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Abstract

The time-varying multivariate Gaussian dis-
tribution and the undirected graph associ-
ated with it, as introduced in Zhou et al.
(2008), provide a useful statistical framework
for modeling complex dynamic networks. In
many application domains, it is of high im-
portance to estimate the graph structure of
the model consistently for the purpose of sci-
entific discovery. In this paper, we show
that under suitable technical conditions, the
structure of the undirected graphical model
can be consistently estimated in the high di-
mensional setting, when the dimensionality
of the model is allowed to diverge with the
sample size. The model selection consistency
is shown for the procedure proposed in Zhou
et al. (2008) and for the modified neighbor-
hood selection procedure of Meinshausen and
Bühlmann (2006).

1 Introduction

Network models have become popular as a way to ab-
stract complex systems and gain insights into rela-
tional patterns among observed variables. In many
domains, including biology, astronomy and social
sciences, particularly useful and successful network
models are based on the Gaussian graphical models
(GGMs). In the framework of the GGMs, the precision
matrix, which is the inverse of the covariance matrix,
represents conditional dependencies between random
variables and a network representation is obtained by
linking conditionally dependent variables. The hope is
that this graphical representation is going to provide
additional insight into the system under observation,
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for example, by showing how different parts of the sys-
tem interact. A statistical challenge in this framework
is to estimate reliably the precision matrix and the set
of non-zero elements of the matrix from an observed
sample.

Let X ∼ N (0,Σ) be a p-dimensional multivariate
Gaussian random variable with mean zero and covari-
ance Σ. Let Ω , Σ−1 be the precision matrix. The
(a, b)-element, ωab, of the precision matrix is propor-
tional to the partial correlation between random vari-
ables Xa and Xb, the ath and bth component of X.
Therefore Xa is conditionally independent of Xb given
the rest of variables if and only if ωab = 0. This con-
ditional dependence can be represented with a graph
G = (V,E), where the set of nodes V corresponds to
the components of the random vector X and the edge
set E ⊆ V × V includes edges between nodes only
if the corresponding components are conditionally de-
pendent, that is, an edge eab ∈ E only if ωab 6= 0.
For a detailed account of the topic see, for example,
Lauritzen (1996).

A large amount of literature in both statistics and
machine learning has been devoted to the problem of
estimating sparse precision matrices, where some el-
ements are set to zero. The problem of estimating
precision matrices with zeros is known in statistics as
covariance selection and was introduced in the sem-
inal paper by Dempster (1972). An introduction to
classical approaches, which are commonly based on
identifying the correct set of non-zero elements and
then estimating the non-zero elements, can be found
in, for example, Edwards (2000). These approaches
are applicable only on data sets with a small number
of variables and a large number of observations. How-
ever, due to the technological improvements of data
collection processes, we have seen a surge in the num-
ber of high-dimensional data sets. As a result, more
recent literature on estimating sparse precision matri-
ces is focused on methods suitable for high-dimensional
problems where the number of variables p can be much
larger than the sample size n. A promising line of re-
search, due to the scalability of algorithms and theo-
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retical guarantees of estimation procedures, estimates
the precision matrix by minimizing a convex objective,
which consists of a likelihood or a pseudo-likelihood
term and a term accounting for the model complexity
(see for example, Yuan and Lin, 2007; Fan et al., 2009;
Banerjee et al., 2008; Rothman et al., 2008; Friedman
et al., 2008; Ravikumar et al., 2008; Guo et al., 2010b;
Zhou et al., 2008; Meinshausen and Bühlmann, 2006;
Peng et al., 2009; Guo et al., 2010a; Wang et al., 2009).
Due to the large number of investigations, the theory
behind estimating sparse precision matrices is becom-
ing settled.

While the most of the previous work deals with es-
timating a single precision matrix from i.i.d. samples
and the static graph that it encodes, Zhou et al. (2008)
studied the problem in which the probability distribu-
tion is allowed to vary with time. Formally, let

xi ∼ N (0,Σti), i = 1, . . . , n (1)

be an independent sequence of p-dimensional obser-
vations distributed according to a multivariate nor-
mal distribution whose covariance matrix changes
smoothly over time. Assume for simplicity that the
time points are equidistant on a unit interval, that is,
ti = i/n. A graph Gti = (V,Eti) is associated with
each observation xi and it represents the non-zero el-
ements of the precision matrix Ωti , (Σti)−1 (recall
that eab ∈ Eti only if ωti

ab 6= 0). With changing preci-
sion matrix Ωti , the associated graphs change as well,
which allows for modelling of dynamic networks. The
model given in (1) can be thought of as a special case
of the varying coefficient models introduced in Hastie
and Tibshirani (1993). In particular, the model in (1),
inherits flexibility and modelling power from the class
of nonparametric models, but at the same time it re-
tains interpretability of parametric models. Indeed,
there are no assumptions on the parametric form of
the elements of the covariance matrix Σt as a function
of time.

Under the model (1), Zhou et al. (2008) studied the
problem of the consistent recovery in the Frobenius
norm of Ωτ for some τ ∈ [0, 1], as well as the predic-
tive performance of the fitted model. While those re-
sults are very interesting and important in statistics, in
many application areas, it is the graph structure that
provides most insight into complex systems by allow-
ing visualiziation of relational structures and mecha-
nisms that explain the data. For example, in computa-
tional biology, a graph estimated from a gene expres-
sion microarray profile can reveal the topology of ge-
netic regulation circuitry, while in sociocultural anal-
ysis, a graph structure helps identify communities and
communication patterns among actors. Unfortunately,
the consistent estimation of the graph structure does

not follow immediately from the consistent estimation
of the precision matrix Ω. We address the problem
of the consistent graph structure recovery under the
model (1) in this paper. Our work has applications in
many disciplines, including computational biology and
computational finance, where the assumptions that the
data are distributed i.i.d. are not satisfied. For exam-
ple, a gene regulatory network is assumed to change
throughout the developmental process of the organism,
and a plausible way to model the longitudinal gene ex-
pression levels is by using the multivariate Gaussian
distribution with a time-evolving structure.

The main contributions of the paper include establish-
ing sufficient condition for the penalized likelihood pro-
cedure, proposed in Zhou et al. (2008), to estimate the
graph structure consistently. Furthermore, we modify
the neighborhood selection procedure of Meinshausen
and Bühlmann (2006) to estimate the graph structure
under the model (1) and provide sufficient conditions
for the graph recovery.

1.1 Notation

The following notation is used throughout the paper.
Let A = (aij) ∈ R

p×p be a matrix. Then, |A| denotes
the determinant of A, while ϕmin(A) and ϕmax(A) de-
note the smallest and largest eigenvalues, respectively.
We use A− , A − diag(A) to denote off-diagonal el-
ements of A. The ℓ1 vector norm of the matrix A

is given as ||A||1 ,
∑

i

∑

j |aij |. Similarly, we use

the vector maximum norm ||A||∞ , maxi,j |aij | to de-
note the element-wise maximum. The matrix Frobe-
nius norm is denoted by ||A||F ,

√

∑

i

∑

j a
2
ij . We

will also use the (∞,∞)-operator norm |||A|||∞,∞ ,

maxi
∑

j |aij |. Finally, we write vec(A) ∈ R
p2×1 or ~A

for a vectorized form of matrix A obtained by stacking
up the columns of A. For a set N ⊂ V , we denote the
set {Xa : a ∈ N} as XN . We use X to denote the n×p
matrix whose rows consist of observations, with the
vector Xa = (x1

a, . . . , x
n
a)

′ denoting a column a and,
similarly, XN = (Xb : b ∈ N) denoting the n × |N |
sub-matrix of X with columns indexed by the set N .
For simplicity, we will use \a to denote the index set
{1, . . . , p}\{a}, X\a = (Xb : b ∈ {1, . . . , p}\{a}). For
a vector a ∈ R

p, we let N(a) denote the set of non-zero
components of a.

2 Penalized likelihood estimation

In this section, we show that, under some techni-
cal conditions, the procedure proposed in Zhou et al.
(2008) is able to consistently estimate the set of non-
zero elements of the precision matrix Ωτ at a given
time point τ ∈ [0, 1]. Under the model (1), an es-
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timator of the precision matrix can be obtained by
minimizing the following objective

Ω̂τ = argmin
Ω≻0

{

trΩΣ̂τ − log |Ω|+ λ||Ω−||1
}

. (2)

where Σ̂τ =
∑

i w
τ
i x

i(xi)′ is the weighted sample co-
variance matrix, with weights defined as

wτ
i =

Kh(ti − τ)
∑

i Kh(ti − τ)
, (3)

K : R 7→ R being the kernel function and Kh(·) =
K(·/h). The tuning parameter λ controls the num-
ber of non-zero pattern of the estimated precision ma-
trix, while the bandwidth parameter h controls the
smoothness over time of the estimated precision ma-
trix and the effective sample size. These tuning pa-
rameters depend on the sample size n, but we will
omit this dependence in our notation. In practice, the
parameters are chosen using standard model selection
techniques in data dependent way, for example, us-
ing cross-validation or Bayesian information criterion.
The kernel K is taken such that the following set of
assumptions holds.
Assumption K: The kernel K : R 7→ R is sym-
metric, supported in [−1, 1] and there exists a con-
stant MK ≥ 1 which upper bounds the quantities
maxx∈R |K(x)| and maxx∈R K(x)2.
For example, the assumption K is satisfied by the box
kernel K(x) = 1

2 1I{x ∈ [−1, 1]}.
A similar estimator to the one given in (2) is analyzed
in Zhou et al. (2008) and the convergence rate is es-

tablished for ||Ω̂τ −Ωτ ||F . However, establishing that
the estimated edge set

Êτ = {(a, b) : a 6= b, ω̂τ
ab 6= 0} (4)

consistently estimates the true edge set Et = {(a, b) :
a 6= b, ωt

ab 6= 0} is a harder problem, which re-
quires stronger conditions on the true model. Let
s , maxi |Eti | denote the maximum number of edges
in a graph and d , maxi maxa∈V |{b ∈ V | a 6=
b, eab ∈ Eti}| the maximum node degree. In the re-
mainder of this section, we provide sufficient condi-
tions on (n, p, d, h, λ) under which the estimator given
by (2) recovers the graph structure with high proba-
bility. To that end, we will use some of the results
established in Ravikumar et al. (2008).

We start by imposing some assumptions on the true
model. The first assumption assures that the covari-
ance matrix is not singular at any time point. Note
that if the population covariance matrix was singu-
lar, the problem of recovering the true graph structure
would be ill-defined, since there would be no unique
graph structure associated with the probability distri-
bution.

Assumption C: There exist constants Λmax,M∞ <
∞ such that for all i ∈ {1, . . . , n} we have

1

Λmax
≤ ϕmin(Σ

ti) ≤ ϕmax(Σ
ti) ≤ Λmax

and
|||Σti |||∞,∞ ≤ M∞.

Furthermore, we assume that στ
ii = 1 for all i ∈ V .

The next assumption captures the notion of the dis-
tribution changing smoothly over time.
Assumption S: Let Σt = (σt

ab). There exists a con-
stant MΣ > 0 such that

max
a,b

sup
t∈[0,1]

|σ̇t
ab| ≤ MΣ, and

max
a,b

sup
t∈[0,1]

|σ̈t
ab| ≤ MΣ,

where σ̇t
ab and σ̈t

ab denote the first and second deriva-
tive with respect to time.
Assumptions similar to C and S are also imposed in
Zhou et al. (2008) in order to show consistency in the
Frobenius norm. In particular, the rate of the con-
vergence of ||Ω̂τ − Ωτ ||F depends on the quantities
Λmax,M∞ and MΣ. Assumption S captures our no-
tion of a distribution that is smoothly changing over
time and together with assumption C guarantees that
the precision matrix Ωt changes smoothly over time as
well. The common variance of the components is as-
sumed for presentation simplicity and can be obtained
through scaling.

Assumptions C and S are not enough to guarantee re-
covery of the non-zero pattern of the population pre-
cision matrix Ωτ . From the previous work on vari-
able selection in generalized linear models (see, for ex-
ample, Fan and Lv (2009), Ravikumar et al. (2009),
Bunea (2008)) we know that additional assumptions
are needed on the Fisher information matrix in or-
der to guarantee consistent model identification. In
the case of the multivariate Gaussian distribution the
Fisher information matrix at time τ ∈ [0, 1] is given as

Iτ , I(Ωτ ) = (Ωτ )−1 ⊗ (Ωτ )−1,

where ⊗ denotes the Kronecker product. The ele-
ments of the Fisher information matrix can be also
expressed as Iτ

(a,b),(a′,b′) = Corr(Xτ
aX

τ
b , X

τ
a′Xτ

b′). Let

S , Sτ = Eτ ∪{(a, a)}i∈V be an index set of the non-
zero elements of Ωτ and SC denotes its complement
in V × V . Let Iτ

SS denote the |S| × |S| sub-matrix of
Iτ indexed by elements of S.
Assumption F: The sub-matrix ISS is invertible.
There exist constants α ∈ (0, 1] and MI < ∞ such
that

|||Iτ
SCS(Iτ

SS)
−1|||∞,∞ ≤ 1− α
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and
|||(Iτ

SS)
−1|||∞,∞ ≤ MI .

The assumption F is identical to the assumptions
made in Ravikumar et al. (2008). We need to assume
that it holds only for the time point of interest τ at
which the precision matrix is being estimated.

With these assumptions, we have the following result.

Theorem 1. Fix a time point of interest τ ∈ [0, 1].
Let {xi} be an independent sample according to the
model (1). Under the assumptions C, S, F and K

there exists a constant C > 0 depending only on
Λmax,M∞,MΣ,MK ,MI and α for which the follow-
ing holds. Suppose that the weighted sample covari-
ance matrix Σ̂τ is estimated using the kernel with
the bandwidth parameter satisfying h = O

(

n−1/3
)

.
If the penalty parameter λ in (2) scales as λ =
O
(

n−1/3
√
log p

)

and the sample size satisfies n >

Cd3(log p)3/2, then the minimizer Ω̂τ of (2) defines
the edge set Êτ which satisfies

P[Êτ 6= {(a, b) : a 6= b, |ωτ
ab| > ωmin}]

= O(exp(−c log p)) → 0,

for some constant c > 0, with ωmin = Mωn
−1/3

√
log p

and Mω being a sufficiently large constant.

The theorem states that all the non-zero elements of
the population precision matrix Ωτ , which are larger
in absolute value than ωmin, will be identified. Note
that if the elements of the precision matrix are too
small, then the estimation procedure is not able to
distinguish them from zero. Furthermore, the estima-
tion procedure does not falsely include zero elements
into the estimated set of edges. The theorem guaran-
tees consistent recovery of the set of sufficiently large
non-zero elements of the precision matrix at the time
point τ . In order to obtain insight into the network
dynamics, the graph corresponding to Ωt needs to be
estimated at multiple time points. Due to the slow
rate of convergence of Ω̂t, it is sufficient to estimate a
graph at each time point ti, i = 1, . . . , n.

Comparing Theorem 1 to the results on the static
graph structure estimation from an i.i.d. sample
(Ravikumar et al., 2008), we can observe a slower rate
of convergence. The difference arises from the fact that
using the kernel estimate, we effectively use only the
sample that is “close” to the time point τ . Using a lo-
cal linear smoother, instead of the kernel smoother to
reduce the bias in the estimation, a better dependence
on the sample size could be obtained. Finally we note
that, for simplicity and ease of interpretation, Theo-
rem 1 is stated without providing explicit dependence
of the rate of convergence on the constants appearing
in the assumptions.

2.1 Proof of Theorem 1

The proof of the theorem will be separated into sev-
eral propositions to facilitate the exposition. Technical
lemmas and some proofs are given in the supplemen-
tary material. Our proof uses some ideas introduced
in Ravikumar et al. (2008).

We start by introducing the following function

G(Ω) = trΩΣ̂τ − log |Ω|+ λ||Ω−||1, ∀Ω ≻ 0

and we say that Ω ∈ R
p×p satisfies the system (S)

when ∀ a 6= b ∈ V × V ,

(Σ̂τ )ab − (Ω−1)ab = −λ sign((Ω−1)ab), if (Ω−1)ab 6= 0

|(Σ̂τ )ab − (Ω−1)ab| ≤ λ, if (Ω−1)ab = 0.
(5)

It is known that Ω ∈ R
p×p is the minimizer of Equa-

tion (2) if and only if it satisfies the system (S). Since
G(Ω) is strictly convex, the minimum, if attained, is
unique. The assumption C guarantees that the mini-
mum is attained. Therefore, we do not have to worry
about the possibility of having several Ω satisfying the
system (S).
Recall that we use the set S to index the non-zero
elements of the population precision matrix. Without
loss of generality we write

I =

(

ISS ISSC

ISCS ISCSC

)

, ~Σ =

(

~ΣS

~ΣSC

)

.

Let Ω = Ωτ + ∆. Using the first-order Taylor ex-
pansion of the function g(X) = X−1 around Ωτ we
have

Ω−1 = (Ωτ )−1 − (Ωτ )−1∆(Ωτ )−1 +R(∆), (6)

where R(∆) denotes the remainder term. We consider
the following two events

E1 =
{

|(ISS)
−1[(

~̂
Στ − ~Στ )−−−−→

R(∆)+

λ
−−→
sign(Ωτ )]S | < ω(n, p)

} (7)

E2 =
{

|ISCS(ISS)
−1[(~Στ − ~̂

Στ ) +
−−−→
R(∆)]S+

(
~̂
Στ − ~Στ )SC −−−−→

R(∆)SC | < αλ
}

,
(8)

where, in both events, inequalities hold element-wise.

Proposition 2. Under the assumptions of Theorem 1,
the event
{

Ω̂τ ∈ R
p×p minimizer of (2),

sign(ω̂ab) = sign(ωτ
ab) for all |ωab| 6∈ (0, ωmin)

}

contains the event E1 ∩ E2.
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Proof. We start by manipulating the conditions
given in (5). Using (6) and using the fact that

vec((Ωτ )−1∆(Ωτ )−1) = ((Ωτ )−1 ⊗ (Ωτ )−1) ~∆ = I ~∆,
we can rewrite (5) in the equivalent form

(I ~∆)S + (
~̂
Στ − ~Στ )S − (

−−−→
R(∆))S = −λ(

−−→
sign(Ω))S

|(I ~∆)SC + (
~̂
Στ − ~Στ )SC − (

−−−→
R(∆))SC | ≤ λ 1ISC ,

(9)
where 1ISC is the vector of the form (1, 1, . . . , 1)′ and
the equations hold element-wise. Now consider the
following linear functional, F : R|S| → R

|S|,

θ 7→ θ − ~Ωτ
S + (ISS)

−1
[

(
~̂
Στ − ~Στ )−−−−→

R(∆)
]

S

+ λ(ISS)
−1−−→sign(θ).

For any two vectors x = (x1, . . . , x|S|)
′ ∈ R

|S| and

r = (r1, . . . , r|S|)
′ ∈ R

|S|
+ , define the set

B(x, r) =
|S|
∏

i=1

(xi − ri, xi + ri).

Now, we have F (B(~Ωτ
S , ωmin)) =

B
(

(ISS)
−1[(

~̂
Στ − ~Στ )−−−−→

R(∆)]S

+ λ(ISS)
−1−−→sign(Ωτ

S), ωmin

)

, H.
(10)

On the event E1, we have 0 ∈ H and hence there exists
~̄ΩS ∈ B(~Ωτ

S , ωmin) such that F ( ~̄ΩS) = 0. Thus we
have sign(ω̄ab) = sign(ωτ

ab) for all elements (a, b) ∈ S
such that |ωτ

ab| > ωmin and

ISS
~∆S+(

~̂
Σ− ~Σ)S−(

−−−→
R(∆))S = −λ(

−−→
sign(Ω̄))S . (11)

Under the assumption on the Fisher information ma-
trix F and on the event E2 it holds

−λ 1ISC < ISCS
~∆S +

(

~̂
Στ − ~Στ

)

SC
−
(−−−→
R(∆)

)

SC

= ISCS(ISS)
−1
[

(~Στ − ~̂
Στ ) +

−−−→
R(∆)

]

S
+

(

~̂
Στ − ~Στ

)

SC
−
(−−−→
R(∆)

)

SC
+

λISCS(ISS)
−1(

−−→
sign

(

Ω̄)
)

S
< λ 1ISC .

(12)

Now, we consider the vector ~̄Ω =

(

~̄ΩS

~0SC

)

∈ R
p2

.

Note that for Ω̄, equations (11) and (12) are equivalent
to saying that Ω̄ satisfies conditions (9) or (5), that is,
saying that Ω̄ satisfies the system (S). We have that
sign(ω̄ab) = sign(ωτ

ab) for all (a, b) such that |ωτ
ab| 6∈

(0, ωmin). Furthermore the solution to (2) is unique.

Using Proposition 2, Theorem 1 follows if we show
that events E1 and E2 occur with high probability. The
following two propositions, with the proof also given
in the supplementary materials, state that the events
E1 and E2 occur with high probability.

Proposition 3. Under the assumptions of Theorem 1,
there exist constants C1, C2 > 0 depending on Λmax,
M∞, MΣ, MK , Mω, MI and α such that

P[E1] ≥ 1− C1 exp(−C2 log p).

Proposition 4. Under the assumptions of Theorem 1,
there exist C1, C2 > 0 depending on Λmax, M∞, MΣ,
MK , MI and α such that

P[E2] ≥ 1− C1 exp(−C2 log p). (13)

Now, Theorem 1 follows from Propositions 2, 3 and 4.

3 Neighborhood selection estimation

In this section, we discuss the neighborhood selection
approach to selection of non-zero elements of the pre-
cision matrix Ωτ under the model (1). The neighbor-
hood selection procedure was proposed in Meinshausen
and Bühlmann (2006) as a way to estimate the graph
structure associated to a GGM from an i.i.d. sample.
The method was applied to learn graph structure in
more general settings as well (see, for example Raviku-
mar et al., 2009; Peng et al., 2009; Guo et al., 2010a;
Kolar et al., 2010). As opposed to optimizing pe-
nalized likelihood, the neighborhood selection method
is based on optimizing penalized pseudo-likelihood on
each node of the graph, which results in local estima-
tion of the graph structure. While the procedure is
very scalable and suitable for large problems, it does
not result in consistent estimation of the precision ma-
trix. On the other hand, as we will show, the non-zero
pattern of the elements of the precision matrix can be
recovered under weaker assumptions.

We start by describing the neighborhood selection
method under the model (1). As mentioned in the
introduction, the elements of the precision matrix
are related to the partial correlation coefficients as
ρtab = −ωt

ab/
√

ωt
aaω

t
bb. A well known result (e.g., Lau-

ritzen, 1996) relates the partial correlation coefficients
to a regression model where a variable Xa is regressed
onto the rest of variables X\a,

Xa =
∑

b∈V \{a}
Xbθ

t
ab + ǫta, a ∈ V. (14)

In the equation above, ǫta is independent of X\a if

and only if θtab = ρtab
√

ωt
aa/ω

t
bb. The relationship be-

tween the elements of the precision matrix and the
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least square regression immediately suggests the fol-
lowing estimator for θτ

\a , {θτab}b∈V \{a},

θ̂
τ
\a , argmin

θ∈Rp−1

∑

i

(xi
a −

∑

b 6=a

xi
bθb)

2wτ
i + λ||θ||1, (15)

where the weight wτ
i are defined in (3). The estima-

tor θ̂
τ
\a defines the neighborhood of the node a ∈ V

at the time point τ as N̂τ
a , N(θ̂τ

\a). By estimating
the neighborhood of each node and combining them,
the whole graph structure can be obtained. There
are two natural ways to combine the estimated neigh-
borhoods, using the union, Êτ,∪ , {(a, b) : b ∈
Nτ

a ∨ a ∈ Nτ
b }, or intersection of different neighbor-

hoods, Êτ,∩ , {(a, b) : b ∈ Nτ
a ∧ a ∈ Nτ

b }. Asymp-
totically these two approaches are equivalent and we
will denote the resulting set of edges as Êτ .

The consistency of the graph estimation for the neigh-
borhood selection procedure will be proven under sim-
ilar assumptions to those of Theorem 1. However, the
assumption F can be relaxed. Let N , Nτ

a , N(θτ
\a)

denote the set of neighbors of the node a. Using the
index set N , we write Στ

NN for the |N | × |N | subma-
trix of Στ whose rows and columns are indexed by the
elements of N .

Assumption F̃ : There exist constants γ ∈ (0, 1] such
that

|||Στ
NCN (Στ

NN )−1|||∞,∞ ≤ 1− γ

for all a = {1, . . . , p} (recall that N = Nτ
a ).

The assumption F̃ is known in the literature as the ir-
representable condition (van de Geer and Bühlmann,
2009; Wainwright, 2009; Zhao and Yu, 2006; Mein-
shausen and Bühlmann, 2006). It is known that it is
sufficient and almost necessary condition for the con-
sistent variable selection in the Lasso setting. Com-
pared to the assumption F that was sufficient for the
consistent graph selection using penalized maximum
likelihood estimator, the assumption F̃ is weaker, see
for example, Meinshausen (2008) and Ravikumar et al.
(2008).

With these assumptions, we have the following result.

Theorem 5. Fix a time point of interest τ ∈ [0, 1].
Let {xi} be an independent sample according to the
model (1). Under the assumptions C, S, F̃ and K

there exists a constant C > 0 depending only on
Λmax,MΣ,MK and γ for which the following holds.
Suppose that the bandwidth parameter used in (15) sat-
isfies h = O

(

n−1/3
)

. If the penalty parameter λ in

(15) scales as λ = O
(

n−1/3
√
log p

)

and the sample

size satisfies n > Cd3/2(log p)3/2, then the neighbor-
hood selection procedure defines the edge set Êτ , by

solving (15) for all a ∈ V , which satisfies

P[Êτ 6= {(a, b) : a 6= b, |θτab| > θmin}]
= O(exp(−cn2/3(d log p)−1)) → 0,

for some constant c > 0, with θmin = Mθn
−1/3

√
d log p

and Mθ being a sufficiently large constant.

The theorem states that the neighborhood selection
procedure can be used to estimate the pattern of non-
zero elements of the matrix Ωτ that are sufficiently
large, as defined by θmin and the relationship between
θ
τ
\a and the elements ofΩτ . Similarly to the procedure

defined in §2, in order to gain insight into the network
dynamics, the graph structure needs to be estimated
at multiple time points.

The advantage of the neighborhood selection proce-
dure over the penalized likelihood procedure is that it
allows for very simple parallel implementation, since
the neighborhood of each node can be estimated inde-
pendently. Furthermore, the assumptions under which
the neighborhood selection procedure consistently es-
timates the structure of the graph are weaker. There-
fore, since the network structure is important in many
problems, it seems that the neighborhood selection
procedure should be the method of choice. However,
in problems where the estimated coefficients of the
precision matrix are also of importance, the penalized
likelihood approach has the advantage over the neigh-
borhood selection procedure. In order to estimate the
precision matrix using the neighborhood selection, one
needs first to estimate the structure and then fit the
parameters subject to the structural constraints. How-
ever, it was pointed out by Breiman (1996) that such
two step procedures are not stable.

3.1 Proof of Theorem 5

There has been a lot of work on the analysis of the
Lasso and related procedure (see for example Zhao and
Yu (2006); Wainwright (2009); Bunea (2008); Bertin
and Lecué (2008)). We will adapt some of the standard
tools to prove our theorem. We will prove that the
estimator θ̂

τ
\a defined in (15) consistently defines the

neighborhood of the node a. Using the union bound
over all the nodes in the graph, we will then conclude
the theorem.

Unlike the optimization problem (2), the problem de-
fined in (15) is not strongly convex. Let Θ̂ be the set
of all minimizers of (15). To simplify the notation, we
introduce X̃a ∈ R

p−1 with components x̃i
a =

√

wτ
i x

i
a

and X̃\a ∈ R
n×p−1 with rows equal to x̃i

\a =
√

wτ
i x

i
\a.

With this, we say that θ ∈ R
p−1 satisfies the system
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(T ) when for all b = 1, . . . , p− 1

2X̃′
b(X̃a − X̃\aθ) = −λ sign(θb) if θb 6= 0

|2X̃′
b(X̃a − X̃\aθ)| ≤ λ if θb = 0.

(16)

Furthermore, θ ∈ Θ̂ if and only if θ satisfies the system
(T ). The following result from Bunea (2008) relates
the two elements of Θ̂.

Lemma 6. Let θ1 and θ2 be any two elements of Θ̂.
Then X̃\a(θ1 − θ2) = 0. Furthermore, all solutions
have non-zero components in the same position.

Proof. See Proposition 4.2 in Bunea (2008).

The above lemma guarantees that even though the
problem (15) is not strongly convex, all the solutions
will define the same neighborhood.

Recall that N = Na denotes the set of neighbors of
the node a. Without loss of generality, we can write

Σ̂τ =

(

Σ̂τ
NN Σ̂τ

NNC

Σ̂τ
NCN Σ̂τ

NCNC

)

.

We will consider the following two events

E3 =
{

|(2Σ̂τ
NN )−1[2X̃′

NE− λ sign(θτ
N )]| < θmin

}

(17)

E4 =
{

|2Σ̂τ
NCN (Σ̂τ

NN )−1[X̃′
NE− λ sign(θτ

N )]

− 2X̃′
NCE| < λ

}

,
(18)

where, in both events, inequalities hold element-wise
and E ∈ R

n is the noise term with elements ei =
√

wτ
i (ǫ

i
a +(θi

\a −θ
τ
\a)

′xi). Note that the noise term is
not centered and includes the bias term. In the light of
Lemma 13, given in the supplementary material, the
matrix Σ̂τ

NN is invertible and the events E3 and E4 are
well defined.

We have an equivalent of proposition 2 for the neigh-
borhood selection procedure.

Proposition 7. Under the assumptions of Theorem 5,
the event

{

θ̂
τ
\a ∈ R

p−1 minimizer of (15),

sign(θ̂ab) = sign(θτab) for all |θab| 6∈ (0, θmin)
}

contains the event E3 ∩ E4.

The theorem 5 will follow from Proposition 7, once
we show that the event E3 ∩ E4 occurs with high-
probability. The proof of Proposition 7 is based on
the analysis of the conditions given in (16) and, since it
follows the same reasoning given in the proof of Propo-
sition 2, the proof is omitted.

The following two lemmas establish that the events E3
and E4 occur with high probability under the assump-
tions of Theorem 5.

Lemma 8. Under the assumptions of Theorem 5, we
have that

P[E3] ≥ 1− C1 exp(−C2
nh

d2 log d
)

with constants C1 and C2 depending only on
MK ,MΣ,Mθ and Λmax.

Proof. To prove the lemma, we will analyze the fol-
lowing three terms separately,

T1 = λ(2Σ̂τ
NN )−1 sign(θτ

\a), (19)

T2 = (2Σ̂τ
NN )−12X̃′

NE1 (20)

and
T3 = (2Σ̂τ

NN )−12X̃′
NE2, (21)

where E = E1 + E2, E1 ∈ R
n has elements ei,1 =

√

wτ
i ǫ

i
a and E2 ∈ R

n has elements ei,2 =
√

wτ
i (θ

i
\a −

θ
τ
\a)

′xi. Using the above defined terms and the trian-

gle inequality, we need to show that |T1 + T2 + T3| ≤
|T1|+ |T2|+ |T3| < θmin.

Using Lemma 13, given in supplementary materials,
we have the following chain of inequalities

||T1||∞ ≤ ||T1||2 ≤ 2λϕmax(Σ̂
−1
NN )2|| sign(θτ

\a)||2
≤ C1λ

√
d

with probability at least 1 − C2 exp(−C3
nh

d2 log d ) and
C1, C2 and C3 are some constants depending on MK

and Λmax.

Next, we turn to the analysis of T2. Conditioning on
XN and using Lemma 13, we have that the compo-
nents of T2 are normally distributed with zero mean
and variance bounded by C1(nh)

−1, where C1 depends
on MK ,Λmax. Next, using Gaussian tail bounds, we
have that

||T2||∞ ≤ C1

√

log d

nh

with probability at least 1−C2 exp(−C3
nh

d2 log d ), where
C1 is a constant depending on MK , Λmax and MΣ.

For the term T3, we have that

||T3||∞ ≤ ||T3||2 ≤ ϕmax((Σ̂
τ
NN )−1)||E2||2

≤ 2Λmax||E2||2

where the last inequality follows from an applica-
tion of Lemma 13 with probability at least 1 −
C2 exp(−C3

nh
d2 log d ). Furthermore, elements of E2 are

normally distributed with zero mean and variance
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C1hn
−1. Hence, we can conclude that the term T3

is asymptotically dominated by T2.

Combining all the terms, we have that |T1 + T2 +

T3| ≤ Mθ

√
d log p
n1/3 = θmin with probability at least

1−C1 exp(−C2
nh

d2 log d ) for constants C1, C2 and suffi-
ciently large Mθ.

Lemma 9. Under the assumptions of Theorem 5, we
have that

P[E4] ≥ 1− C1 exp(−C2
nh

d log p
)

with constants C1 and C2 depending only on
MK ,MΣ,Λmax and γ.

Due to space constraints, the proof of the lemma is
provided in the supplementary material.

Now, Theorem 5 follows from Propositions 7, 8 and 9
and an application of the union bound.

4 Discussion

In this paper, we focus on consistent estimation of the
graph structure in high-dimensional time-varying mul-
tivariate Gaussian distributions, as introduced in Zhou
et al. (2008). The non-parametric estimate of the sam-
ple covariance matrix used together with the ℓ1 pe-
nalized log-likelihood estimation produces a good esti-
mate of the concentration matrix. Our contribution is
the derivation of the sufficient conditions under which
the estimate consistently recovers the graph structure.

This work complements the earlier work on value con-
sistent estimation of time-varying Gaussian graphical
models in Zhou et al. (2008) in that the main focus here
is the consistent structure recovery of the graph asso-
ciated with the probability distribution at a fixed time
point. Obtaining an estimator that consistently recov-
ers the structure is a harder problem than obtaining
an estimator that is only consistent in, say, Frobenius
norm. However, the price for the correct model iden-
tification comes in much more strict assumptions on
the underlying model. Note that we needed to assume
the “irrepresentable-like” condition on the Fisher in-
formation matrix (Assumption F), which is not needed
in the work of Zhou et al. (2008). In some problems,
where we want to learn about the nature of the process
that generates the data, estimating the structure of
the graph associated with the distribution gives more
insight into the nature than the values of the concen-
tration matrix. This is especially true in cases where
the estimated graph is sparse and easily interpretable
by domain experts.

Motivated by many real world problems coming from
diverse areas such as biology and finance, we extend

the work of Ravikumar et al. (2008) which facilitates
estimation under the assumption that the underlying
distribution does not change. We assume that the
distribution changes smoothly, an assumption that is
more valid, but could still be unrealistic in real life. An
interesting extension to this work would be to allow for
abrupt changes in the distribution and the graph struc-
ture. There has been a lot of work done on estimating
change points in the high-dimensional setting, see, for
example, recent paper Harchaoui et al. (2009), and it
would be interesting to incorporate a change point es-
timation into the framework presented here. Through-
out the paper we have also assumed that the data is
independent, but it is important to extend the theory
to allow for dependent observations. This would allow
for analysis of time series data, where it is often as-
sumed that data is coming from a stationary process.

Furthermore, we extend the neighborhood selec-
tion procedure as introduced in Meinshausen and
Bühlmann (2006) to the time-varying Gaussian graph-
ical models. This is done in a straightforward way us-
ing ideas from the literature on the varying-coefficient
models, where a kernel smoother is used to estimate
the model parameters that change over time in an un-
specified way. We have shown that the neighborhood
selection procedure is a good alternative to the penal-
ized log-likelihood estimation procedure, as it requires
less strict assumptions on the model. In particular, the
assumption F can be relaxed to F̃ . We believe that
our work provides important insights into the problem
of estimating structure of dynamic networks.
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nel change-point analysis. In D. Koller, D. Schuur-
mans, Y. Bengio, and L. Bottou, editors, Advances
in Neural Information Processing Systems 21. 2009.

Trevor Hastie and Robert Tibshirani. Varying-
coefficient models. Journal of the Royal Statistical
Society. Series B (Methodological), 55(4):757–796,
1993. ISSN 00359246.

Mladen Kolar, Le Song, Amr Ahmed, and Eric P.
Xing. Estimating Time-Varying networks. Annals
of Applied Statistics, 4(1):94—123, 2010.

S. L. Lauritzen. Graphical Models (Oxford Statistical
Science Series). Oxford University Press, USA, July
1996.

N. Meinshausen. A note on the Lasso for graphical
Gaussian model selection. Statistics and Probability
Letters, 78(7):880–884, 2008.

Nicolai Meinshausen and Peter Bühlmann. High-
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Supplementary material

We will use C1, C2, . . . as generic positive constants
whose values may change from line to line.

Technical results of Section 2.1

In this section of the appendix we collect proofs of
Section 2.1 and some additional technical results.

Some deviation results

Let Σ̂τ = (σ̂τ
ab) and Στ = (στ

ab). To bound the
element-wise deviation of the weighted sample covari-
ance matrix Σ̂τ from the population covariance matrix
Στ , we use the following decomposition

|
∑

i

wτ
i x

i
ax

i
b−στ

ab| ≤ |σ̂τ
ab−Eσ̂τ

ab|+ |Eσ̂τ
ab−στ

ab|. (22)

Standard treatment of the expectation integrals gives
us that |Eσ̂τ

ab−στ
ab| = O(h), see for example Tsybakov

(2009). The following Lemma characterizes the first
term in Equation (22).

Lemma 10. Let τ ∈ [0, 1] be a fixed time point. As-
sume that Στ satisfies the assumptions S and C and
the kernel function satisfies the assumption K. Let
{xi} be an independent sample according to the model
(1). Then

P[|σ̂τ
ab − Eσ̂τ

ab| > ǫ) ≤ C1 exp(−C2nhǫ
2), |ǫ| ≤ δ,

(23)
where C1, C2 and δ depend only on Λmax and MK .

Proof. The argument is quite standard. We use some
ideas presented in Bickel and Levina (2004). Let us

define x̃i
a =

xi
a√
σi
aa

and x̃i
b =

xi
b√
σi
bb

. Note that x̃i
a, x̃

i
b ∼

N (0, 1) and Corr(x̃i
a, x̃

i
b) = ρiab, where

ρiab =
σi
ab

√

σi
aaσ

i
bb

.

Now we have

P[|σ̂τ
ab − Eσ̂τ

ab| > ǫ]

= P[|
∑

i

2

nh
Kh(i− τ)(xi

ax
i
b − σi

ab)| > ǫ]

= P[|
∑

i

2

nh
Kh(i− τ)

√

σi
aaσ

i
bb(x̃

i
ax̃

i
b − ρiab)| > ǫ].

A simple calculation gives that

x̃i
ax̃

i
b − ρiab =

1

4

(

(x̃i
a + x̃i

b)
2 − 2(1 + ρiab)

− (x̃i
a − x̃i

b)
2 − 2(1− ρiab)

)

,

which combined with the equation above and union
bound gives

P [|σ̂τ
ab − Eσ̂τ

ab| > ǫ]

≤ 2P

[

MKΛmax

∑

i

4

nh
((Zi)2 − 1) ≥ ǫ

]

,
(24)

where Zi are independent N (0, 1). The lemma follows
from the standard results on the large deviation of χ2

random variables.

The bandwidth parameter needs to be chosen to bal-
ance the bias and variance in (22). If the bandwidth is
chosen as h = O(n−1/3), the following result is straight
forward.

Lemma 11. Under the assumptions K, S and C, if
the bandwidth parameter satisfies h = O(n−1/3) , then

P[max
a,b

|σ̂τ
ab − στ

ab| > ǫ) ≤ C1 exp(−C2n
2/3ǫ2 + log p),

where C1 and C2 are constants depending only on MK ,
MΣ and Λmax.

Proof. The lemma follows from (22) by applying the
union bound.

Next, we directly apply Lemma 5 and Lemma 6 from
Ravikumar et al. (2008) to obtain bounds on the de-

viation term ∆ = Ω̂τ − Ωτ and the remainder term
R(∆).

Lemma 12. Assume that the conditions of Theorem 1
are satisfied. There exist constants C1, C2 > 0 depend-
ing only on Λmax, M∞, MΣ, MK , MI and α such that
with probability at least 1−C1 exp(−C2 log p), the fol-
lowing two statements hold:

1. There exists some M∆ > 0 depending on Λmax,
M∞, MΣ, MK , MI and α such that ||∆||∞ ≤
M∆n

−1/3
√
log p.

2. Furthermore, element-wise maximum of the re-
mainder term R(∆) can be bounded ||R(∆)||∞ ≤
αλ
8 .

Proof. We perform the analysis on the event A defined
in (27). Under the assumption of the lemma, we have
that n > Cd3(log p)3/2 and on the event A,

||Σ̂τ −Στ ||∞ + λ ≤ M∆λ ≤ M∆

d
. (25)

This implies that under the conditions of Lemma 6
and Lemma 5 in Ravikumar et al. (2008) are satisfied
and we apply them to conclude the statement of the
lemma.
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The following lemma gives us deviation of the mini-
mum eigenvalue of the weighted empirical covariance
matrix from the population quantity.

Lemma 13. Let τ ∈ [0, 1] be a fixed time point. As-
sume that Στ satisfies the assumptions S and C and
the kernel function satisfies the assumption K. Let
{xi} be an independent sample according to the model
(1). Then

P[|Λmin(Σ̂
τ
NN )− Λmin(Σ

τ
NN )| > ǫ)

≤ C1 exp(−C2
nh

|N |2 ǫ
2 + C3 log |N |),

(26)
where C1, C2 and C3 are constants that depend only
on Λmax, MΣ and MK .

Proof. Using perturbation theory results (see for ex-
ample Stewart and Sun (1990)), we have that

|Λmin(Σ̂
τ
NN )− Λmin(Σ

τ
NN )| ≤ ||Σ̂τ

NN −Στ
NN ||F

≤ |N | max
a∈N,b∈N

|σ̂τ
ab − στ

ab|.

But then using (22), Lemma 10 and the union bound,
the result follows.

Proof of Proposition 3

We will perform analysis on the event

A =

{

||Σ̂τ −Στ ||∞ ≤ αλ

8

}

. (27)

Under the assumptions of the proposition, it follows
from Lemma 11 that P[A] ≥ 1 − C1 exp(−C2 log p).
Also, under the assumptions of the proposition,
Lemma 12 can be applied to conclude that R(∆) ≤
αλ
8 . Let ej ∈ R

|S| be a unit vector with 1 at position
j and zeros elsewhere. On the event A, it holds that

max
1≤j≤|S|

|e′j(ISS)
−1[(

~̂
Στ − ~Στ )−−−−→

R(∆) + λ
−−→
sign(Ωτ )]S |

≤|||(ISS)
−1|||∞,∞

(

||( ~̂Στ − ~Στ )S ||∞ + ||−−−→R(∆)S ||∞
+ λ||−−→sign(Ωτ

S)||∞
)

( using the Hölder’s inequality )

≤ MI
4 + α

4
λ ≤ C

√
log p

n1/3

< ωmin = Mω

√
log p

n1/3
,

for a sufficiently large constant Mω.

Proof of Proposition 4

We will work on the event A defined in (27). Under
the assumptions of the proposition, Lemma 12 gives

R(∆) ≤ αλ
8 . Let ej ∈ R

p2−|S| be a unit vector with 1
at position j and zeros elsewhere. On the event A, it
holds that

max
1≤j≤(p2−|S|)

∣

∣

∣
e′j
(

ISCS(ISS)
−1[(~Στ − ~̂

Στ ) +
−−−→
R(∆)]S+

(
~̂
Στ − ~Στ )SC −−−−→

R(∆)SC

)

∣

∣

∣

≤ |||ISCS(ISS)
−1|||∞,∞

(

||~Στ − ~̂
Στ ||∞ + ||−−−→R(∆)||∞

)

+

|| ~̂Στ − ~Στ ||∞ + ||−−−→R(∆)||∞

≤ (1− α)
αλ

4
+

αλ

4
≤ αλ,

which concludes the proof.

Technical results of Section 3

In this subsection, we provide a proof of Lemma 9.

Proof of Lemma 9

Only a proof sketch is provided here. We analyze the
event defined in (18) by splitting it into several terms.
Observe that for b ∈ NC , we can write

xi
b = Στ

bN (Στ
NN )−1xi

N

+ [Σti
bN (Σti

NN )−1 −Στ
bN (Στ

NN )−1]′xi
N

+ vib

where vib ∼ N (0, (σi
b)

2) with σi
b ≤ 1. Let us denote

Ṽb ∈ R
n the vector with components ṽib =

√

wτ
i v

i
b.

With this, we have the following decomposition of the
components of the event E4. For all b ∈ N c,

wb,1 = Στ
bN (Στ

NN )−1λ sign(θτ
N ),

wb,2 = Ṽ′
b

[

(X̃N (Σ̂NN )−1λ sign(θτ
N ) + Π⊥

X̃N
(E1)

]

,

wb,3 = Ṽ′
bΠ

⊥
X̃N

(E2)

and

wb,4 = F̃′
b

[

(X̃N (Σ̂NN )−1λ sign(θτ
N )+Π⊥

X̃N
(E1+E2)

]

,

where Π⊥
X̃N

is the projection operator defined as Ip −
X̃N (X̃′

NX̃N )−1X̃′
N , E1 and E2 are defined in the proof

of Lemma 8 and we have introduced F̃b ∈ R
n as the

vector with components f̃ i
b =

√

wτ
i [Σ

ti
bN (Σti

NN )−1 −
Στ

bN (Στ
NN )−1]′xi

N . The lemma will follow using the
triangle inequality if we show that

max
b∈NC

|wb,1|+ |wb,2|+ |wb,3|+ |wb,4| ≤ λ.

Under the assumptions of the lemma, it holds that
maxb∈NC |wb,1| < (1− γ)λ.
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Next, we deal with the term wb,2. We observe that
conditioning on XS , we have that wb,2 is normally
distributed with variance that can be bounded com-
bining results of Lemma 13 from the supplementary
material with the proof of Lemma 4 in Wainwright
(2009). Next, we use the Gaussian tail bound to con-
clude that maxb∈NC |wb,2| < γλ/2 with probability at
least 1− exp(−C2nh(d log p)

−1).

An upper bound on the term wb,3 is obtained as fol-

lows wb,3 ≤ ||Ṽb||2||Π⊥
X̃N

(E2)||2 and then observing

that the term is asymptotically dominated by the term
wb,2. Using similar reasoning, we also have that wb,4

is asymptotically smaller than wb,2.

Combining all the upper bounds, we obtain the desired
result.


