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What is this?

Classical AI and ML research ignored this phenomena 

The Problem (an example): 
you want to catch a flight at 10:00am from Beijing to Pittsburgh, can I make it if I 
leave at 7am and take a Taxi at the east gate of Tsinghua?

partial observability (road state, other drivers' plans, etc.)
noisy sensors (radio traffic reports)
uncertainty in action outcomes (flat tire, etc.)
immense complexity of modeling and predicting traffic

Reasoning under uncertainty!
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A universal task …

Speech recognitionSpeech recognition

Information retrievalInformation retrieval

Computer visionComputer vision

Robotic controlRobotic control

PlanningPlanning

GamesGames

EvolutionEvolution

PedigreePedigree
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Representation
How to capture/model uncertainties in possible worlds?
How to encode our domain knowledge/assumptions/constraints?

Inference
How do I answers questions/queries 
according to my model and/or based 
given data?

Learning
What model is "right" 
for my data?

The Fundamental Questions
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Graphical Models
Graphical models are a marriage between graph theory and 
probability theory 

One of the most exciting developments in machine learning 
(knowledge representation, AI, EE, Stats,…) in the last two 
decades…

Some advantages of the graphical model point of view
Inference and learning are treated together
Supervised and unsupervised learning are merged seamlessly
Missing data handled nicely 
A focus on conditional independence and computational issues
Interpretability (if desired)

Are having significant impact in science, engineering and beyond!
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What is a Graphical Model?
The informal blurb:

It is a smart way to write/specify/compose/design exponentially-large 
probability distributions without paying an exponential cost, and at the 
same time endow the distributions with structured semantics

A more formal description:
It refers to a family of distributions on a set of random variables that are 
compatible with all the probabilistic independence propositions encoded 
by a graph that connects these variables
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probabilisticprobabilistic
generativegenerative

modelmodel

gene expression profilesgene expression profiles

Statistical Inference
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statisticalstatistical
inferenceinference

gene expression profilesgene expression profiles

Statistical Inference
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Multivariate Distribution in High-D 
Space

A possible world for cellular signal transduction: 
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Representation: what is the joint probability dist. on multiple 
variables?

How many state configurations in total? --- 28

Are they all needed to be represented?
Do we get any scientific/medical insight?

Learning: where do we get all this probabilities? 
Maximal-likelihood estimation? but how many data do we need?
Where do we put domain knowledge in terms of plausible relationships between variables, and 
plausible values of the probabilities?

Inference: If not all variables are observable, how to compute the 
conditional distribution of latent variables given evidence?

Computing p(H|A) would require summing over all 26 configurations of the 
unobserved variables

),,,,,,,,(  87654321 XXXXXXXXP

Recap of Basic Prob. Concepts
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What is a Graphical Model?
--- example from a signal transduction pathway

A possible world for cellular signal transduction: 
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GM: Structure Simplifies 
Representation

Dependencies among variables
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If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g.,

Why we may favor a PGM?
Incorporation of domain knowledge and causal (logical) structures

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

Probabilistic Graphical Models
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2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost ! 

Stay tune for what are these independencies!
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GM: Data Integration
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If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

Why we may favor a PGM?
Incorporation of domain knowledge and causal (logical) structures

Modular combination of heterogeneous parts – data fusion

Probabilistic Graphical Models

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost ! 
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X2) P(X4| X2) P(X5| X2) P(X1) P(X3| X1) 
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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The Bayes Theorem:

This allows us to capture uncertainty about the model in a principled way

But how can we specify and represent a complicated model?
Typically the number of genes need to be modeled are in the order of thousands!
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GM: MLE and Bayesian Learning

Probabilistic statements of Θ is conditioned on the values of the 
observed variables Aobs and prior p( |χ)

(A,B,C,D,E,…)=(T,F,F,T,F,…)
A= (A,B,C,D,E,…)=(T,F,T,T,F,…)

……..
(A,B,C,D,E,…)=(F,T,T,T,F,…)
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If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

Why we may favor a PGM?
Incorporation of domain knowledge and causal (logical) structures

Modular combination of heterogeneous parts – data fusion

Bayesian Philosophy
Knowledge meets data

Probabilistic Graphical Models

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost ! 

θ α θ⇒⇒

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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(Picture by Zoubin 
Ghahramani and 
Sam Roweis)

An 
(incomplete) 

genealogy 
of graphical 

models
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Computing statistical queries regarding the network, e.g.:
Is node X independent on node Y given nodes Z,W ?
What is the probability of X=true if (Y=false and Z=true)?
What is the joint distribution of (X,Y) if Z=false?
What is the likelihood of some full assignment?
What is the most likely assignment of values to all or a subset the nodes of the 
network?

General purpose algorithms exist to fully automate such computation 
Computational cost depends on the topology of the network
Exact inference: 

The junction tree algorithm
Approximate inference; 

Loopy belief propagation, variational inference, Monte Carlo sampling 

Probabilistic Inference
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They require a localist semantics for the nodes

They require a causal semantics for the edges 

They are necessarily Bayesian 

They are intractable

A few myths about graphical 
models
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Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

Undirected edges simply give correlations between variables 
(Markov Random Field or Undirected Graphical model):

Two types of GMs
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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Specification of a directed GM
There are two components to any GM:

the qualitative specification
the quantitative specification
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Bayesian Network: Factorization Theorem

Theorem: 
Given a DAG, The most general form of the probability 
distribution that is consistent with the graph factors according 
to “node given its parents”:

where      is the set of parents of Xi, d is the number of nodes 
(variables) in the graph.
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Qualitative Specification
Where does the qualitative specification come from?

Prior knowledge of causal relationships
Prior knowledge of modular relationships
Assessment from experts
Learning from data
We simply link a certain architecture (e.g. a layered graph) 
…
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A CB

A

C

B

A

B

C

Local Structures & 
Independencies

Common parent
Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent"

Cascade
Knowing B decouples A and C
"given the level of gene B, the level gene A provides no 
extra prediction value for the level of gene C"

V-structure
Knowing C couples A and B
because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

The language is compact, the concepts are rich!

Eric Xing 28

A simple justification

A

B

C
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Graph separation criterion
D-separation criterion for Bayesian networks (D for Directed 
edges):

Definition: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

Example:

Eric Xing 30

Global Markov properties of 
DAGs

X is d-separated (directed-separated) from Z given Y if we can't 
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)=all independence 
properties that correspond to d-
separation:

• D-separation is sound and complete

{ });(dsep:)(I YZXYZXG G⊥=
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Example: 
Complete the I(G) of this 
graph:

x1

x2

x4

x3
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Structure: DAG

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional distributions 
(CPD) and the DAG
completely determine the 
joint dist. 

• Give causality relationships, 
and facilitate a generative
process

X

Y1 Y2

Descendent

Ancestor

Parent

Children's co-parentChildren's co-parent

Child

Summary: Conditional Independence 
Semantics in an BN
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Toward quantitative specification of 
probability distribution

Separation properties in the graph imply independence 
properties about the associated variables

The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,

Then D1≡D2.

For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents
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Conditional probability tables 
(CPTs)
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A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(µa, Σa) B~N(µb, Σb)

C~N(A+B, Σc)

D~N(µa+C, Σa)
D

C
P(

D|
 C

)

Conditional probability density 
func. (CPDs)
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Conditionally Independent 
Observations

y1

θ

Data

Model parameters

y2 yn-1 yn
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“Plate” Notation

yi

i=1:n

θ

Data = {y1,…yn}

Model parameters

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Example: Gaussian Model

yi

i=1:n

µ Generative model:   

p(y1,…yn | µ, σ) = Πi p(yi | µ, σ)

=   p(data | parameters)
=   p(D | θ)     

where θ = {µ, σ}

σ

Likelihood = p(data | parameters) 
= p( D | θ ) 
= L (θ) 

Likelihood tells us how likely the observed data are conditioned on a 
particular setting of the parameters

Often easier to work with log L (θ) 
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Example: Bayesian Gaussian 
Model

yi

i=1:n

µ

Note: priors and parameters are assumed independent here

σα β

Eric Xing 40

Example

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Hidden Markov Model

Speech recognition
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Hidden Markov Model: 
from static to dynamic mixture models

Dynamic mixtureDynamic mixture

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Static mixtureStatic mixture

AX1

Y1

N
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Hidden Markov Model: 
from static to dynamic mixture models

Dynamic mixtureDynamic mixture

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Static mixtureStatic mixture

AX1

Y1

N
The sequence:The sequence:

The underlying The underlying 
source:source:

Phonemes,Phonemes,

Speech signal, Speech signal, 

sequence of rolls, sequence of rolls, 

dice,dice,
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The Dishonest Casino

A casino has two dice:
Fair die
P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
Loaded die
P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-&-forth 
between fair and loaded die once every 
20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, 

maybe with loaded die)
4. Highest number wins $2

Eric Xing 44

A stochastic generative model
Observed sequence:

Hidden sequence (a parse or segmentation):

A

B

1 4 3 6 6 4

BA A ABB
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Definition (of HMM)
Observation space

Alphabetic set:
Euclidean space:

Index set of hidden states

Transition probabilities between any two states

or

Start probabilities

Emission probabilities associated with each state

or in general:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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Puzzles regarding the dishonest 
casino 

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION
How likely is this sequence, given our model of how the casino 
works?

This is the EVALUATION problem in HMMs

What portion of the sequence was generated with the fair die, and 
what portion with the loaded die?

This is the DECODING question in HMMs

How “loaded” is the loaded die? How “fair” is the fair die? How often 
does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs
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Probability of a parse
Given a sequence x = x1……xT

and a parse y = y1, ……, yT,
To find how likely is the parse:
(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

=

Marginal probability:

Posterior probability:

[ ] ,
,

def

,

j
t

i
t

tt

yyM

ji
ijyy aa

1

1
1

+

+ ∏
=

=[ ] ,
def

iyM

i
iy

1

1
1

∏
=

= ππ [ ] ,   and
def

,

k
t

i
t

tt

xyM

i

K

k
ikxy bb ∏∏

= =

=
1 1

Let

TT yyyyy aa ,, 1211 −
Lπ

TT xyxy bb ,, L
11

∑ ∑ ∑ ∑ ∏ ∏
= =

−
==

y
yxx

1 2 11
2 1

y y y

T

t

T

t
ttyyy

N tt
yxpapp )|(),()( ,πL

)(/),()|( xyxxy ppp =

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 

Eric Xing 48

ancestor

A C

Qh
Qm

T years

?

AGAGAC

Tree Model

Example, con'd
Evolution
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Example, con'd
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g

Sg

Genetic Pedigree
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Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

Undirected edges simply give correlations between variables 
(Markov Random Field or Undirected Graphical model):

Two types of GMs
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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Semantics of Undirected Graphs
Let H be an undirected graph:

B separates A and C if every path from a node in A to a node 
in C passes through a node in B:
A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates A and C, A is 
independent of C given B:

);(sep BCAH

{ });(sep:)()(I BCABCAH H⊥=
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Cliques
For G={V,E}, a complete subgraph (clique) is a subgraph
G'={V'⊆V,E'⊆E} such that nodes in V' are fully interconnected
A (maximal) clique is a complete subgraph s.t. any superset 

V"⊃V' is not complete.
A sub-clique is a not-necessarily-maximal clique.

Example: 
max-cliques = {A,B,D}, {B,C,D}, 
sub-cliques = {A,B}, {C,D}, … all edges and singletons 

A

CC

DD BB
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Quantitative Specification
Defn: an undirected graphical model represents a distribution 
P(X1 ,…,Xn) defined by an undirected graph H, and a set of 
positive potential functions yc associated with cliques of H, 
s.t.

where Z is known as the partition function:

Also known as Markov Random Fields, Markov networks …
The potential function can be understood as an contingency 
function of its arguments assigning "pre-probabilistic" score of 
their joint configuration.   

∏
∈

=
Cc

ccn Z
xxP )(),,( xψ1

1 K

∑ ∏
∈

=
nxx Cc

ccZ
,,

)(
K1

xψ
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For discrete nodes, we can represent P(X1:4) as two 3D tables 
instead of one 4D table

Example UGM – using max 
cliques 

A

CC

DD BB

)()(),,,( 2341244321
1 xx ccZ

xxxxP ψψ ×=

∑ ×=
4321

234124
xxxx

ccZ
,,,

)()( xx ψψ

A,B,D B,C,D

)( 124xcψ )( 234xcψ
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For discrete nodes, we can represent P(X1:4) as 5 2D tables 
instead of one 4D table

Example UGM – using subcliques

A

CC

DD BB

)()()()()(

)(),,,(

34342424232314141212

4321

1

1

xxxxx

x

ψψψψψ

ψ

Z

Z
xxxxP

ij
ijij

=

= ∏

∑ ∏=
4321 xxxx ij

ijijZ
,,,

)(xψ

A,B

A,D

B,D C,D

B,C
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Hammersley-Clifford Theorem
If arbitrary potentials are utilized in the following product 
formula for probabilities, 

then the family of probability distributions obtained is exactly
that set which respects the qualitative specification (the 
conditional independence relations) described earlier 

∏
∈

=
Cc

ccn Z
xxP )(),,( xψ1

1 K

∑ ∏
∈

=
nxx Cc

ccZ
,,

)(
K1

xψ
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Interpretation of Clique Potentials

The model implies X⊥Z|Y. This independence statement 
implies (by definition) that the joint must factorize as:

We can write this as:                                           , but

cannot have all potentials be marginals
cannot have all potentials be conditionals

The positive clique potentials can only be thought of as 
general "compatibility", "goodness" or "happiness" functions 
over their variables, but not as probability distributions.

)|()|()(),,( yzpyxpypzyxp =

YXX ZZ

),()|(),,(
)|(),(),,(

yzpyxpzyxp
yzpyxpzyxp

=

=
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Structure: an undirected 
graph

• Meaning: a node is 
conditionally independent of 
every other node in the network 
given its Directed neighbors

• Local contingency functions 
(potentials) and the cliques in 
the graph completely determine 
the joint dist. 

• Give correlations between 
variables, but no explicit way to 
generate samples

X

Y1 Y2

Summary: Conditional Independence 
Semantics in an MRF
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Exponential Form
Constraining clique potentials to be positive could be inconvenient (e.g., 
the interactions between a pair of atoms can be either attractive or 
repulsive). We represent a clique potential ψc(xc)  in an unconstrained 
form using a real-value "energy" function φc(xc):

For convenience, we will call φc(xc) a potential when no confusion arises from the context.

This gives the joint a nice additive strcuture

where the sum in the exponent is called the "free energy":

In physics, this is called the "Boltzmann distribution".
In statistics, this is called a log-linear model.

{ })(exp)( cccc xx φψ −=
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Example: Boltzmann machines

A fully connected graph with pairwise (edge) potentials on 
binary-valued nodes (for                                  ) is called a
Boltzmann machine

Hence the overall energy function has the form:

1
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44 22
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Example: Ising models
Nodes are arranged in a regular topology (often a regular 
packing grid) and connected only to their geometric 
neighbors.

Same as sparse Boltzmann machine, where θij≠0 iff i,j are 
neighbors.

e.g., nodes are pixels, potential function encourages nearby pixels to 
have similar intensities.

Potts model: multi-state Ising model.

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+=
∈

∑ ∑
,

exp)(
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iijiij XXX
Z

Xp 0
1 θθ
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Application: Modeling Go
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Example: 
Conditional Random Fields

⎭
⎬
⎫

⎩
⎨
⎧

= ∑
c

ccc yxf
xZ

xyp ),(exp
),(

)|( θ
θθ
1A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Y1 Y2 Y5…

X1 … Xn

Discriminative

Doesn’t assume that features 
are independent

When labeling Xi future 
observations are taken into 
account
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Conditional Models
Conditional probability P(label sequence y | observation sequence x)
rather than joint probability P(y, x)

Specify the probability of possible label sequences given an observation 
sequence

Allow arbitrary, non-independent features on the observation 
sequence X

The probability of a transition between labels may depend on past 
and future observations

Relax strong independence assumptions in generative models
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Conditional Distribution
If the graph G = (V, E) of Y is a tree, the conditional distribution over 
the label sequence Y = y, given X = x, by fundamental theorem of 
random fields is:

─ x is a data sequence
─ y is a label sequence 
─ v is a vertex from vertex set V = set of label random variables
─ e is an edge from edge set E over V
─ fk and gk are given and fixed. gk is a Boolean vertex feature; fk is a Boolean edge 

feature
─ k is the number of features
─ are parameters to be estimated
─ y|e is the set of components of y defined by edge e
─ y|v is the set of components of y defined by vertex v

1 2 1 2( , , , ; , , , ); andn n k kθ λ λ λ µ µ µ λ µ= L L

(y | x) exp ( , y | , x) ( , y | , x)θ λ µ
∈ ∈

⎛ ⎞
∝ +⎜ ⎟

⎝ ⎠
∑ ∑k k e k k v

e E,k v V ,k

p f e g v

Y1 Y2 Y5

…

X1 … Xn
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(y | x) exp ( , y | , x) ( , y |1
(x)

, x)θ λ µ
∈ ∈

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑k k e k k v

e E,k v V ,k
p f e g v

Z

Conditional Distribution (cont’d)
CRFs use the observation-dependent normalization Z(x) for 
the conditional distributions:

Z(x) is a normalization over the data sequence x
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Conditional Random Fields

Allow arbitrary dependencies 
on input

Clique dependencies on labels

Use approximate inference for 
general graphs

⎭
⎬
⎫

⎩
⎨
⎧
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ccc yxf
xZ

xyp ),(exp
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)|( θ
θθ
1
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Why graphical models

A language for communication
A language for computation
A language for development

Origins: 
Wright 1920’s
Independently developed by Spiegelhalter and Lauritzen in statistics and 
Pearl in computer science in the late 1980’s
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Probability theory provides the glue whereby the parts are combined, 
ensuring that the system as a whole is consistent, and providing ways to 
interface models to data. 

The graph theoretic side of graphical models provides both an intuitively 
appealing interface by which humans can model highly-interacting sets of 
variables as well as a data structure that lends itself naturally to the design of 
efficient general-purpose algorithms. 

Many of the classical multivariate probabilistic systems studied in fields 
such as statistics, systems engineering, information theory, pattern 
recognition and statistical mechanics are special cases of the general 
graphical model formalism

The graphical model framework provides a way to view all of these systems 
as instances of a common underlying formalism. 

--- M. Jordan

Why graphical models


