School of Computer Science
Carnegie Mellon

Graphical Models (1)

Representation

Eric Xing

Carnegie Mellon University
May 31, 2007

Eric Xing,
A lecture series at the Institute of Theoretical Computer
Science, Tsinghua University, May 31-June 7, 2007

Probabi ¢ Graphical Models
10-708, Fall 2007

Erie Xing
School of Computer Sciemce, Carnegle-Mellon University

Announcements

+ Samtmg date Srptecch

aae 4631
* Recitation TEA

act the st
* Clans mouresenns ks
* Tearbaak
& M T Tordan, An Butyesbur

m prepaation. Copars of chapters wil be made svalitle

» Daphne Koler snd He Priedman, By A, 0 prepancn. Copies of chapoers wil bx made avalsbie
People
S
* Euie Xing. Wean Hal 417 ¢ hour: Wednesdays &

TA
+ TBA Woan Hal 3713, Olfice hours: Fridays 4-Spm

&1

Fo——
2 Hopes, Woan Hall 4616, 285527

&0 L@B Dorm o il

Eric Xing 2




What is this?

L LA

e Classical Al and ML research ignored this phenomena

e The Problem (an example):

e you want to catch a flight at 10:00am from Beijing to Pittsburgh, can | make it if |

leave at 7am and take a Taxi at the east gate of Tsinghua?

partial observability (road state, other drivers' plans, etc.)
noisy sensors (radio traffic reports)

uncertainty in action outcomes (flat tire, etc.)

immense complexity of modeling and predicting traffic

e Reasoning under uncertainty!
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A universal task ...
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Speech recognition

Pedigree

Evolution

Planning
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Robotic control




The Fundamental Questions

e Representation
e How to capture/model uncertainties in possible worlds?
e How to encode our domain knowledge/assumptions/constraints?

e Inference
e How do | answers questions/queries

according to my model and/or based

given data?
eg.. P(X;|D)
e Learning

e What model is "right"
for my data?
e.g.: M=arg max F(D; M)

Eric Xing 5

Graphical Models x

e Graphical models are a marriage between graph theory and
probability theory

e One of the most exciting developments in machine learning
(knowledge representation, Al, EE, Stats,...) in the last two
decades...

e Some advantages of the graphical model point of view
e Inference and learning are treated together
e Supervised and unsupervised learning are merged seamlessly
e Missing data handled nicely
e A focus on conditional independence and computational issues
e Interpretability (if desired)

e Are having significant impact in science, engineering and beyond!
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What is a Graphical Model?

e The informal blurb:

e ltis a smart way to write/specify/compose/design exponentially-large
probability distributions without paying an exponential cost, and at the
same time endow the distributions with structured semantics

ey o CEeg

—>

tel  CH)

P (X, X5,X5,X4,X5,X¢,X5,Xg) P(X1g) = P(X)P(X,)P(X; | X, X,)P(X4 | X2)P(X5 | X,)
P(X4| X5, X )P(X7]|X()P(Xg| X5, X)
e A more formal description:
e It refers to a family of distributions on a set of random variables that are
compatible with all the probabilistic independence propositions encoded
by a graph that connects these variables

Eric Xing

Statistical Inference

probabilistic
generative
model

gene expression profiles
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Multivariate Distribution in High-D sese
Space o?

e A possible world for cellular signal transduction:

Receptor A X, Receptor B X,

TFF

X6
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(X X J
0000
H

Recap of Basic Prob. Concepts o
!

e Representation: what is the joint probability dist. on multiple

variables?
P(X,, X5, X3, X4, X5, X, X7, Xg,)

e How many state configurations in total? --- 28
e Are they all needed to be represented?
e Do we get any scientific/medical insight?

e Learning: where do we get all this probabilities?
e Maximal-likelihood estimation? but how many data do we need?

e Where do we put domain knowledge in terms of plausible relationships between variables, and
plausible values of the probabilities?

e |Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?

e Computing p(A|A) would require summing over all 26 configurations of the
unobserved variables

(X X ]
. . 0000
What is a Graphical Model? H
--- example from a signal transduction pathway 4

e A possible world for cellular signal transduction:

Receptor A X, Receptor B X,

TFF

X6
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GM: Structure Simplifies
Representation

e Dependencies among variables

Kinase E

Cytosol

Nucleus

...............................................................................................
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Probabilistic Graphical Models

—
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o If X{'s are conditionally independent (as described by a PGM),
joint can be factored to a product of simpler terms, e.g.,

T R P(Xy, Xy, X0 Xy Xe, Xg X5, Xg)
v

(= (e Jx ke ) = P(X;) P(Xy) P(X Xp) P(X,| X5) P(Xs| X))
P(Xql X5, X,) P(X5| X5) P(Xgl Xs, X)

‘ Stay tune for what are these independencies! ‘

a Why we may favor a PGM?

a Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !
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[ X X ]
0000
0000
. a:
GM: Data Integration .
i
M&& Receptor B
DO . .
%\@:‘&@&t\\\ Kinase D Kinase E
i 5 2
[ X X ]
0000
S
Probabilistic Graphical Models 2
o If X{'s are conditionally independent (as described by a PGM), the

joint can be factored to a product of simpler terms, e.g.,

* P(Xy, X Xg X o Xe, Xg, Xy Xo)
i % RiEb) % Kkt % = P(X;) P(X,| X;) P(Xs| X,)
. .

a Why we may favor a PGM?

a Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !

a Modular combination of heterogeneous parts — data fusion

Eric Xing




Rational Statistical Inference

The Bayes Theorem:

Posterior Likelihood Prior
probability

probability
N p(d |h) p(h)
h|d)=
Pe) Y. pd[h)p(h)

h'eH

Sum over space
of hypotheses

e This allows us to capture uncertainty about the model in a principled way

e But how can we specify and represent a complicated model?
e Typically the number of genes need to be modeled are in the order of thousands!

GM: MLE and Bayesian Learning o

e Probabilistic statements of @ is conditioned on the values of the

observed variables A, . and prior p( |z)
p(&; x)

r
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posterior likelihood  prior
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Probabilistic Graphical Models

o If X{'s are conditionally independent (as described by a PGMJ, the
joint can be factored to a product of simpler terms, e.g.,

= [Fopere ]

P(Xy, Xg X5 X o Xe X0 Xo0 Xo)

[Knmec_ ] % (Rt ] x,

(inaseE ],

/

= P(X) P(X3) P(X] Xy) P(X,] X;) P(Xg| X5)

P(Xgl X3, X,) P(X7] Xg) P(Xgl Xs, Xg)

a Why we may favor a PGM?
a Incorporation of domain knowledge and causal (logical) structures

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28in representation cost !

o Modular combination of heterogeneous parts — data fusion

a Bayesian Philosophy
e Knowledge meets data

Eric Xing
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Probabilistic Inference

e Computing statistical queries regarding the network, e.g.:
e Is node X independent on node Y given nodes Z,W ?
e What is the probability of X=true if (Y=false and Z=true)?
e What is the joint distribution of (X,Y) if Z=false?
e What is the likelihood of some full assignment?

e What is the most likely assignment of values to all or a subset the nodes of the
network?

e General purpose algorithms exist to fully automate such computation
e Computational cost depends on the topology of the network
e Exactinference:
The junction tree algorithm
e Approximate inference;
Loopy belief propagation, variational inference, Monte Carlo sampling

Eric Xing

21

A few myths about graphical
models 2

<

e They require a localist semantics for the nodes
e They require a causal semantics for the edges X
e They are necessarily Bayesian X

e They are intractable V*

Eric Xing
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Two types of GMs

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xy, Xy X3, X4, X5, Xg, X7, Xg)

= P(Xy) P(Xp) P(X3] X;) P(X,] X5) P(X5[ X5)
P(Xel X3, X4) P(X7] Xg) P(Xg| X5, X5)

e Undirected edges simply give correlations between variables
(Markov Random Field or Undirected Graphical model):

P(le xzv x3v XA,; X51 x5, X7, XS)

= 1Z exp{E(X)+EG)+E(Xg, X)) +E(Xy, Xo)+E(Xe, Xo)
+ E(Xg, Xa X)+E(X7, X)+E(Xg, X5, Xo)}

Specification of a directed GM e

e There are two components to any GM:
e the qualitative specification
e the quantitative specification

Eric Xing 24
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Bayesian Network: Factorization Theorem

e Theorem:

Given a DAG, The most general form of the probability
distribution that is consistent with the graph factors according
to “node given its parents”:

POX)=T]P(X;1X,)

i=ld

where X_ is the set of parents of X;, d is the number of nodes
(variables) in the graph.

Eric Xing

P(X1 Xa, Xg, X4, X5, X, X7, Xg)

C5) = P(X) P(X,) P(Xel X1) P(X4| X) P(Xe] X,)
P(X6| X3' X4) P(X7| XG) P(X8| XS' XG)

25

Qualitative Specification

e Where does the qualitative specification come from?

Eric Xing

Prior knowledge of causal relationships

Prior knowledge of modular relationships

Assessment from experts

Learning from data

We simply link a certain architecture (e.g. a layered graph)

26
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Local Structures &
Independencies

e Common parent
e Fixing B decouples A and C

"given the level of gene B, the levels of A and C are independent"

e Cascade
e Knowing B decouples A and C

EO—>EDO—+>E>

"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"

e V-structure 4 > @B >

e Knowing C couples A and B a
because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

e The language is compact, the concepts are rich!

A simple justification s

"

Ajc B

PA, R O=p@pEppiciz)

pEET
PACIB)= ’E@Zg PEs3

= PAJB) PLEIE)

Eric Xing 28
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Graph separation criterion

\
e D-separation criterion for Bayesian networks (D for Directed

edges):

Definition: variables x and y are D-separated (conditionally
independent) given z if they are separated in the moralized
ancestral graph

e Example:
N
P O, .
= z = 7 s
original graph ancestral moral ancestral
Eric Xing 2

Global Markov properties of
DAGs o

e Xis d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary

conditions):
r L 2 - S- -
=, =T « Defn: I{6)=all independence
® © properties that correspond to d-
® 0 separation:
g C — ~ I(G) = {x 1 Z‘Y :dsepG(X;Z\Y)}
5 * D-separation is sound and complete
‘ .y

. (1] (1]}
Eric sy 30
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Example: 2
X e Complete the I(G) of this |
4 graph:
X4 X X
Xe. Il Xep
X3
)(?JL )(L/- ZQ{} Y&g
X2 Yo i e l Xl
){5 AL X [ X |
Y& LLGQ .Xﬂ l)(i
Summary: Conditional Independence §§§:
Semantics in an BN ol

Structure: DAG

* Meaning: a node is
conditionally independent
of every other node in the
network outside its Markov
blanket

 Local conditional distributions
(CPD) and the DAG
completely determine the
joint dist.

Children's co-parent

 Give causality relationships,
and facilitate a generative
process

Eric Xing 32
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Toward quantitative specification of
probability distribution

e Separation properties in the graph imply independence

properties about the associated variables

The Equivalence Theorem

For a graph G,

Let D, denote the family of all distributions that satisfy I(G),

Let 9, denote the family of all distributions that factor according to G,

PO =TTP(X/1X,)

Then 9,=9,.

For the graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

Eric Xing 33

Conditional probability tables
(CPTs) o°
a® [0.75 b® ]0.33 P(a,b,c.d)=

al 1025 bl 1067 P(a)P(b)P(c|a,b)P(d|c)

afbo a%b’ a'b? a'b’
c 0.45 1 0.9 0.7
c! 0.55 0 0.1 0.3

l |t
’ d® |03 |05

Eric Xing 34
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.. aype . [ X X ]
Conditional probability density sels
func. (CPDs) o2

|

P(a,b,c.d) =

A~N(, ;) B~N(, 5,) P(a)P(b)P(cla,b)P(d|c)

O )

s\‘\‘\“\‘ “ ‘

"'\c""‘l&“&‘%“‘*‘&‘~ﬂ~~‘ M
- s
| S
’ D~N(u,+C, 2,) c

D

P 00
Conditionally Independent sels
Observations o°

Model parameters
@ @@ @D o

18



“Plate” Notation

. Model parameters

Data = {y,,...y.}

i=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner

Eric Xing 37

Example: Gaussian Model

. Generative model:
\

p(y‘l""yn | W, G) = 1_‘[i p(y| | W, G)
p(data | parameters)

p(D | 0)
where 0 = {u, ¢}

i=1:n

= Likelihood = p(data | parameters)
=p(D[6)
=L(9)

= Likelihood tells us how likely the observed data are conditioned on a
particular setting of the parameters
= Often easier to work with log L (6)

Eric Xing 38
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. . (X X J
Example: Bayesian Gaussian sect
Model :
\
i=1:n
Note: priors and parameters are assumed independent here
[ X X ]
0000
s
Example o

e Speech recognition

Concepe: 1 xiggle word

S——
) et

et t 4 b —

T3 ==

®» ® ® . ©

Hidden Markov Model

40
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Hidden Markov Model:

from static to dynamic mixture models

Static mixture Dynamic mixture

\\: / - L "X x /JI P

& vl \‘?—\ T

3

[ X X ]
Hidden Markov Model: sese
from static to dynamic mixture models o
Static mixture Dynamic mixture
i ‘ Q

x S
| S— |
\\: / - L *x L. /J -

;( 3 v \z'\ i

The underlying

1

source:

Speech signal,

dice,

o meseee () (@ @ - @
Phonemes,
N
42

sequence of rolls,

Eric Xing
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The Dishonest Casino

A casino has two dice:
e Fair die
P(1) = P(2) =P(3) = P(5) = P(6) = 1/6
e Loaded die
P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2
Casino player switches back-&-forth

between fair and loaded die once every
20 turns

Game:
1.You bet $1
2.You roll (always with a fair die)

3. Casino player rolls (maybe with fair die,
maybe with loaded die)

4. Highest number wins $2

[ X X ]
eecs
. . [
A stochastic generative model 2

e Observed sequence:

OO

B

e Hidden sequence (a parse or segmentation):

O—O—O—O—@—

Eric Xing




Definition (of HMM)

e Observation space
Alphabetic set: (j:{cl,cz,-~~,ck} Q @ @
Euclidean space:  R?

e Index set of hidden states Q @ @

[={1,2,---, M}
e Transition probabilities between any two states
Py =llyli=D=a,
or  py;lyli=1)~ Multinomial(a,.yl,a,l ..... a  )Viel

e Start probabilities
p(v,) ~ Multinomial(z,, 7,.,..., 7, ).

e Emission probabilities associated with each state
p(x, | yi =1) ~ Multinomial(b,,,b,,..., 5 ¢ ) Vi 1.
or in general:
pix Lyl =1)~f(10,)viel

Eric Xing 45

. . ....
Puzzles regarding the dishonest | 832¢
H [ X J
casino .
GIVEN: A sequence of rolls by the casino player
64621461461361266616646616366163661636165156 612356
QUESTION
e How likely is this sequence, given our model of how the casino
works?
e This is the EVALUATION problem in HMIMs
e What portion of the sequence was generated with the fair die, and
what portion with the loaded die?
e This is the DECODING question in HMMs
e How “loaded” is the loaded die? How “fair” is the fair die? How often
does the casino player change from fair to loaded, and back?
e This is the LEARNING question in HMMs
Eric Xing 46
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Probability of a parse

e Given a sequence X = x;...... P Q @ @

andaparsey =y, ...... . Vs

()
e To find how likely is the parse: Q @ @ @

(given our HMM and the sequence)

P, y)  =p(Xq...... Xpr Yy veeeens Y1) (Joint probability)
=p(yy) Py YD) PO 1Y) PG TYS) - PO | Yrg) P V)
=p(yy) PO, Y1) o PO Y1) X PO YD) PG 1Y) - PO Ye)

=Py oo Y1) P Xl Ypsoeee Y1)
def M i def M i def MK 1%
Let =, = 1_1[[7[/] v Gy, T H[au]y ., and B, = Hﬂ[b’k]
i= 7=t /=1 k=i

”Y1aV1yY2 '“aYTmyT bh‘xi ’ ..byT'XT

T T
e Marginal probability: p(x) = Zy p(x,y) = Zyl Zyz---ZyN . ] Ta, ., ] pCx1y.)
t=2 t=1
e Posterior probability: p(y|x) = p(x,y)/ p(x)

[ X X ]

esce

[
Example, con'd o

e Evolution

ancestor

T years

Tree Model

Eric Xing 48
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Example, con'd

e Genetic Pedigree

Two types of GMs 3o’

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(le XZY X3' X4* )(5Y XGV X7* XS)

= P(Xp P(Xp) P(X3l Xq) P(X4l X5) P(Xs| Xy)
P(Xgl X3, X4) P(X7| Xg) P(Xg| X5, Xe)

e Undirected edges simply give correlations between variables
(Markov Random Field or Undirected Graphical model):

P(X1, Xa, Xg, Xg, X5, Xg, X7, Xg)

= UZ exp{E(X)+EMHE(Xg, X HE(X g, XoHE(Xs, X,)
+ E(X, Xa, X+E(X7, X HE(Xg, X5, Xo)}

Eric Xing 50
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Semantics of Undirected Graphs

e Let H be an undirected graph: i
N /N

/ . NN [~ \
Ty~ ] !
II

,u"l | ¥ o ¥ )I"/l\_,&\ \
[~ ] 7e S
| | I A
Ef} [ fﬁ |x(2/ !
\W"l N/ \
% 1 — \
\ '1.“H /

Xe
e B separates A and C if every path from a node in A to a node
in C passes through a node in B: sep,, (A;C|B)

e A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates Aand C, A is
independent of C given B: I(H) = {(ALC\B) :sepy, (A;C\B)}

[ X X ]
0000
. HE
Cligues :

e For G={V,E}, a complete subgraph (clique) is a subgraph
G'={V'cV,E'cE} such that nodes in V"are fully interconnected

e A (maximal) clique is a complete subgraph s.t. any superset
V"sV'is not complete.

e A sub-clique is a not-necessarily-maximal clique.

()
o
e Example: G

e max-cliques = {A,B,D}, {B,C,D},
e sub-cliques = {A,B}, {C,D}, ...~ all edges and singletons

Eric Xing 52
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Quantitative Specification

\
e Defn: an undirected graphical model represents a distribution

P(X,,....X,) defined by an undirected graph H, and a set of
positive potential functions y, associated with cliques of H,

s.t. 1
P %) == Jwe(x0)
ZZ ceC
where Z is known as the partition function:

Z=> []w.(x)

X1y..0 Xy CEC

e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic" score of
their joint configuration.

Eric Xing 53

Example UGM — using max §§:
cliques o

OO G
G W (Xi24) W (X234) ,E@j

1
P(Xy, X2, X3, %4) :zl//c (X124) ¥ ¥ (X234)

Z= Zl//c(x124)x‘//c(xz34)

X1, X2, X3, %4

e For discrete nodes, we can represent P(X,.,) as two 3D tables
instead of one 4D table

Eric Xing 54
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Example UGM — using subcliques

1
P(X;, Xz, X3, X4) :21_[‘/41' (X;)

ij
1
= Wi (X2)W1a (Xea)W 23 (X3 )W 24 (X24 )W 34 (X34)

Z
z= 2 Tlwi0s)

Xq,Xp,X3,Xq ]

e For discrete nodes, we can represent P(X,.,) as 5 2D tables
instead of one 4D table

Eric Xing 55

Hammersley-Clifford Theorem

e If arbitrary potentials are utilized in the following product
formula for probabilities,

P(Xl""'xn) :;HWC(XC)

ceC

zZ=> [lv.x)

X1..0 Xy CeC

then the family of probability distributions obtained is exactly
that set which respects the qualitative specification (the
conditional independence relations) described earlier

Eric Xing 56
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Interpretation of Clique Potentials

CO——@

e The model implies X 1Z|Y. This independence statement
implies (by definition) that the joint must factorize as:

plx.y.2)=ply)px|y)p(zly)

e We can write this as:  PXV:2)=pxpzly)  pyt
px.y.z)=px|y)p(z.y)

e cannot have all potentials be marginals
e cannot have all potentials be conditionals

e The positive clique potentials can only be thought of as

general "compatibility”, "goodness" or "happiness" functions

over their variables, but not as probability distributions.

Eric Xing

57

Summary: Conditional Independence
Semantics in an MRF

Structure: an undirected
graph

* Meaning: a node is
conditionally independent of
every other node in the network
given its Directed neighbors

+ Local contingency functions
(potentials) and the cliques in
the graph completely determine
the joint dist.

« Give correlations between

variables, but no explicit way to
generate samples

Eric Xing

58
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Exponential Form

e Constraining clique potentials to be positive could be inconvenient (e.g.,
the interactions between a pair of atoms can be either attractive or
repulsive). We represent a clique potential y(x;) in an unconstrained
form using a real-value "energy" function ¢,(x,):

v (X.) =expl-g,(x.)}
For convenience, we will call ¢,(x.) a potential when no confusion arises from the context.
e This gives the joint a nice additive strcuture

P00 Sexp| - 30.00)) = S expl- HO0)

ceC
where the sum in the exponent is called the "free energy":

H(X) =D ¢.(x.)

ceC
e In physics, this is called the "Boltzmann distribution".

e In statistics, this is called a log-linear model.

[ X X ]
eecs
. eoo
Example: Boltzmann machines 2

e A fully connected graph with pairwise (edge) potentials on
binary-valued nodes (for x, e {~1+1}or x, € {0,1}) is called a
Boltzmann machine

P(Xy, Xg, X5, X4) = ;exp{Zﬂj (xi_xj)}

;exp{zoijxixj + )@ +C}
ij i
e Hence the overall energy function has the form:

H(X) =D, (% =)0 (x; = 1) = (X~ )" O(x ~ )

Eric Xing 60
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Example: Ising models

\
Nodes are arranged in a regular topology (often a regular

packing grid) and connected only to their geometric
neighbors.

p(X)—;eXp{ 2 O; XX + Z@ioxi}

i,jeN; i

Same as sparse Boltzmann machine, where 6',]7&0 iff 7/ are
neighbors.

e e.g., nodes are pixels, potential function encourages nearby pixels to
have similar intensities.

Potts model: multi-state Ising model.
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Application: Modeling Go
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This is the middle position of a Go game.
QOverlaid is the estimate for the probability of
becoming black ar white for every intersection.
Large sguares mean the probability is higher.
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Example: sels
Conditional Random Fields 3
0 @ @ ---* e Discriminative
() Py %)= Z(;X) exp{gefé(x,yc)}

e Doesn’'t assume that features

™ _
are independent
.

e When labeling X; future
observations are taken into
account
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Conditional Models

e Conditional probability P(label sequence y | observation sequence x)
rather than joint probability P(y, x)

e Specify the probability of possible label sequences given an observation
sequence

e Allow arbitrary, non-independent features on the observation
sequence X

e The probability of a transition between labels may depend on past
and future observations

e Relax strong independence assumptions in generative models

Eric Xing 64

32



Conditional Distribution

e |[fthe graph G =(V, E) of Y is a tree, the conditional distribution over
the label sequence Y =y, given X =X, by fundamental theorem of
random fields is:

Py (Y[ X) OCEXp(Z A f @yl x)+ Z ﬂkgk(V,ylva)j

ecEk veV k
— X is a data sequence OmO Q
— yis alabel sequence \. -
— vis avertex from vertex set V = set of label random variables X, X,
— eis an edge from edge set E over V
- f,and g, are given and fixed. g, is a Boolean vertex feature; f, is a Boolean edge
feature
- kis the number of features
- O=(A, A A i, oo 1) A, and g, are parameters to be estimated
- Yleis the set of components of y defined by edge e
- yl, is the set of components of y defined by vertex v
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Conditional Distribution (cont’d) |:

e CRFs use the observation-dependent normalization Z(x) for
the conditional distributions:

pg(y|x)=iexp(zﬂkfk(e,yle,xw D ykgk(v,ylv,x)j

Z (X) ecEk veV k

e Z(x) is a normalization over the data sequence x
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Conditional Random Fields

1
_Z(H,X)

exp{ZHcf[ (X,y[)}

Py | x)

e Allow arbitrary dependencies
on input

e Clique dependencies on labels

e Use approximate inference for
general graphs

Why graphical models s

e A language for communication
e A language for computation
e A language for development

e Oirigins:
e Wright 1920’s

e Independently developed by Spiegelhalter and Lauritzen in statistics and
Pearl in computer science in the late 1980’s
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Why graphical models

e Probability theory provides the glue whereby the parts are combined,
ensuring that the system as a whole is consistent, and providing ways to
interface models to data.

e The graph theoretic side of graphical models provides both an intuitively
appealing interface by which humans can model highly-interacting sets of
variables as well as a data structure that lends itself naturally to the design of
efficient general-purpose algorithms.

e Many of the classical multivariate probabilistic systems studied in fields
such as statistics, systems engineering, information theory, pattern
recognition and statistical mechanics are special cases of the general
graphical model formalism

e The graphical model framework provides a way to view all of these systems
as instances of a common underlying formalism.

--- M. Jordan
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