined as the set of
all ` = bβc times differentiable functions f : X → R
whose derivative f (l) satisfies

|f (`)(θ)− f (`)(θ′)| ≤ L |θ − θ′|β−` for all θ, θ′ ∈ X .
3For the semiparametric method, this will involve an

online update of mean and variance Gaussian parameters.

We also define the class of densities P(β, L) to be

P(β, L) =

{
p ∈ Σ(β, L)

∣∣∣ p ≥ 0,

∫
p(θ)dθ = 1

}
.

We also assume that all subposterior densities pm are
bounded, i.e. that there exists some b > 0 such that
pm(θ) ≤ b for all θ ∈ Rd and m ∈ {1, . . . ,M}.

First, we bound the bias of our estimator. This shows
that the bias tends to zero as the bandwidth shrinks.

Lemma 5.1. The bias of the estimator ̂p1···pM (θ) sat-
isfies

sup
p1,...,pM∈P(β,L)

∣∣E [̂p1···pM (θ)
]
− p1···pM (θ)

∣∣ ≤ M∑
m=1

cmh
mβ

for some c1, . . . , cM > 0.

Proof. For all p1, . . . , pM ∈ P(β, L),

|E
[
̂p1···pM

]
− p1···pM | = |E [p̂1···p̂M]− p1···pM |
= |E [p̂1]···E [p̂M]− p1···pM |
≤
∣∣(p1 + c̃1h

β)···(pM + c̃Mh
β)− p1···pM

∣∣
≤
∣∣c1hβ + . . .+ cMh

Mβ
∣∣

≤
∣∣c1hβ∣∣+ . . .+

∣∣cMhMβ
∣∣

=

M∑
m=1

cmh
mβ

where we have used the fact that |E [p̂m]− p| ≤ c̃mhβ
for some c̃m > 0.

Next, we bound the variance of our estimator. This
shows that the variance tends to zero as the number of
samples grows large and the bandwidth shrinks.

Lemma 5.2. The variance of the estimator ̂p1···pM (θ)
satisfies

sup
p1,...,pM∈P(β,L)

V
[
̂p1···pM (θ)

]
≤

M∑
m=1

(
M

m

)
cm

Tmhdm

for some c1, . . . , cM > 0 and 0 < h ≤ 1.

Proof. For all p1, . . . , pM ∈ P(β, L),

V[̂p1···pM] = E
[
p̂21
]
···E

[
p̂2M
]
− E [p̂1]

2···E [p̂M]
2

=

(
M∏
m=1

V [p̂m] + E [p̂m]
2

)
−

(
M∏
m=1

E [p̂m]
2

)

≤
M−1∑
m=0

(
M

m

)
c̃mcM−m

TM−mhd(M−m)

≤
M∑
m=1

(
M

m

)
cm

Tmhdm

where we have used the facts that V [p̂m] ≤ c
Thd for

some c > 0 and E [p̂m]
2 ≤ c̃ for some c̃ > 0.

Finally, we use the bias and variance bounds to bound
the MSE, which shows that our estimator is consistent.

Theorem 5.3. If h � T−1/(2β+d), the mean-squared
error of the estimator ̂p1···pM (θ) satisfies

sup
p1,...,pM∈P(β,L)

E
[∫ (

̂p1···pM (θ)− p1···pM (θ)
)2
dθ

]
≤ c

T 2β/(2β+d)

for some c > 0 and 0 < h ≤ 1.

Proof. For all p1, . . . , pM ∈ P(β, L), using the fact that
the mean-squared error is equal to the variance plus
the bias squared, we have that

E
[∫ (

̂p1···pM (θ)− p1···pM (θ)
)2
dθ

]

≤

(
M∑
m=1

cmh
mβ

)2

+

M∑
m=1

(
M

m

)
c̃m

Tmhdm

≤ kT−2β/(2β+d) +
k̃

T 1−d(2β+d) (for some k, k̃ > 0)

≤ c

T 2β/(2β+d)

for some c1, . . . , cM > 0 and c̃1, . . . , c̃M > 0.

6 Method Scope

The theoretical results and algorithms in this paper
hold for posterior distributions over finite-dimensional
real spaces. These include generalized linear models
(e.g. linear, logistic, or Poisson regression), mixture
models with known weights, hierarchical models, and
(more generally) finite-dimensional graphical models
with unconstrained variables. This also includes both
unimodal and multimodal posterior densities (such as
in Section 8.2). However, the methods and theory
presented here do not yet extend to cases such as infi-
nite dimensional models (e.g. nonparametric Bayesian
models [5]) nor to distributions over the simplex (e.g.
topics in latent Dirichlet allocation [3]). In the future,
we hope to extend this work to these domains.

7 Related Work

In [19, 2, 16], the authors develop a way to sample
approximately from a posterior distribution when only
a small randomized mini-batch of data is used at each
step. In [9], the authors used a hypothesis test to
decide whether to accept or reject proposals using a

small set of data (adaptively) as opposed to the exact
Metropolis-Hastings rule. This reduces the amount of
time required to compute the acceptance ratio. Since
all of these algorithms are still sequential, they can be
directly used in our algorithm to generate subposterior
samples to further speed up the entire sampling process.

Several parallel MCMC algorithms have been designed
for specific models, such as for topic models [18, 14] and
nonparametric mixture models [21]. These approaches
still require synchronization to be correct (or approxi-
mately correct), while ours aims for more general model
settings and does not need synchronization until the
final combination stage.

Consensus Monte Carlo [17] is perhaps the most rele-
vant work to ours. In this algorithm, data is also por-
tioned into different machines and MCMC is performed
independently on each machine. Thus, it roughly has
the same time complexity as our algorithm. However,
the prior is not explicitly reweighted during sampling
as we do in Eq 1, and final samples for the full poste-
rior are generated by averaging subposterior samples.
Furthermore, this algorithm has few theoretical guar-
antees. We find that this algorithm can be viewed as a
relaxation of our nonparametric, asymptotically exact
sampling procedure, where samples are generated from
an evenly weighted mixture (instead of each compo-
nent having weight wt·) and where each sample is set
to θ̄t· instead of being drawn from N

(
θ̄t·,

h
M Id

)
. This

algorithm is one of our experimental baselines.

8 Empirical Study

In the following sections, we demonstrate empirically
that our method allows for quicker, MCMC-based
estimation of a posterior distribution, and that our
consistent-estimator-based procedures yield asymptot-
ically exact results. We show our method on a few
Bayesian models using both synthetic and real data. In
each experiment, we compare the following strategies
for parallel, communication-free sampling:4

• Single chain full-data posterior samples
(regularChain)—Typical, single-chain MCMC for
sampling from the full-data posterior.
• Parametric subposterior density product
estimate (parametric)—For M sets of subpos-
terior samples, the combination yielding samples
from the parametric density product estimate.
• Nonparametric subposterior density prod-
uct estimate (nonparametric)—For M sets of

4We did not directly compare with the algorithms that
require synchronization since the setup of these experiments
can be rather different. We plan to explore these compar-
isons in the extended version of this paper.

subposterior samples, the combination yielding
samples from the nonparametric density product
estimate.

• Semiparametric subposterior density prod-
uct estimate (semiparametric)—For M sets of
subposterior samples, the combination yielding
samples from the semiparametric density product
estimate.

• Subposterior sample average (subpostAvg)—
For M sets of subposterior samples, the average
of M samples consisting of one sample taken from
each subposterior.

• Subposterior sample pooling (subpostPool)—
For M sets of subposterior samples, the union of
all sets of samples.

• Duplicate chains full-data posterior sample
pooling (duplicateChainsPool)—For M sets of
samples from the full-data posterior, the union of
all sets of samples.

To assess the performance of our sampling and combi-
nation strategies, we ran a single chain of MCMC on
the full data for 500,000 iterations, removed the first
half as burn-in, and considered the remaining samples
the “groundtruth” samples for the true posterior den-
sity. We then needed a general method to compare the
distance between two densities given samples from each,
which holds for general densities (including multimodal
densities, where it is ineffective to compare moments
such as the mean and variance5). Following work in
density-based regression [15], we use an estimate of
the L2 distance, d2(p, p̂), between the groundtruth pos-
terior density p and a proposed posterior density p̂,

where d2(p, p̂) = ‖p− p̂‖2 =
(∫

(p(θ)− p̂(θ))2dθ
)1/2

.

In the following experiments involving timing, to com-
pute the posterior L2 error at each time point, we
collected all samples generated before a given number
of seconds, and added the time taken to transfer the
samples and combine them using one of the proposed
methods. In all experiments and methods, we followed
a fixed rule of removing the first 1

6 samples for burn-
in (which, in the case of combination procedures, was
applied to each set of subposterior samples before the
combination was performed).

Experiments were conducted with a standard cluster
system. We obtained subposterior samples by submit-
ting batch jobs to each worker since these jobs are all
independent. We then saved the results to the disk of
each worker and transferred them to the same machine
which performed the final combination.

5In these cases, dissimilar densities might have similar
low-order moments. See Section 8.2 for an example.

Subposteriors (M=10)
Posterior
Subposterior Density Product
Subposterior Average

Subposteriors (M=20)
Posterior
Subposterior Density Product
Subposterior Average

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dimension 1

D
im

en
si

on
2

Dimension 1

D
im

en
si

on
2

1.1 1.2 1.3 1.4 1.5 1.6

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Figure 1: Bayesian logistic regression posterior ovals.
We show the posterior 90% probability mass ovals for
the first 2-dimensional marginal of the posterior, the M
subposteriors, the subposterior density product (via the
parametric procedure), and the subposterior average
(via the subpostAvg procedure). We show M=10 sub-
sets (left) and M=20 subsets (right). The subposterior
density product generates samples that are consistent
with the true posterior, while the subpostAvg produces
biased results, which grow in error as M increases.

8.1 Generalized Linear Models

Generalized linear models are widely used for many
regression and classification problems. Here we conduct
experiments, using logistic regression as a test case, on
both synthetic and real data to demonstrate the speed
of our parallel MCMC algorithm compared with typical
MCMC strategies.

8.1.1 Synthetic data

Our synthetic dataset contains 50,000 observations in
50 dimensions. To generate the data, we drew each
element of the model parameter β and data matrix X
from a standard normal distribution, and then drew
each outcome as yi ∼ Bernoulli(logit−1(Xiβ)) (where
Xi denotes the ith row of X)6. We use Stan, an au-
tomated Hamiltonian Monte Carlo (HMC) software
package,7 to perform sampling for both the true poste-
rior (for groundtruth and comparison methods) and for
the subposteriors on each machine. One advantage of
Stan is that it is implemented with C++ and uses the
No-U-Turn sampler for HMC, which does not require
any user-provided parameters [8].

In Figure 1, we illustrate results for logistic regression,
showing the subposterior densities, the subposterior
density product, the subposterior sample average, and
the true posterior density, for the number of subsets
M set to 10 (left) and 20 (right). Samples generated
by our approach (where we draw samples from the

6Note that we did not explicitly include the intercept
term in our logistic regression model.

7http://mc-stan.org

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time (seconds)

R
el
at
iv
e
P
os
te
rio
r
L2

E
rr
or

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time (seconds)

R
el
at
iv
e
P
os
te
rio
r
L2

E
rr
or

regularChain (M=1)
subpostAvg (M=10)
subpostPool (M=10)
nonparametric (M=10)
semiparametric (M=10)
parametric (M=10)

regularChain (M=1)
duplicateChainsPool (M=5)
duplicateChainsPool (M=10)
duplicateChainsPool (M=20)
semiparametric (M=5)
semiparametric (M=10)
semiparametric (M=20)

Figure 2: Posterior L2 error vs time for logistic re-
gression. Left: the three combination strategies pro-
posed in this paper (parametric, nonparametric, and
semiparametric) reduce the posterior error much
more quickly than a single full-data Markov chain;
the subpostAvg and subpostPool procedures yield bi-
ased results. Right: we compare with multiple full-data
Markov chains (duplicateChainsPool); our method
yields faster convergence to the posterior even though
only a fraction of the data is being used by each chain.

subposterior density product via the parametric pro-
cedure) overlap with the true posterior much better
than those generated via the subpostAvg (subposterior
sample average) procedure— averaging of samples ap-
pears to create systematic biases. Futher, the error in
averaging appears to increase as M grows. In Figure 2
(left) we show the posterior error vs time. A regular
full-data chain takes much longer to converge to low
error compared with our combination methods, and
simple averaging and pooling of subposterior samples
gives biased solutions.

We next compare our combination methods with mul-
tiple independent “duplicate” chains each run on the
full dataset. Even though our methods only require a
fraction of the data storage on each machine, we are
still able to achieve a significant speed-up over the full-
data chains. This is primarily because the duplicate
chains cannot parallelize burn-in (i.e. each chain must
still take some n steps before generating reasonable
samples, and the time taken to reach these n steps does
not decrease as more machines are added). However, in
our method, each subposterior sampler can take each
step more quickly, effectively allowing us to decrease
the time needed for burn-in as we increase M . We
show this empirically in Figure 2 (right), where we
plot the posterior error vs time, and compare with full
duplicate chains as M is increased.

Using a Matlab implementation of our combination
algorithms, all (batch) combination procedures take
under twenty seconds to complete on a 2.5GHz Intel
Core i5 with 16GB memory.

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

Dimension

R
el
at
iv
e
P
os
te
rio
r
L2
E
rr
or

500 1000 1500 2000
0.66

0.68

0.7

0.72

0.74

0.76

Time (seconds)

C
la
ss
ifi
ca
tio
n
A
cc
ur
ac
y

parametric (M=50)
nonparametric (M=50)
semiparametric (M=50)
subpostAvg (M=50)
regularChain (M=1)

regularChain (M=1)
subpostAvg (M=10)
parametric (M=10)
semiparametric (M=10)
nonparametric (M=10)

Figure 3: Left: Bayesian logistic regression classifica-
tion accuracy vs time for the task of predicting forest
cover type. Right: Posterior error vs dimension on
synthetic data at 1000 seconds, normalized so that
regularChain error is fixed at 1.

8.1.2 Real-world data

Here, we use the covtype (predicting forest cover types)8

dataset, containing 581,012 observations in 54 dimen-
sions. A single chain of HMC running on this entire
dataset takes an average of 15.76 minutes per sample;
hence, it is infeasible to generate groundtruth samples
for this dataset. Instead we show classification accu-
racy vs time. For a given set of samples, we perform
classification using a sample estimate of the posterior
predictive distribution for a new label y with associated
datapoint x, i.e.

P (y|x, yN , xN) =

∫
P (y|x, β, yN , xN)P (β|xN , yN)

≈ 1

S

S∑
s=1

P (y|x, βs)

where xN and yN denote the N observations, and
P (y|x, βs) = Bernoulli(logit−1(x>βs)). Figure 3 (left)
shows the results for this task, where we use M=50
splits. The parallel methods achieve a higher accuracy
much faster than the single-chain MCMC algorithm.

8.1.3 Scalability with dimension

We investigate how the errors of our methods scale
with dimensionality, to compare the different esti-
mators implicit in the combination procedures. In
Figure 3 (right) we show the relative posterior error
(taken at 1000 seconds) vs dimension, for the synthetic
data with M=10 splits. The errors at each dimen-
sion are normalized so that the regularChain error
is equal to 1. Here, the parametric (asymptotically
biased) procedure scales best with dimension, and the
semiparametric (asymptotically exact) procedure is
a close second. These results also demonstrate that,
although the nonparametric method can be viewed as

8http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

nonparametric
0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

semiparametric

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

posterior
0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

subposteriors
0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

subpostAvg

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

parametric

Figure 4: Gaussian mixture model posterior samples.
We show 100,000 samples from a single 2-d marginal
(corresponding to the posterior over a single mean
parameter) of the full-data posterior (top left), all
subposteriors (top middle—each one is given a unique
color), the subposterior average via the subpostAvg

procedure (top right), and the subposterior density
product via the nonparametric procedure (bottom
left), semiparametric procedure (bottom middle), and
parametric procedure (bottom right).

implicitly sampling from a nonparametric density es-
timate (which is usually restricted to low-dimensional
densities), the performance of our method does not
suffer greatly when we perform parallel MCMC on pos-
terior distributions in much higher-dimensional spaces.

8.2 Gaussian mixture models

In this experiment, we aim to show correct posterior
sampling in cases where the full-data posterior, as well
as the subposteriors, are multimodal. We will see that
the combination procedures that are asymptotically
biased suffer greatly in these scenarios. To demon-
strate this, we perform sampling in a Gaussian mixture
model. We generate 50,000 samples from a ten compo-
nent mixture of 2-d Gaussians. The resulting posterior
is multimodal; this can be seen by the fact that the com-
ponent labels can be arbitrarily permuted and achieve
the same posterior value. For example, we find af-
ter sampling that the posterior distribution over each
component mean has ten modes. To sample from this
multimodal posterior, we used the Metropolis-Hastings
algorithm, where the component labels were permuted
before each step (note that this permutation results in
a move between two points in the posterior distribution
with equal probability).

In Figure 4 we show results for M=10 splits, showing
samples from the true posterior, overlaid samples from
all five subposteriors, results from averaging the sub-
posterior samples, and the results after applying our
three subposterior combination procedures. This figure

200 400 600 800 1000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

R
el
at
iv
e
P
os
te
rio
r
L2

E
rr
or

regularChain (M=1)
duplicateChainsPool (M=5)
duplicateChainsPool (M=10)
subpostPool (M=10)
subpostAvg (M=10)
parametric (M=10)
semiparametric (M=10)
nonparametric (M=10)

regularChain (M=1)
duplicateChainsPool (M=5)
duplicateChainsPool (M=10)
subpostPool (M=10)
subpostAvg (M=10)
parametric (M=10)
semiparametric (M=10)
nonparametric (M=10)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time (seconds)

R
el
at
iv
e
P
os
te
rio
r
L2

E
rr
or

Figure 5: Left: Gaussian mixture model posterior error
vs time results. Right: Poisson-gamma hierarchical
model posterior error vs time results.

shows the 2-d marginal of the posterior corresponding
to the posterior over a single mean component. The
subpostAvg and parametric procedures both give bi-
ased results, and cannot capture the multimodality of
the posterior. We show the posterior error vs time in
Figure 5 (left), and see that our asymptotically exact
methods yield quick convergence to low posterior error.

8.3 Hierarchical models

We show results on a hierarchical Poisson-gamma model
of the following form

a ∼ Exponential(λ) b ∼ Gamma(α, β)

qi ∼ Gamma(a, b) xi ∼ Poisson(qiti) i = 1, . . . , N

for N=50,000 observations. We draw {xi}Ni=1 from the
above generative process (after fixing values for a, b, λ,
and {ti}Ni=1), and use M=10 splits. We again perform
MCMC using the Stan software package.

In Figure 5 (right) we show the posterior error vs
time, and see that our combination methods complete
burn-in and converge to a low posterior error very
quickly relative to the subpostAvg and subpostPool

procedures and full-data chains.

9 Discussion and Future Work

In this paper, we present an embarrassingly parallel
MCMC algorithm and provide theoretical guarantees
about the samples it yields. Experimental results
demonstrate our method’s potential to speed up burn-
in and perform faster asymptotically correct sampling.
Further, it can be used in settings where data are
partitioned onto multiple machines that have little
intercommunication—this is ideal for use in a MapRe-
duce setting. Currently, our algorithm works primarily
when the posterior samples are real, unconstrained
values and we plan to extend our algorithm to more
general settings in future work.

References

[1] Alekh Agarwal and John C Duchi, Distributed delayed
stochastic optimization, Decision and Control (CDC),
2012 IEEE 51st Annual Conference on, IEEE, 2012,
pp. 5451–5452.

[2] Sungjin Ahn, Anoop Korattikara, and Max Welling,
Bayesian posterior sampling via stochastic gradient
fisher scoring, Proceedings of the 29th International
Conference on Machine Learning, 2012, pp. 1591–1598.

[3] David M Blei, Andrew Y Ng, and Michael I Jordan,
Latent dirichlet allocation, The Journal of Machine
Learning Research 3 (2003), 993–1022.

[4] Jeffrey Dean and Sanjay Ghemawat, Mapreduce: sim-
plified data processing on large clusters, Communica-
tions of the ACM 51 (2008), no. 1, 107–113.

[5] Samuel J Gershman and David M Blei, A tutorial on
bayesian nonparametric models, Journal of Mathemat-
ical Psychology 56 (2012), no. 1, 1–12.

[6] Nils Lid Hjort and Ingrid K Glad, Nonparametric
density estimation with a parametric start, The Annals
of Statistics (1995), 882–904.

[7] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee,
Jin Kyu Kim, Phillip B. Gibbons, Gregory R. Ganger,
Garth Gibson, and Eric P. Xing, More effective dis-
tributed ml via a stale synchronous parallel parameter
server, Advances in Neural Information Processing
Systems, 2013.

[8] Matthew D Hoffman and Andrew Gelman, The no-u-
turn sampler: Adaptively setting path lengths in hamil-
tonian monte carlo, arXiv preprint arXiv:1111.4246
(2011).

[9] Anoop Korattikara, Yutian Chen, and Max Welling,
Austerity in MCMC land: Cutting the Metropolis-
Hastings budget, arXiv preprint arXiv:1304.5299
(2013).

[10] John Langford, Alex J Smola, and Martin Zinkevich,
Slow learners are fast, Advances in Neural Information
Processing Systems, 2009.

[11] Kathryn Blackmond Laskey and James W Myers, Pop-
ulation Markov chain Monte Carlo, Machine Learning
50 (2003), no. 1-2, 175–196.

[12] Lucien Le Cam, Asymptotic methods in statistical de-
cision theory, New York (1986).

[13] Lawrence Murray, Distributed Markov chain Monte
Carlo, Proceedings of Neural Information Processing
Systems Workshop on Learning on Cores, Clusters and
Clouds, vol. 11, 2010.

[14] David Newman, Arthur Asuncion, Padhraic Smyth,
and Max Welling, Distributed algorithms for topic mod-
els, The Journal of Machine Learning Research 10
(2009), 1801–1828.

[15] Junier Oliva, Barnabás Póczos, and Jeff Schneider, Dis-
tribution to distribution regression, Proceedings of The
30th International Conference on Machine Learning,
2013, pp. 1049–1057.

[16] Sam Patterson and Yee Whye Teh, Stochastic gradi-
ent riemannian langevin dynamics on the probability
simplex, Advances in Neural Information Processing
Systems, 2013.

[17] Steven L. Scott, Alexander W. Blocker, and Fer-
nando V. Bonassi, Bayes and big data: The consensus
monte carlo algorithm, Bayes 250, 2013.

[18] Alexander Smola and Shravan Narayanamurthy, An
architecture for parallel topic models, Proceedings of
the VLDB Endowment 3 (2010), no. 1-2, 703–710.

[19] Max Welling and Yee W Teh, Bayesian learning via
stochastic gradient Langevin dynamics, Proceedings of
the 28th International Conference on Machine Learn-
ing, 2011, pp. 681–688.

[20] Darren J Wilkinson, Parallel Bayesian computation,
Statistics Textbooks and Monographs 184 (2006), 477.

[21] Sinead Williamson, Avinava Dubey, and Eric P Xing,
Parallel Markov chain Monte Carlo for nonparametric
mixture models, Proceedings of the 30th International
Conference on Machine Learning, 2013, pp. 98–106.

