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The goal:

Given set of independent samples (assignments of 
random variables), find the best (the most likely?) 
graphical model (both the graph and the CPDs)
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Learning Graphical Models
Scenarios:

completely observed GMs
directed
undirected 

partially observed GMs
directed
undirected (an open research topic) 

Estimation principles:
Maximal likelihood estimation (MLE)
Bayesian estimation
Maximal conditional likelihood
Maximal "Margin" 

We use learning as a name for the process of estimating the parameters, 
and in some cases, the topology of the network, from data.
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Score-based approach
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ML Parameter Est. for 
completely observed GMs of 

given structure

Z

X

The data:
{(z(1),x(1)), (z(2),x(2)), (z(3),x(3)), ... (z(N),x(N))} 
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Likelihood 
(for now let's assume that the structure is given):

Log-Likelihood:

Data log-likelihood

MLE
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The completely observed model:
Z is a class indicator vector

X is a conditional Gaussian variable with a class-specific mean

Z

X
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Example 2: HMM: two scenarios
Supervised learning: estimation when the “right answer” is known

Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, 

as he changes dice and produces 10,000 rolls

Unsupervised learning: estimation when the “right answer” is 
unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the 

CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don’t see when he 

changes dice

QUESTION: Update the parameters θ of the model to maximize P(x|θ) -
-- Maximal likelihood (ML) estimation 
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Recall definition of HMM
Transition probabilities between 
any two states

or

Start probabilities 

Emission probabilities associated with each state

or in general:
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Supervised ML estimation
Given x = x1…xN for which the true state path y = y1…yN is known,

Define:
Aij = # times state transition i→j occurs in y
Bik = # times state i in y emits k in x

We can show that the maximum likelihood parameters θ are:

What if x is continuous? We can treat                           as N×T
observations of, e.g., a Gaussian, and apply learning rules for Gaussian …
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Supervised ML estimation, ctd.
Intuition:

When we know the underlying states, the best estimate of θ is the 
average frequency of transitions & emissions that occur in the training 
data

Drawback:
Given little data, there may be overfitting:

P(x|θ) is maximized, but θ is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 casino rolls, we observe

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
y = F, F, F, F, F, F, F, F, F, F

Then: aFF = 1; aFL = 0
bF1 = bF3 = .2; 
bF2 = .3; bF4 = 0; bF5 = bF6 = .1 
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Pseudocounts
Solution for small training sets:

Add pseudocounts
Aij = # times state transition i→j occurs in y + Rij
Bik = # times state i in y emits k in x + Sik

Rij, Sij are pseudocounts representing our prior belief
Total pseudocounts: Ri = ΣjRij , Si = ΣkSik , 

--- "strength" of prior belief, 
--- total number of imaginary instances in the prior

Larger total pseudocounts ⇒ strong prior belief

Small total pseudocounts: just to avoid 0 probabilities --- smoothing

This is equivalent to Bayesian est. under a uniform prior with 
"parameter strength" equals to the pseudocounts

Eric Xing 14

MLE for general BNs
If we assume the parameters for each CPD are globally 
independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one 
per node:
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Consider the distribution defined by the directed acyclic GM:

This is exactly like learning four separate small BNs, each of 
which consists of a node and its parents.

Example: A directed model
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MLE for BNs with tabular CPDs
Assume each CPD is represented as a table (multinomial) 
where

Note that in case of multiple parents,      will have a composite 
state, and the CPD will be a high-dimensional table
The sufficient statistics are counts of family configurations 

The log-likelihood is

Using a Lagrange multiplier 
to enforce               , we get:
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ML Structural Learning for 
completely observed 

GMs 
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Information Theoretic 
Interpretation of ML
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Information Theoretic 
Interpretation of ML (con'd)
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Structural Search
How many graphs over n nodes?

How many trees over n nodes?

But it turns out that we can find exact solution of an optimal 
tree (under MLE)!

Trick: in a tree each node has only one parent!
Chow-liu algorithm

)(
22nO

)!(nO
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Chow-Liu tree learning algorithm
Objection function:

Chow-Liu:
For each pair of variable xi and xj

Compute empirical distribution:

Compute mutual information:

Define a graph with node x1,…, xn

Edge (I,j) gets weight 
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Chow-Liu algorithm (con'd)
Objection function:

Chow-Liu:
Optimal tree BN

Compute maximum weight spanning tree
Direction in BN: pick any node as root, do breadth-first-search to define 
directions
I-equivalence:
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Structure Learning for general 
graphs

Theorem:
The problem of learning a BN structure with at most d parents is 
NP-hard for any (fixed) d≥2

Most structure learning approaches use heuristics
Exploit score decomposition 
Two heuristics that exploit decomposition in different ways

Greedy search through space of node-orders

Local search of graph structures

Eric Xing 24

Order search versus graph 
search

Order search advantages
For fixed order, optimal BN –more “global”optimization
Space of orders much smaller than space of graphs

Graph search advantages
Not restricted to k parents
Especially if exploiting CPD structure, such as CSI
Cheaper per iteration
Finer moves within a graph
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Probabilistic statements of Θ is conditioned on the values of the 
observed variables Aobs and prior p( |χ)

(A,B,C,D,E,…)=(T,F,F,T,F,…)
A= (A,B,C,D,E,…)=(T,F,T,T,F,…)
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(A,B,C,D,E,…)=(F,T,T,T,F,…)
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Learning partially observed  
GMs

Z

X

The data:
{(x(1)), (x(2)), (x(3)), ... (x(N))} 
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Gaussian Mixture Models (GMMs)
Consider a mixture of K Gaussian components:

This model can be used for unsupervised clustering.
This model (fit by AutoClass) has been used to discover new kinds of 
stars in astronomical data, etc.

∑ Σ=Σ
k kkkn xNxp ),|,(),( µπµ
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Gaussian Mixture Models (GMMs)
Consider a mixture of K Gaussian components:

Z is a latent class indicator vector:

X is a conditional Gaussian variable with a class-specific mean/covariance

The likelihood of a sample:
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Why is Learning Harder?
In fully observed iid settings, the log likelihood decomposes 
into a sum of local terms (at least for directed models).

With latent variables, all the parameters become coupled 
together via marginalization
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Recall MLE for completely observed data

Data log-likelihood

MLE

What if we do not know zn?
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Expectation-Maximization
Start: 

"Guess" the centroid µk and coveriance Σk of each of the K clusters 

Loop

Eric Xing 32

Example: Gaussian mixture 
model

A mixture of K Gaussians:
Z is a latent class indicator vector

X is a conditional Gaussian variable with class-specific mean/covariance

The likelihood of a sample:

The expected complete log likelihood
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We maximize           iteratively using the following           
iterative procedure:

─ Expectation step: computing the expected value of 
the sufficient statistics of the hidden variables (i.e., z) 
given current est. of the parameters (i.e., π and µ). 

Here we are essentially doing inference

∑ ),|,(
),|,(),,|( )()()(

)()()(
)()()(

)(

i

t
i

t
in

t
i

t
k

t
kn

t
kttk

nq
k
n

tk
n xN

xNxzpz t Σ
Σ

=Σ===
µπ

µπµτ 1

)(θcl

E-step

Eric Xing 34

We maximize           iteratively using the following           
iterative procudure:

─ Maximization step: compute the parameters under               
current results of the expected value of the hidden variables

This is isomorphic to MLE except that the variables that are hidden are 
replaced by their expectations (in general they will by replaced by their 
corresponding "sufficient statistics") 
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Theory underlying EM
What are we doing?

Recall that according to MLE, we intend to learn the model 
parameter that would have maximize the likelihood of the 
data. 

But we do not observe z, so computing 

is difficult!

What shall we do?
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Complete & Incomplete Log 
Likelihoods

Complete log likelihood
Let X denote the observable variable(s), and Z denote the latent variable(s). 
If Z could be observed, then

Usually, optimizing lc() given both z and x is straightforward (c.f. MLE for fully 
observed models).
Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of 
factors, the parameter for each factor can be estimated separately.
But given that Z is not observed, lc() is a random quantity, cannot be 
maximized directly.

Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

This objective won't decouple 
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Expected Complete Log 
Likelihood
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For any distribution q(z), define expected complete log likelihood:

A deterministic function of θ
Linear in lc() --- inherit its factorizabiility
Does maximizing this surrogate yield a maximizer of the likelihood?

Jensen’s inequality

Eric Xing 38

Lower Bounds and Free Energy
For fixed data x, define a functional called the free energy:

The EM algorithm is coordinate-ascent on F :
E-step:

M-step:
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E-step: maximization of expected 
lc w.r.t. q

Claim: 

This is the posterior distribution over the latent variables given the data 
and the parameters. Often we need this at test time anyway (e.g. to 
perform classification).

Proof (easy): this setting attains the bound l(θ;x)≥F(q,θ )

Can also show this result using variational calculus or the fact 
that
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E-step ≡ plug in posterior 
expectation of latent variables

Without loss of generality: assume that p(x,z|θ) is a 
generalized exponential family distribution:

Special cases: if p(X|Z) are GLIMs, then 

The expected complete log likelihood under                      
is
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M-step: maximization of expected 
lc w.r.t. θ

Note that the free energy breaks into two terms:

The first term is the expected complete log likelihood (energy) and the 
second term, which does not depend on θ, is the entropy.

Thus, in the M-step, maximizing with respect to θ for fixed q
we only need to consider the first term:

Under optimal qt+1, this is equivalent to solving a standard MLE of fully 
observed model p(x,z|θ), with the sufficient statistics involving z
replaced by their expectations w.r.t. p(z|x,θ).
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Example: HMM
Supervised learning: estimation when the “right answer” is known

Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, 

as he changes dice and produces 10,000 rolls

Unsupervised learning: estimation when the “right answer” is 
unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the 

CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don’t see when he 

changes dice

QUESTION: Update the parameters θ of the model to maximize P(x|θ) -
-- Maximal likelihood (ML) estimation 
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The Baum Welch algorithm
The complete log likelihood

The expected complete log likelihood

EM
The E step

The M step ("symbolically" identical to MLE)
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Unsupervised ML estimation
Given x = x1…xN for which the true state path y = y1…yN is 
unknown,

EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters θ:

1. Estimate Aij , Bik in the training data 
How?                             , ,

2. Update θ according to Aij , Bik
Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration
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EM for general BNs
while not converged

% E-step
for each node i

ESSi = 0 % reset expected sufficient statistics
for each data sample n

do inference with Xn,H

for each node i

% M-step
for each node i

θi := MLE(ESSi )
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Summary: EM Algorithm
A way of maximizing likelihood function for latent variable models. 
Finds MLE of parameters when the original (hard) problem can be 
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current 
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

Alternate between filling in the latent variables using the best guess 
(posterior) and updating the parameters based on this guess:

E-step: 
M-step: 

In the M-step we optimize a lower bound on the likelihood. In the E-
step we close the gap, making bound=likelihood.
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Learning completely observed  
undirected GMs

Z

X

The data:
{(z(1),x(1)), (z(2),x(2)), (z(3),x(3)), ... (z(N),x(N))} 
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MLE for undirected graphical 
models

For directed graphical models, the log-likelihood decomposes 
into a sum of terms, one per family (node plus parents).
For undirected graphical models, the log-likelihood does not
decompose, because the normalization constant Z is a 
function of all the parameters

In general, we will need to do inference (i.e., marginalization)
to learn parameters for undirected models, even in the fully 
observed case.
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Feature-based Clique Potentials
So far we have discussed the most general form of an undirected 
graphical model in which cliques are parameterized by general 
potential functions ψc(xc).

But for large cliques these general potentials are exponentially
costly for inference and have exponential numbers of parameters 
that we must learn from limited data.
One solution: change the graphical model to make cliques smaller. 
But this changes the dependencies, and may force us to make more
independence assumptions than we would like.
Another solution: keep the same graphical model, but use a less 
general parameterization of the clique potentials.
This is the idea behind feature-based models.
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Features
Consider a clique xc of random variables in a UGM, e.g. three 
consecutive characters c1c2c3 in a string of English text.
How would we build a model of p(c1c2c3)?

If we use a single clique function over c1c2c3, the full joint clique potential would 
be huge: 263−1 parameters.
However, we often know that some particular joint settings of the variables in a 
clique are quite likely or quite unlikely. e.g. ing, ate, ion, ?ed, qu?, jkx, zzz,...

A “feature” is a function which is vacuous over all joint settings 
except a few particular ones on which it is high or low.

For example, we might have fing(c1c2c3) which is 1 if the string is ’ing’ and 0 
otherwise, and similar features for ’?ed’, etc.

We can also define features when the inputs are continuous. 
Then the idea of a cell on which it is active disappears, but we
might still have a compact parameterization of the feature.
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Features as Micropotentials
By exponentiating them, each feature function can be made 
into a “micropotential”. We can multiply these micropotentials
together to get a clique potential.
Example: a clique potential ψ(c1c2c3) could be expressed as:

This is still a potential over 263 possible settings, but only 
uses K parameters if there are K features.

By having one indicator function per combination of xc, we recover the 
standard tabular potential.
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Combining Features
Each feature has a weight θk which represents the numerical 
strength of the feature and whether it increases or decreases 
the probability of the clique.
The marginal over the clique is a generalized exponential 
family distribution, actually, a GLIM:

In general, the features may be overlapping, unconstrained 
indicators or any function of any subset of the clique 
variables:

How can we combine feature into a probability model?
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Feature Based Model
We can multiply these clique potentials as usual:

However, in general we can forget about associating features 
with cliques and just use a simplified form:

This is just our friend the exponential family model, with the 
features as sufficient statistics
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MLE of Feature Based UGMs
Scaled likelihood function

Instead of optimizing this objective directly, we attack its lower 
bound

The logarithm has a linear upper bound …

This bound holds for all µ, in particular, for

Thus we have 
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Generalized Iterative Scaling 
(GIS)

Lower bound of scaled loglikelihood

Define

Relax again
Assume 
Convexity of exponential:  

We have:
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GIS
Lower bound of scaled loglikelihood

Take derivative:

Set to zero

where p(t)(x) is the unnormalized version of p(x|θ(t))

Update
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Example: Conditional Random 
Fields

Allow arbitrary dependencies 
on input

Clique dependencies on labels

Use approximate inference for 
general graphs
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Alternative Learning Strategy
Recall that in CRF

We predict based on:

And we learn based on:

MaxMargin:
We predict based on:

And we learn based on:
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Max-Margin Learning

Solutions:
Convex optimization (akin to SVM) with exponentially many constrains
Many algorithms and heuristics exist

Interior-point methods
Iterative active-support elimination 
Inference based on GM
…
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Open Problems
Unsupervised CRF learning and MaxMargin Learning

We want to recognize a pattern that 
is maximally different from the rest!

What does margin or conditional likelihood mean in these cases?
Given only {Xn}, how can we define the cost function?

Algorithmic challenge
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