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Learning Graphical Models

The goal:

Given set of independent samples (assignments of
random variables), find the best (the most likely?)
graphical model (both the graph and the CPDs)
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Learning Graphical Models

e Scenarios:
e completely observed GMs
directed N
undirected N
e partially observed GMs
directed N
undirected (an open research topic)
e Estimation principles:
e Maximal likelihood estimation (MLE) N
e Bayesian estimation
e Maximal conditional likelihood
e Maximal "Margin"

e We use learning as a name for the process of estimating the parameters,
and in some cases, the topology of the network, from data.
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ML Parameter Est. for
completely observed GMs of
given structure

e The data:
{(20,x0), (22 x?)), (23, x3), ... (zV xNM)}

The basic idea underlying MLE 8

e Likelihood
(for now let's assume that the structure is given): E(, ,)S

L(O] X)=p(X[0)=p(X;[6)p(X;]6:) p(X5 | X5, X5:65)
e Log-Likelihood:
1(0] X) =log p(X |0) =log p(X, | 6)+1og p(X,|6,)+log p(X; | X3, X3,65)
e Data log-likelihood
18] DATA)=log [ ], p(X, 6)
=D 1og p(X,;16)+ 10g p(X,,16,)+ D" 109 p(X, 5| X,1X,,65)

o MLE {6,,0,,0.},,.. =argmax|(6 | DATA)

6 =argmax 2log p(X,;16), 6 =argmax 2log p(X,,|6,), 65 =argmax 2.log p(X,s|X,1X,2.65)
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Example 1: conditional Gaussian

e The completely observed model:
e Zis aclass indicator vector g
Zl

2
Z= Z , where Z" =[0,1], and 2.Z" =1
Z‘M and a datum is in class /w.p. 7;
All except one
(Zi _ 1| )_ _ 4 « 22 v % zMKl/ of these terms
p(z' =1|n)=nm=n xm, X...X7,,

will be one
p(2) =] [~
e JXis a conditional Gaussian variable rvvith a class-specific mean
P(X1 27 =1, 11,0) = exp b o (x|
14 (27[0_2)1/2 252 m
p(x|z,1,0) = TIN (x|, 0)*
Eric Xing 7
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Example 1: conditional Gaussian |
e Data log-likelihood
1010) €109 TTp(z 1= oo ] ptz, 1700, 12,0 %
= 2log p(z, | )+ 2log p(x, | 2,, 1,0)
= 2log [ [ + 2log TIN(x, I, )"
S S loga, - 552 2 (4,4, +C
e MLE
7, =argmax|(0| D), = £1(0|D)=0,Vm, st 27, =1
. Z an/ n the fraction of
z = N~ A samples of class m
D™ 2™
- *_ ShnTn ST the average of
Ho =2rgmaxi(®] D), = a1 > z" n, samples of class m
Eric Xing n 8




Example 2: HMM: two scenarios

e Supervised learning: estimation when the “right answer” is known

e Examples:

GIVEN:  agenomic region x = Xy...X4 990,000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is
unknown

e Examples:

GIVEN:  the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he
changes dice

e QUESTION: Update the parameters 6 of the model to maximize Ax{6) -
-- Maximal likelihood (ML) estimation

Recall definition of HMM se?

e Transition probabilities between
any two states @ @ @ G
p(ytJ:”ytIJ:l):ai,jv @ @ @ e

°" p(y,1yi, =1) ~ Multinomial(a,;,a,,.,...,a,,, ) Vie L.

e Start probabilities
p(y,) ~ Multinomial(z,, 7z,,..., 7, ).
e Emission probabilities associated with each state
p(x |y} =1) ~ Multinomial(b, ;,b, ..., b, ) Vie .
or in general: px |y =) ~f(|8)Vviel
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Supervised ML estimation

e Given x= x,...x, for which the true state path y= y;,...y, is known,

e Define:
Ay = # times state transition /- occurs in'y
By = # times state /in y emits kin x

e We can show that the maximum likelihood parameters fare:
. ) T i :
aML _ #(l - J) _ antzg yn,tflynJ.I _ Ai]
ij - T ;
#(I - .) Zn 21:2 yn,tfl ZJ Ail
T
ML _ #(I - k) . Zn 21:1 yllﬁ.txllq(.t _ Bik
ik T . = T | =
#(I - .) Zn Zt:l Ynt Zk'B'k‘

e What if x is continuous? We can treat {(xm, ym):t =1:T,n=1: N} as kT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Eric Xing 11

Supervised ML estimation, ctd.

e Intuition:

e When we know the underlying states, the best estimate of @is the
average frequency of transitions & emissions that occur in the training
data

e Drawback:
e Given little data, there may be overfitting:
P(x|0) is maximized, but 0 is unreasonable
0 probabilities — VERY BAD

e Example:
e Given 10 casino rolls, we observe
x=2,1,5,6,1, 2, 3,6, 2,3
y=F, F, F, F, F, F, F, F, F, F
e Then: arr=1, ap =0
bry = bey = .2;
bry = .3; bey = 0; beg = bpg = .1

Eric Xing 12




Pseudocounts

e Solution for small training sets:
e Add pseudocounts
A = # times state transition /> joccurs iny + R;
By = # times state /in y emits kin x + 5,

° R,Jv, S,Jare pseudocounts representing our prior belief
o Total pseudocounts: R;=X R, 5= 2,5,

--- "strength" of prior belief,

--- total number of imaginary instances in the prior

e Larger total pseudocounts = strong prior belief
e Small total pseudocounts: just to avoid O probabilities --- smoothing

e This is equivalent to Bayesian est. under a uniform prior with
"parameter strength" equals to the pseudocounts

MLE for general BNs s

e If we assume the parameters for each CPD are globally
independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one
per node:

A £
£(0;D) =log p(D| ) “HH & =
- log H[H PO, I, ﬁ.)j i Eﬁﬂ

__Y/ )"
() %
25 H \:\__'J._\ /'k—'/

- Z[Z log p(x,, | x,, ,9.)] T EH—
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Example: A directed model

|
e Consider the distribution defined by the directed acyclic GM:

p(x10)=p(x|6) p(x; | X1, 0) p(X5 | X, 05) p(Xy | Xz, X5,0,)

e This is exactly like learning four separate small BNs, each of
which consists of a node and its parents.

MLE for BNs with tabular CPDs s

e Assume each CPD is represented as a table (multinomial)
where o'l

def
Hljk = p(x| = J | xn‘ = k) .\':”BH

Note that in case of multiple parents, X,, will have a composite ;1 T

state, and the CPD will be a high-dimensional table ""'.'EE; .

The sufficient statistics are counts of family configurations Y
def

_ ioyk
nijk - Zn Xn,lxn‘rr,

e The log-likelihood is
£0;D)=log [ [0 = > n 1096,

i.J.k i.J.k
e Using a Lagrange multiplier N,
_ Lo =
to enforce Z/ 6, =1, we get: ijk z N
i,j'k

Eric Xing 16
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ML Structural Learning for
completely observed
GMs

Information Theoretic
Interpretation of ML o

¢(0;,G;D) =log p(D|6;,G)

=log H(H P(X,; | Xn,,‘r,(G)’Hlﬁ,(G))j
= Z[ZIOQ P(X, |xn;:(G)’HI,T(G))]

log p(X; | X, ) Gy ()
% Xz (G) M i(G) |7 (G)

=M Z[ Z ﬁ(xi’xn,(G)) log p(x; |x:!,(G)'0i:!(G))]
i\ XX )

From sum over data points to sum over count of variable states
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Information Theoretic sels
Interpretation of ML (con'd) o

4(6,,G;D)=log p(D|6,,G)
=M Z Z ﬁ(x,,xm(e))log p(x, |X,v(G)’H|,T(G))J
. ﬁ(xilxr[(G)’Hi\/? ©) P(x;)
=M X, o) — ! —
Z X";W(G) P o )) % p(X,TI(G)) p(xi)]
B . ﬁ(xilxm(G)’ei\,f,(G)) 3 o
MT| T Al o)tog Pt } y Z[; 50x)log p(xi)]
=M Y T(%x, )~ MY H(x)
Decomposable score and a function of the graph structure
YY)
o000
ee00
82
Structural Search :

e How many graphs over n nodes? 0@2™)
e How many trees over n nodes? o(nh)

e But it turns out that we can find exact solution of an optimal
tree (under MLE)!

e Trick: in a tree each node has only one parent!
e Chow-liu algorithm

Eric Xing 20




Chow-Liu tree learning algorithm

e Objection function:

4(0;,G;D)=log p(D|6;,G)
= sz(xivxmc))_MZ':'(Xi)

C(G) =M 1(%.x, @)

e Chow-Liu:
e For each pair of variable x; and x;
e count(x;, X;)
Compute empirical distribution: ~ p(X;, X ;) VR

Compute mutual information: IA(Xia X;)= XZX: p(x, x;)log 5(x) f)(X,-)

o Define a graph with node x,..., X
Edge (l,j) gets weight f(xi, X ,)

n

Chow-Liu algorithm (con'd) s

e Objection function:

4(6,,G;D)=log p(D|6,,G)
=M Y106, %) =M Y H(x)

C(G) =M T(%,x, @)

e Chow-Liu:
Optimal tree BN
e Compute maximum weight spanning tree
e Direction in BN: pick any node as root, do breadth-first-search to define

directions
e |-equivalence: (A) (C) ©) (E)
® © n © ©)
©® ©® ® OO0
C(G)=1(AB)+I1(AC)+1(C,D)+1(C,E)

11



Structure Learning for general
graphs

e Theorem:
e The problem of learning a BN structure with at most d parents is
NP-hard for any (fixed) d=2

e Most structure learning approaches use heuristics
e Exploit score decomposition
e Two heuristics that exploit decomposition in different ways

Greedy search through space of node-orders

Local search of graph structures

Eric Xing
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Order search versus graph
search

e Order search advantages
e For fixed order, optimal BN —more “global”’optimization
e Space of orders much smaller than space of graphs

e Graph search advantages
e Not restricted to k parents
e Especially if exploiting CPD structure, such as CSI
e Cheaper per iteration
e Finer moves within a graph

Eric Xing
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Bayesian model averaging

e Probabilistic statements of @ is conditioned on the values of the
observed variables A,  and prior p( |y)

T
r
[ | |
e o) &)
e | < 5
(A,B,CD,E,...)=(T,F,F,T)F,...) .......’
A= (AB,CDE,..)=(T.)FT,T)F,...) lﬂl?!ﬂﬂ%?ﬂ
&Xﬁguxanzwntnnﬁ_y d| oz os
dl o9 o1
d| o001 0.9
O =[O POI A, 1) 40 N PO14:2) = PAIO)P(E;)
posterior likelihood  prior
Eric Xing 25
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Learning partially observed
GMs

e The data:
{(xD), (X)), (X)), ... (xM)}

Eric Xing 26
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Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:

p(Xn‘,u,Z) = zk”kN(Xal M Z)
| S

mixture proportion  mixture component

(<
N
\ P
R ] . e/
'l 3"5}{\ 4 }ﬁ\ oty

YAV €Ly, ]

e This model can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of
stars in astronomical data, etc.

Gaussian Mixture Models (GMMSs) s

e Consider a mixture of K Gaussian components:
e Zis a latent class indicator vector:

p(z,)=multi(z, : 7) = [ L(z, "

k

e JXis a conditional Gaussian variable with a class-specific mean/covariance

1 ~
p(x,12f =1,p,5) = Wem{-é(xn 1) (X, - )
k

e The likelihood of a sample:
mixture component
mixture proportion

poolun) =3, p* =1mplxl 2 =L ux) T ——=
- Zz,, Hk ((”k )z”k N(x,: #k’z/«)z"k ): Zk TN 1,2 4)

Eric Xing 28
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Why is Learning Harder?

\
e In fully observed iid settings, the log likelihood decomposes

into a sum of local terms (at least for directed models).
¢(60;D)=log p(x,z|0) =log p(z|8,)+log p(x| z,6,)

e With latent variables, all the parameters become coupled
together via marginalization

4(0;D)=log > p(x,z|0)=log > p(z16,)p(x|z,6,)
z ’ z

X, Xz X; X X> X;

Eric Xing N 29

Toward the EM algorithm

e Recall MLE for completely observed data

-4

e Data log-likelihood

¢(0;D) =log [ Tp(z,.%,) =log[ ] p(z, | 7)p(X, | 2,, 11,0)
= 2log I Tz + Stog TIN (x4, 0)"
n k n k
= 2. 2zt logm, - 2 228 S (%, - 4 )* +C
n k n k

e MLE T e =argmax_ £(0; D),
e =argmax, £(6; D)

) 2 7%,
= Hwie :nik
) _ 2.2
O mie = argmax, £(0; D)

e What if we do not know z,?

Eric Xing 30
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Expectation-Maximization 2
|
e Start:
e "Guess" the centroid 4, and coveriance 2, of each of the K clusters
e Loop
o O. . b %ﬁ: {/{/’ @:
u et .:‘. O .:.. :.
(a) (©) (d) O]
L=§& .g L=8§ ..t.si' L=10 ..g; L=12 ..'(:3.
LS E
o (U (9) (h) (i)
. . o00
Example: Gaussian mixture HH
model o

o A mixture of K Gaussians:
e Zis a latent class indicator vector

p(z,) =multi(z, : 7) = [ 1(z, "

-0

k
e JXis a conditional Gaussian variable with class-specific mean/covariance

1 .
@i e PR 2 )
g k
e The likelihood of a sample:

POl D) =Y, p(z" =1|m)p(x.| 2% =1,1.5)

= zzﬂ Hk((”k)z”k N(x, ::Uk’zk)z:

e The expected complete log likelihood

P(Xﬂ|zﬂk :l’u’z):

(£.0;x,2))= 2(log p(z,| 7))

p(z1x) z|x)

+ 2(log p(x, | 2, 1,5))

= S5z log, -2 S5z, - 175, - ) +ogley +€)
n k n k

Eric Xing

32
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E-step

e We maximize</€ (9)> iteratively using the following
iterative procedure:

— Expectation step: computing the expected value of
the sufficient statistics of the hidden variables (i.e., 2)

given current est. of the parameters (i.e., rand p).

7O N, | 1 Z))
Zﬁf”N(XnJ,U,mlzf’f))

k k k
00 =(2) 0 = Pz =1, 20) =

Here we are essentially doing inference

Eric Xing 33
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M-step o
e We maximize</c (0)> iteratively using the following
iterative procudure:
— Maximization step: compute the parameters under
current results of the expected value of the hidden variables
7, =argmax(/.(e)), = 22-(/.(0))=0,Vk, st 2z, =1
k
* Z zﬂk () k(f)
L L AL?
Z k(r)X
wy =argmax(/(0)), = uf™" :% Fact‘: |
nn odloglA™*
AT
Z k(t) x — (#+1) X — (#+1)\T oAl
T, =argmax(/(0)), = ¢V = AU gk k(z)( n =) WA
¥ A

This is isomorphic to MLE except that the variables that are hidden are
replaced by their expectations (in general they will by replaced by their

Eric Xing corresponding "sufficient statistics") 3
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Theory underlying EM

e What are we doing?

e Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

e But we do not observe z, so computing
4(0;D)=log) p(x,z|0)=log) p(z|6,)p(x|z,6,)

is difficult!

e What shall we do?

Complete & Incomplete Log
Likelihoods o

e Complete log likelihood
Let X'denote the observable variable(s), and Zdenote the latent variable(s).
If Zcould be observed, then "
£.(0:x,2) =log p(x, 2 |6)

e Usually, optimizing () given both zand xis straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e Butgiven that Z is not observed, () is a random quantity, cannot be
maximized directly.

e Incomplete log likelihood
With zunobserved, our objective becomes the log of a marginal probability:

£.(0;x)=log p(x|6) =log > p(x,z|6)

e This objective won't decouple z

Eric Xing 36
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Expected Complete Log
Likelihood

e For any distribution ¢(2), define expected complete log likelihood:

def
<Zc(6;x,z)>q =Y qg(z|x,0)log p(x,z|6)
zZ
A deterministic function of &
Linear in £() - inherit its factorizabiility

Does maximizing this surrogate yield a maximizer of the likelihood?

e Jensen’s inequality

£(0,x)=log p(x|6)
=log}_ p(x.210)

) p(x.216) ‘ (
R ey |

plx,z|0)
g(z|x)

>3 g(z| x)log = /(H;X)Z%(@:X,Z)L*Hq

Eric Xing 37

Lower Bounds and Free Energy

e For fixed data x, define a functional called the free energy:

e plx,z10) .
F(g,0) = gq(z | x) Iogiq(z 0 <4(0;x)

e The EM algorithm is coordinate-ascent on F:
e E-step: g™ =argmax F(q,0")
g

o M-step: 0" =arg max F(g"™,0")

Ffae)

—s
Eric Xing Q ) 38
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E-step: maximization of expected
Lwrt. g

e Claim: qm —arg maXF(q’g"):p(2|X,9")
q

e This is the posterior distribution over the latent variables given the data
and the parameters. Often we need this at test time anyway (e.g. to
perform classification).

e Proof (easy): this setting attains the bound 48,x)>F¢,0)

o e PXZ107)
F 0),07) = 0" log 2217 )
(plzlx.0').6") = 3 plz|x.0")log Pz,
= g(z|x)log p(x|6")
=logp(x|60")=£(0"; x)

e Can also show this result using variational calculus or the fact
that ¢(6;x)-F(g.6)=KL(g |l p(z | x.6))

Eric Xing 39

. . [ X X ]
E-step E_plug in posterlo_r a2t
expectation of latent variables o
e Without loss of generality: assume that p(x,26) is a
generalized exponential family distribution:
plx,z|0) = Zl(e)h(x,z) exp{z H,ﬁ(x,z)}
e Special cases: if p(X]2) are GLIMs, then £ (x,z) =7 (2)& (x)
e The expected complete log likelihood under ¢’ = p(z| x,6")
(40"ix.2)) ., =X q(z]|x.0")log p(x,2|6") - A®)
- Z 0/ <ﬁ(X' Z)>q(z\x,()') —A(9)
TS O (D)), & ()~ AB)

20



M-step: maximization of expected
L w.rt. 6

e Note that the free energy breaks into two terms:

p(x.210)
g(z|x)
=Y g(z|x)log p(x, 216)- Y g(z| X)log g(z | x)

=(4.(0; x, z)>q +H,

F(g.0)=> ¢(z|x)log

e The first term is the expected complete log likelihood (energy) and the
second term, which does not depend on 4, is the entropy.

e Thus, in the M-step, maximizing with respect to @ for fixed ¢
we only need to consider the first term:
F+1 . o
0™ =arg mgx(lc @; x, z)>qM =argmax gq(z | x)log p(x,z|6)

e Under optimal ¢, this is equivalent to solving a standard MLE of fully
observed model p(x,z| ), with the sufficient statistics involving z
replaced by their expectations w.r.t. p(z] x,6).

Example: HMM s

e Supervised learning: estimation when the “right answer” is known

e Examples:

GIVEN:  agenomic region X = X4...X4 g0 000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is
unknown

e Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

e QUESTION: Update the parameters 6 of the model to maximize Ax{0) -
-- Maximal likelihood (ML) estimation

Eric Xing 42
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The Baum Welch algorithm

\
e The complete log likelihood

4(9’ X, y) = |Og p(X, y) = IOQH[P(YM)HP(YM | yn,f—l)HP(Xn,f | Xn,f)J

=1
e The expected complete log likelihood

R T X T .
(€.Oxy)= ;(<y;‘l>p(yn oo ﬂ/]+ ;;[O;Hy/f)m LY ] + ;;[XMM’,)MW") log b,‘kj
e EM
e The E step
7;# = <yrlr‘,f> = P(}’:;’,r =11x,)
& = <ler“r-1y'{r> =p(Yor1 =1y =1Ix,)
e The M step ("symbolically" identical to MLE)
(] T, i =
Zan:I Vnt anr:1 Vnt

Eric Xing 43

Mo_ Zn 7;‘1
7 N

Unsupervised ML estimation

o Given x= x,...x,for which the true state path y= y,...y,is
unknown,

o EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters &

1. Estimate A,j, B, in the training data
How? A, =Y (vir¥in) Bi=2,,(VasXhe,
2. Update @according to A;;, B,

Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm
We can get to a provably more (or equally) likely parameter set 8 each iteration

Eric Xing 44
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[ X X ]
0000
0000
H
EM for general BNs &
while not converged
% E-step
for each node /
£55,=0 % reset expected sufficient statistics
for each data sample »
do inference with X, ,
for each node /
ESS, += (55,(%,,.%,,))
' o P(Xn,/—llxﬂﬁ/—/)
% M-step
for each node /
0,:= MLE(£ESS,)
[ X X ]
0000
[ X XX
- 2
Summary: EM Algorithm :

e A way of maximizing likelihood function for latent variable models.
Finds MLE of parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:

o E-step: QM =arg maxF(q,H’)
o M-step: 0" =arg m%x F(g"™,0")

e In the M-step we optimize a lower bound on the likelihood. In the E-
step we close the gap, making bound=likelihood.

Eric Xing 46
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Learning completely observed
undirected GMs

e The data:
{(20,x0), (22 x?)), (22, x3), ... (2N xNM)}

Eric Xing 47

MLE for undirected graphical
models 2

e For directed graphical models, the log-likelihood decomposes
into a sum of terms, one per family (node plus parents).

e For undirected graphical models, the log-likelihood does not
decompose, because the normalization constant Zis a
function of all the parameters

P(XI,...,X,,)Z;HWC(XC) Z = Z Hz//c(xc)

ceC Xy..0Xy CEC

¢ In general, we will need to do inference (i.e., marginalization)
to learn parameters for undirected models, even in the fully
observed case.

Eric Xing 48
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Feature-based Clique Potentials

So far we have discussed the most general form of an undirected
graphical model in which cliques are parameterized by general
potential functions y(x,).

1
P(Xll""Xn) :?Hl//c(xc)
ceC
But for large cliques these general potentials are exponentially
costly for inference and have exponential numbers of parameters
that we must learn from limited data.

One solution: change the graphical model to make cliques smaller.
But this changes the dependencies, and may force us to make more
independence assumptions than we would like.

Another solution: keep the same graphical model, but use a less
general parameterization of the clique potentials.

This is the idea behind feature-based models.

[ X X ]
0000
[ X XX
2
Features g
e Consider a clique x, of random variables in a UGM, e.g. three

consecutive characters ¢, ¢,¢; in a string of English text.

How would we build a model of p(¢,¢,¢;)?

e If we use a single clique function over ¢;¢,¢;, the full joint clique potential would
be huge: 263-1 parameters.

e However, we often know that some particular joint settings of the variables in a
clique are quite likely or quite unlikely. e.g. ing, ate, ion, ?ed, qu?, jkx, zzz,...

A “feature” is a function which is vacuous over all joint settings

except a few particular ones on which it is high or low.

e For example, we might have 7,,,(¢;¢,¢3) which is 1 if the string is 'ing’ and 0
otherwise, and similar features for '?ed’, etc.

We can also define features when the inputs are continuous.

Then the idea of a cell on which it is active disappears, but we

might still have a compact parameterization of the feature.
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Features as Micropotentials

\
e By exponentiating them, each feature function can be made

into a “micropotential”. We can multiply these micropotentials
together to get a cligue potential.

e Example: a clique potential y(c,¢,¢;) could be expressed as:

vafv

l//c(C11621C3):engfmg><e XL,

K
= exp{; 9/(76( (C1 G C3)}

e This is still a potential over 263 possible settings, but only
uses K'parameters if there are Kfeatures.

e By having one indicator function per combination of x_, we recover the
standard tabular potential.
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Combining Features

e Each feature has a weight 6, which represents the numerical
strength of the feature and whether it increases or decreases
the probability of the clique.

e The marginal over the clique is a generalized exponential
family distribution, actually, a GLIM:
gingﬁng (6161 65) + Ory o (€61, 6. G5) + }

p(c,c,c;) cexp
v equ?éu?(cl’CZ’(‘})+ezzz’§zz(cl’62’c3)+'“

e In general, the features may be overlapping, unconstrained
indicators or any function of any subset of the clique

variables: def
Ve (Xc) = exp{zekﬁ((xc, )}

iel,
e How can we combine feature into a probability model?
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Feature Based Model

e We can multiply these clique potentials as usual:

1 1
p(x) = %HWC(XC) = Z©) eXp{Z ngﬁ((xc/ )}

c ¢ iel,

e However, in general we can forget about associating features
with cliques and just use a simplified form:

1
Z0) exp{z 07 (x,, )}

e This is just our friend the exponential family model, with the
features as sufficient statistics

p() =

MLE of Feature Based UGMs 3o’

e Scaled likelihood function

7 (6:D)=¢(0:D)IN :%Z'ng(xn 10)
=3 p(x)log p(x | 6)
= Zﬁ(X)ZQ-ﬁ(X) —log Z (6)

e Instead of optimizing this objective directly, we attack its lower
bound '
The logarithm has a linear upper bound ...
log Z(0) < uZ(0)—log u—1 _ e
This bound holds for all 4, in particular, for ;= Z77(9")
e Thus we have
Z(0)

£(0:0)2Y ()Y 0£(x) “Z@") log Z(6™) +1
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Generalized lterative Scaling
(GIS)

e Lower bound of scaled loglikelihood

£(0:0)> Y F)Y0£(x) =)

*)
Z(em)—logZ(e’)H

def
e Define A0" =6, -0

£(6;0)> S P(X)Y 0L (x) —%Zexp{zef,(x)} —log Z(0")+1

e Relax again

Assume £(x)>0, ) f(x)=1

Convexity of exponential: exp(z X, )< > 7 explx;)
o We have:

7(0:0)2 Y6 FXIE(x) - Y px 107 £(x)exp(a6?)-log Z(67) +1= A(©)
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GIS

e Lower bound of scaled loglikelihood »
7 (0;D)> Ze 2 p(X)F(x)— Z plx| 9“)2 £(x)exp(a8? )-log Z (69) +1= A(0)

e Take derivative: ”\ —ZP(X)f(X) exp(a H(”)Zp(xw(”)f(x)

/

e Set to zero D169 1€ Zp(X)f,(X)

a0 _ x _ x ()
N W TSN WAl o e

where p9(x) is the unnormalized version of p(x{ &)

e Update s

=07 +A0D = p' (x) = p (x)e"

§ " (x) SENf (x )
P =2 Z07) [V,,W o ”)J
= (6] 7 (x)
p(x) TP () £00)
:Z(g(’))H[LP"’(X)f,(X)] (Z(H(”))Z

v Y
L (-
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Example: Conditional Random
Fields o2
\
P (Y10 =50 exp{gec L0 m}

e Allow arbitrary dependencies
on input

e Use approximate inference for
general graphs

e Clique dependencies on labels

Alternative Learning Strategy s

e Recall that in CRF

e We predict based on:

Y |x=argmax p,(y]x) = Z(; 5 exp{Z@ fx yc)}

c
e And we learn based on:

. 1
0c |{yn' Xn}: arg mﬁ?X]‘:[ pﬁ(yn | Xn) = 1;[ Z(H, X”) exp{zc:oc fc(xn' yn.c)}

e MaxMargin:
e We predict based on:
y |x=argmax > 6, f.(x,y,)=argmaxw' F(x,y)
y < y
e And we learn based on:

w|{y,.x, }=arg mﬁx(y,mfﬁnWT(F(wan)* F(y',, xn)))
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o000
o000
I
: : ')
Max-Margin Learning :
1
max  [w|-2.¢,
2 n
T 1 1 1
S't' W (F(yn’xn)_F(yn’Xn))2§n+A(yn’yn) vn’yne%\yn
£,20
e Solutions:
e Convex optimization (akin to SVM) with exponentially many constrains
e Many algorithms and heuristics exist
Interior-point methods
Iterative active-support elimination
Inference based on GM
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Open Problems o
e Unsupervised CRF learning and MaxMargin Learning
e We want to recognize a pattern that
is maximally different from the rest!
e What does margin or conditional likelihood mean in these cases?
Given only {X.}, how can we define the cost function?
1
X) = ex a.f.(x, Y,
PYIN=70 D{Z Loy )}
margin = w" (F(y,,X,) = F(¥'y,%,))
e Algorithmic challenge
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