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Abstract. The MEME algorithm extends the expectation maximization (EM) algorithm for
identifying motifs in unaligned biopolymer sequences. The aim of MEME is to discover new motifs
in a set of biopolymer sequences where little or nothing is known in advance about any motifs that
may be present. MEME innovations expand the range of problems which can be solved using EM
and increase the chance of finding good solutions. First, subsequences which actually occur in the
biopolymer sequences are used as starting points for the EM algorithm to increase the probability
of finding globally optimal motifs. Second, the assumption that each sequence contains exactly
one occurrence of the shared motif is removed. This allows multiple appearances of a motif to
occur in any sequence and permits the algorithm to ignore sequences with no appearance of the
shared motif, increasing its resistance to noisy data. Third, a method for probabilistically erasing
shared motifs after they are found is incorporated so that several distinct motifs can be found in
the same set of sequences, both when different motifs appear in different sequences and when a
single sequence may contain multiple motifs. Experiments show that MEME can discover both
the CRP and LexA binding sites from a set of sequences which contain one or both sites, and that
MEME can discover both the —10 and —35 promoter regions in a set of E. coli sequences.
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1. Introduction

The problem addressed by this work is that of identifying and characterizing shared
motifs in a set of unaligned genetic or protein sequences. A motifis defined here as
a pattern common to a set of nucleic or amino acid subsequences which share some
biological property of interest such as being DNA binding sites for a regulatory
protein. In computer science terminology, the problem is, given a set of strings, to
find a set of non-overlapping, approximately matching substrings. In this report
we are concerned only with contiguous motifs. In biological terms, this means that
appearances of a motif may differ in point mutations, but insertions or deletions
are not allowed. In computer science terms, this means that the approximately
matching substrings must all have the same length. A simpler version of the problem
is, given a dataset of biopolymer sequences believed to contain a single shared motif,
to locate the starting position in each sequence of the appearance of the shared motif
and to describe the shared motif. This report addresses the more general problem
of finding and describing multiple, distinct shared motifs in a set of biopolymer
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sequences. It is not assumed that anything is known in advance about the width,
position or letter frequencies of the motifs, or even how many common motifs may
exist in a set of sequences.

Several methods have been presented in the literature which work on problems re-
lated to discovering multiple, distinct shared motifs in a set of biological sequences.
The purpose of this research is to extend the range of problems that can be attacked.
Hertz et al. [11] presented a greedy algorithm for discovering a single, shared motif
that is present once in each of a set of sequences. Lawrence and Reilly [14] extended
that work by developing an expectation maximization (EM) algorithm for solving
the same problem. Lawrence et al. [13] solve the related problem of discovering
multiple, distinct motifs when the number of occurrences of each motif in each
sequence is known using a Gibbs sampling strategy.

This report describes MEME, a new tool intended to help discover motifs when
neither the number of motifs nor the number of occurrences of each motif in each
sequence is known.! MEME incorporates three novel ideas for discovering motifs.

e First, subsequences which actually occur in the input DNA or protein sequences
are used as the starting points from which EM converges iteratively to locally
optimal motifs. This increases the likelihood of finding globally optimal motifs.

e Second, a heuristic modification of the EM algorithm allows the assumption
that each sequence contains exactly one occurrence of the shared motif to be
removed. This allows multiple appearances of a motif to occur in any sequence
and permits the algorithm to ignore sequences with no appearance of a shared
motif, which increases its resistance to noisy data.

e Third, motifs are probabilistically erased after they are found. This allows
several distinct motifs to be found in the same set of sequences, both when
different motifs appear in different sequences and when a single sequence may
contain multiple motifs.

1.1. Searching tools versus learning tools

This section explains the place of MEME, in the spectrum of sequence analysis
tools. Experts on biological sequence analysis may wish to skip directly to the next
section.

Searching tools. Sequence analysis tools may be divided into two broad cate-
gories, searching tools and learning tools. GRAIL, BLASTX, FASTA, etc. are searching
tools, whereas MEME is a learning tool. A searching tool (also called a pattern-
matching tool) takes as input one or more sequences and a pattern, and decides if
the pattern matches each input sequence, and if so, where. The pattern may be
(i) another sequence, as with BLASTX and FASTA, (ii) a consensus subsequence or
regular expression defining a motif, as with ProSearch [12], or (iii) a more high-level
combination of features, as with GRAIL [20].
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Learning tools. A supervised learning tool (also called a supervised pattern-
recognition tool) takes as input a set of sequences, and discovers a pattern that
all the sequences share. Supervised learning is often done by humans rather than
by software, because it is an open-ended problem that is harder than searching.
For example, the PROSITE profiles were created by Amos Bairoch by personally
examining families of proteins [2].

An unsupervised learning tool takes as input a set of sequences, and discovers a
pattern that some of the sequences share. Unsupervised learning is harder than
supervised learning because the space of possible patterns is much larger. The
pattern to be discovered is not required to be in any given input sequence, so the
unsupervised learning algorithm must simultaneously look for a cluster of input
sequences and a pattern that the members of this cluster do have in common.
MEME performs unsupervised learning.

The output of a learning tool, namely a pattern, is often given to a search tool
in order to find new sequences that exhibit the pattern. However, even if all the
members of a family of sequences are already known, applying a learning tool to
the family can still be useful, because examining the patterns that subsets of the
family have in common can give insight into structure, function, and evolution.

1.2. The expectation maximization (EM) algorithm

Lawrence and Reilly [14] introduced the expectation maximization method as a
means of solving a supervised motif learning problem. Their algorithm takes as in-
put a set of unaligned sequences and a motif length (W) and returns a probabilistic
model of the shared motif. The idea behind the method is that each sequence in the
dataset contains a single example of the motif. We shall refer to this model of the
data as the ‘one-occurrence-per-sequence’ model or just the ‘one-per’ model. It is
assumed that where the motif appears (what its starting offset is) in each example
is unknown. If this were known, subsequences of length W from each sequence
starting at the known offset could be aligned, since no insertions or deletions are
allowed, and the observed frequencies of the letters in each column of the alignment
could be used as a model of the motif.

In fact, if each example of the motif is assumed to have been generated by a
sequence of independent, discrete random variables, then the observed frequencies of
the letters in the columns are the maximum likelihood estimates of the distributions
of the random variables. Of course, since the original sequences in the dataset are
unaligned, the offsets are not known, so they must also be estimated. To do this,
the EM algorithm estimates the probability that the shared motif starts in position
j in sequence i in the dataset, given the data and an initial guess at a description
of the motif. These probability estimates, Z;;, are then used to reestimate the
probability of letter [ in column ¢ of the motif, p;., for each letter in the alphabet
and 1 < ¢ < W. How the reestimations are done is described in the Appendix.
The EM algorithm alternately reestimates z and p until p changes very little from
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iteration to iteration. (The notation z is used to refer to the matrix of offset
probabilities z;;. Likewise, p refers to the matrix of letter probabilities p;;.)

A pseudo-code description of the basic EM algorithm is given below. EM starts
from an estimate of the model parameters, p, provided by the user or generated at
random.

EM (dataset, W) {
choose starting point (p)
do {
reestimate z from p
reestimate p from z
} until (change in p < ¢)

return

o =~ O O = W N

—

The EM algorithm simultaneously discovers a model of the motif (the sequence
of independent discrete random variables with parameters p) and estimates the
probability of each possible starting point of examples of the motif in the sequences
in the dataset (z). By definition [8], the likelihood of the model given the training
data is the probability of the data given the model. The EM algorithm finds values
of the model parameters which maximize the expected likelihood of the data given
the model p, and the missing data z. For the one-occurrence-per-sequence model
of the data used by Lawrence and Reilly [14], the logarithm of the likelihood is

w
log(likelihood) = N Y > fijlog(pi;) + N(L— W) _ fiolog(p)
j=1l1lec lec
1
N log(—————
+ Nlog(g =57

where N is the number of sequences in the dataset, L is the length of the sequences,
W is the length of the shared motif, £ is the alphabet of the sequences, p;; is the
(unknown) probability of letter [ in position j of the motif, pjg is the (unknown)
probability of letter I in all non-motif positions, fi; is the observed frequency of the
letter  in position j of the motif, and fig is the observed [ in all non-motif positions
of the sequences.

It has been shown that expectation maximization algorithms find values for the
model parameters at which the likelihood function assumes a local maximum [7].
It is reasonable to assume that the correct solution to the problem of characterizing
the shared motif occurs at the global maximum of the likelihood function. For this
reason, all else being equal, parameter values for the model which give higher values
of the likelihood function are considered better solutions to the problem.?
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1.3. Limitations of EM and the one-occurrence-per-sequence model.

EM and the one-per model suffer from several limitations. First, it is not clear how
to choose a starting point (an initial value of p) nor when to quit trying different
starting points. This makes it difficult to be satisfied that the correct shared motif
has been found. Second, the one-per model assumes that each sequence in the
dataset contains exactly one appearance of the shared motif. This means that
sequences with multiple appearances will under-contribute, and sequences with no
appearances will over-contribute to the characterization of the motif. Having many
sequences with no appearances of the motif in the dataset may make it impossible
for EM with the one-per model to find the shared motif at all. Finally, EM with
the one-per model assumes that there is only one shared motif in the sequences,
and does not keep looking for further motifs after characterizing one. This makes
EM with the one-per model incapable of finding motifs with insertions of variable
length and incapable of discovering multiple motifs that may occur in the same or
different sequences in a given dataset. Eliminating or reducing these limitations
of EM with the one-per model would make the method less susceptible to noise
in the dataset, able to find more complex patterns in the data, and last but not
least, useful for exploring datasets which may contain instances of several different
motifs.

The algorithm described in this report, MEME, extends the EM algorithm to
overcome the limitations described above. MEME chooses starting points system-
atically, based on all subsequences of sequences in the training dataset. It allows
the use of either the one-per model or a different model which eliminates the as-
sumption of one sequence/one occurrence and allows each sequence to contain zero,
one or several appearances of the shared motif. We call this new model the ‘n-
occurrences-per-dataset’ model or just the ‘n-per’ model. because the it assumes
that the dataset contains exactly n occurrences of the motif, where n is specified by
the user. Finally, MEME probabilistically erases the appearances of a motif after it
is found, and continues searching for further shared motifs in the dataset.

The MEME algorithm with the n-per model was tested on two datasets. The first
was a dataset combining 18 E. coli sequences containing CRP binding sites [14]
and 16 sequences containing LexA binding sites [11]. MEME discovered the LexA
binding site on its first pass and the CRP binding site on its second pass. The second
dataset contained 231 E. coli promoter sequences [9].> MEME discovered the TATAAT
and TTGACA consensus sequences? on the first and second passes, respectively. This
demonstrates the ability of MEME to avoid local optima, to tolerate large number
of sequences which do not contain the motif, and to find multiple motifs in a single
dataset.

2. The MEME algorithm

The MEME algorithm has at its core a modified version of the EM algorithm [14].
The pseudo-code for the algorithm is given below. In the inner loop, an algorithm
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based on the EM algorithm is run repeatedly with different starting points for the
chosen model (either one-per model or n-per model). We shall refer to this partic-
ular application of the EM algorithm as simply ‘EM’ in what follows. The starting
points are derived from actual subsequences which occur in the input dataset. EM
is run only one iteration, not to convergence, from each starting point to save time.
Each run of EM produces a probabilistic model of a possible shared motif. The
starting point which yields the model with the highest likelihood is chosen and EM
is run to convergence from this starting point. The model of the shared motif thus
discovered is printed. Finally, all appearances of the shared motifin the dataset are
erased. The outer loop repeats the whole process to discover further shared motifs.
The following sections describe each of these steps of the algorithm in more detail.

1. MEME (dataset, W, NSITES, PASSES) {

2 fori=1to PASSES {

3 for each subsequence in dataset {

4 run EM for 1 iteration with starting point

5. derived from this subsequence

6 choose model of shared motif with highest likelihood
7 run EM to convergence from starting point

8 which generated that model

9 print converged model of shared motif
10. erase appearances of shared motif from dataset
11. }
12. }
13. }

The output of MEME includes a specificity or log-odds matrix, spec. The log-
odds matrix has L rows and W columns and is calculated as spec;; = log(ps;/po;)
for e € £L and y = 1,..., W. The information content score of a subsequence is
calculated by summing the entries in the matrix corresponding to the letters in
the subsequence.® This score gives a measure of the likelihood of the subsequence
being an instance of the motif versus an instance of the “background”. Together
with a suitable threshold, the information content score can be used to classify
subsequences in new sequences not part of the training set.

2.1. Using subsequences as starting points for EM

Given different starting points (i.e., initial letter probability matrices p) the EM
algorithm may converge to different final models. These models are local maxima of
the likelihood function described earlier. The correct model for the shared motif is
expected to be the model which globally maximizes the likelihood function, but EM
is not guaranteed to find the global maximum, only a local maximum. Previous
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authors ([14], [5]) have recommended using several starting points for EM and
choosing the model with the highest likelihood, but how to choose the starting
points has not been discussed in detail.

One might try using randomly chosen letter frequency matrices as starting points,
but the sequences in the dataset provide a way to choose more intelligent ones.
Since our models for motifs do not allow for insertions or deletions, the optimal
model must agree very well with some contiguous subsequences of the sequences in
the dataset—the instances of the motif in the sequences. A good way to search the
space of possible starting points for EM should thus be to convert each subsequence
of length W into a letter probability matrix and use each such matrix as a starting
point. This is the approach used by MEME. Since the starting point letter frequency
matrices obtained from subsequences corresponding to the actual occurrences of the
shared motif should be “close” to the correct letter probability matrix (i.e., model),
EM should tend to converge to the global optimum when run with them as starting
points.®

For example, suppose the unknown optimal value of p for the shared motif that
we are trying to discover using MEME 1is actually

letter position in motif

1 2 3 4 5 6
0.1 0.8 0.1 05 06 0.1
0.1 0.1 01 03 02 0.1
0.2 00 0.1 01 01 0.1
0.6 0.1 07 01 01 0.7

HQO

and the consensus sequence is TATAAT. Presumably, this sequence or something close
to it (i.e., with few mutations) occurs in at least one of the sequences in the dataset.
It is reasonable to postulate that if we choose as a starting point for EM a letter
probability matrix derived in some simple manner from the consensus sequence, or
a subsequence similar to it, then EM should tend to converge to the optimal model.
If we try all of the subsequences (of length six in this example) of the sequences in
the dataset, it is reasonable to assume that at least one of them will be “close” to
TATAAT and will cause EM to converge to the optimal model. (Note that MEME
does not use all possible subsequences of a given length, just the ones which actually
occur in the dataset.)

The question remains of how to convert a subsequence into a letter probability
matrix. One cannot simply convert it to a matrix with probability 1.0 for the letter
in the subsequence and 0.0 for all others, i.e., convert TATAAT to

letter position in motif

1 2 3 4 5 6
0.0 10 0.0 10 10 0.0
0.0 0.0 00 0.0 0.0 0.0
0.0 0.0 00 0.0 0.0 0.0
1.0 00 1.0 00 0.0 1.0

HoQao
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because the EM algorithm cannot move from such a starting point. With such a
starting point, all offset probabilities will be estimated to be 0.0 except for sub-
sequences which match the starting point subsequence exactly. This will cause
reestimation of the letter frequencies to yield the starting point again.

An effective, if somewhat arbitrary solution is to fix the frequency of the letter
in the subsequence at some value 0 < X < 1, and fix the frequencies of the other
letters at (1 — X)/(M — 1) where M is the length of the alphabet. This ensures
that the frequencies in each column sum to 1.0 and that, for X close to 1.0, the
starting point is “close” to the subsequence. The results reported in this paper are
for X = 0.5. Values of X between 0.4 and 0.8 worked approximately equally well
(experimental data not shown). With this value of X, the starting point for EM
generated from the subsequence TATAAT is

letter position in motif

1 2 3 4 5 6
0.17 0.5 0.17 05 0.5 0.17
0.17 0.17 0.17 0.17 0.17 0.17
0.17 0.17 0.17 0.17 0.17 0.17
0.5 017 05 017 0.17 0.5

H QO

It would be highly expensive computationally to run EM until convergence from
every possible starting point corresponding to some subsequence of length W in
the input dataset. It turns out that this is not necessary. EM converges so quickly
from subsequences which are similar to the shared motif that the best starting point
can often be detected by running only one iteration of EM. As will be described
below, MEME was able to find shared motifs when run for only one iteration from
each possible subsequence starting point, and then run until convergence from the
starting point with the highest likelihood. In other words, MEME runs EM for
specified number of iterations (one iteration in all the results reported here) on
each subsequence starting point, chooses the starting point that yields the highest
likelihood, and then runs EM to convergence from this starting point.

Since each iteration of the EM algorithm takes computation time roughly linear
in the size of the dataset, and the number of subsequences is linear in the size of the
dataset, MEME takes time O(n?) where n is the size of the dataset in characters.

2.2. Dealing with multiple appearances of a shared motif

MEME allows the user to specify that either the one-per model or the n-per model
be used. With the one-per model, MEME uses the EM algorithm of Lawrence and
Reilly [14] to fit the model to the dataset. To fit the n-per model, a heuristic
modification of the EM algorithm is used.

The one-per model assumes that each sequence in the dataset contains exactly one
appearance of the shared motif to be characterized. This assumption determines the
way in which the offset probabilities are reestimated. The reestimation procedure
ensures that the offset probabilities for each sequence sum to 1.0. This means
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that if a given sequence has more than one appearance of the shared motif, it
cannot contribute any more to the reestimation of the letter frequencies than a
sequence with only one appearance. Additionally, if a sequence has no appearances
of the shared motif—a common event when exploring for new shared motifs—it
contributes erroneously to the reestimation of the letter frequencies.

MEME modifies the EM algorithm a when fitting the n-per model to a dataset.
Instead of normalizing the reestimated offset probabilities to sum to 1.0 for each
sequence, all offset probabilities are normalized to sum to a user-supplied value
NSITES, subject to the constraint that no single offset probability may exceed
1.0. This normalization is done over all sequences simultaneously, not sequence by
sequence. The intent is for NSITES to be the expected number of appearances of
the shared motif in the dataset. If NSITES is set equal to the number of sequences
in the dataset, it is possible for the n-per model to get approximately the same
results as the one-per model on a dataset that has one appearance of the shared
motif in each sequence. For datasets with the appearances of the motif distributed
other than one per sequence, the MEME with the n-per model is able to choose
models that assign the offset probabilities in any fashion which satisfies the two
constraints mentioned above.

The relaxation of the one motif appearance per sequence constraint in the n-per
model allows MEME to benefit from sequences with multiple appearances of the
shared motif. It also can help alleviate the problem of sequences which do not
contain the motif blurring its characterization. When NSITES is lower than the
number of sequences in the dataset, MEME can assign very low offset probabilities
to all positions in a sequence that does not contain the motif at all. By contrast,
the one-per model must assign offset probabilities summing to 1.0 to each sequence
in the dataset. The effect of various settings for NSITES is discussed in Section
4.3. In summary, the exact value chosen for NSITES is not critical, so it is not
necessary to know in advance exactly how many times a motif is present in the
dataset.

One side effect of allowing a single sequence to have offset probabilities that sum
to more than 1.0 is that long repeated sequences are seen by MEME using the n-
per model as though they were multiple appearances of a shorter sequence. For
example, if Wis 6, the sequence AAAAAAAA is treated by the n-per model roughly
as though it were three appearances of the sequence AAAAAA. This is so because
the n-per model might allow offsets 1, 2 and 3 of the sequence to have the maxi-
mum probability of 1.0. (The one-per model would not allow this, since the total
offset probability for a single sequence must sum to 1.0.) This is problematic be-
cause it is far more surprising to find 3 non-overlapping occurrences of the sequence
AAAAAA than to find one occurrence of sequence ABAAAAAA. So, we would like MEME
to search for NSITES non-overlapping occurrences of the motif. To overcome this
difficulty, MEME enforces an additional constraint when calculating the offset prob-
abilities for the n-per model. It renormalizes the offset probabilities so that no W
adjacent offsets have probabilities that sum to greater than 1.0. This essentially
makes the n-per model treat sequences like AABAAAAAA the same way as the one-per
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model does, assigning at most probability 1/3 to each of the three offsets at which
identical subsequences AAAAAA start.

2.3. Finding several shared motifs

When a single dataset of sequences contains more than one distinct shared motif,
EM with the one-per model cannot directly find more than one of them. If the
motifs have some similarity, EM may always converge to the most conserved motif.”
Another possibility is that EM may converge to a model that describes part of the
most conserved motif—its left or right side for instance. The MEME algorithm
solves this problem by probabilistically erasing the shared motif found by EM and
then repeating EM to find the next shared motif. By effectively removing each
motif as it is found, MEME is able to find the next motif without interference from
the more conserved motifs found first.

The manner in which MEME erases a motif is designed to be as continuous as
possible. New variables w;; are defined which associate a weight with position j
in sequence i. The weights represent the probability that the given position in
the given sequence is not part of a motif previously discovered by MEME. The
weights are all set initially to 1.0. After MEME discovers a shared motif, the offset
probability z;; gives the probability that an appearance of the motif starts at a
position j in sequence ¢. So, assuming independence, the probability that position
k in sequence ¢ is not part of the newly discovered motif is the product of (1 — z;;)
for all j between £ — W and k. So the old value of w;; is updated by multiplying
it by the probability that no potential motif which overlaps it is an example of the
newly discovered shared motif.

The w;; are used in reestimating the letter frequencies. Instead of summing
the offset probabilities z;;, the weighted offset probabilities w;; - z;; are summed.
To understand how the weighting scheme effectively erases previously discovered
motifs, suppose that MEME has discovered one motif and is looking for the second.
Suppose position j in sequence 7 was the start of an appearance of the first motif
found. Then the new weights w;; through w; ;4 w_1) will all be less than 1 — z;;.
Hence they cannot contribute much to the reestimation of p and are effectively
erased. Notice that if a position only matches the discovered motif poorly, then z;;
will be low, so the weight for that position will remain fairly high. The degree to
which a position is erased is proportional to the certainty (z;;) that it is part of a
previously discovered motif. This makes MEME less sensitive to chance similarities
than if a match threshold were set and all positions with z;; value above that
threshold were completely erased.

3. Experimental results

This section describes experiments using MEME that were conducted on two datasets.
In all cases, the model used by MEME was the n-per model. The first dataset, which
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will be referred to as the CRP/LexA dataset, comprises DNA fragments which
contain binding sites for the CRP and LexA regulatory proteins. The CRP/LexA
dataset consists of all of the samples in the CRP dataset plus all the samples in the
LexA dataset, which are described below. The second dataset, which will be re-
ferred to as the promoter dataset, contains samples of prokaryotic promoter regions.
It is also described in detail below. An overview of the contents of the datasets is
given in Table 1.

The CRP dataset is taken from Stormo and Hartzell [19] who, in turn, derived it
from Berg and von Hippel [3] and de Crombrugghe et al. [6]. It contains 18 DNA
fragments from E. coli each believed to contain one or more CRP binding sites.
The dataset contains 18 CRP binding sites which had been verified by DNase pro-
tection experiments when the dataset was compiled. Some of the fragments contain
putative CRP binding sites which have been determined by sequence similarity to
known binding sites only. Each fragment in the dataset contains 105 bases and the
fragments are not aligned with each other in any particular way.

The LexA dataset is taken from Table I in [11]. It contains 16 DNA fragments
each believed to contain one or more LexA binding sites. The dataset contains
11 LexA binding sites which had been verified by DNase protection experiments
when the dataset was compiled. An additional 11 putative LexA binding sites,
as determined by sequence similarity to known binding sites, are also present in
the dataset. Most of the fragments contain 100 bases preceding and 99 bases
following the transcription start position of a gene. Three of the fragments are
shorter because 200 bases flanking the start position of the gene were not available.
One of the samples in the LexA dataset overlaps a sample in the CRP dataset. The
overlap includes the known CRP site.

The promoter dataset is taken from Cardon and Stormo [5]. It contains 231
E. coli DNA fragments each believed to contain promoter regions. This dataset
was originally compiled by Harley and Reynolds [9], and contained 288 fragments,
but Cardon and Stormo omitted a number of fragments that were from highly
redundant sequences or known to be mutant promoters. All the fragments roughly
comprise positions —50 to +10 with respect to the start of transcription.® Previous
work such as that of Harley and Reynolds [9] has shown that the promoter motif
seems to consist of two highly conserved sub-motifs of width 6 each, separated by a
variable-length spacer. The spacer is usually 15, 16, 17 or 18 bases long. Although
MEME cannot directly model such a variable-length motif, it can indirectly by
discovering the two highly conserved ends of such motifs.

3.1. MEME can discover two different binding site motifs

MEME was run for 5 passes on the CRP/LexA dataset with W = 20, NSITES = 17.
The value for W was chosen based on prior knowledge from the literature that this
is the approximate size of both the CRP and LexA binding sites in DNA base-pairs.®
The value for NSITES was chosen arbitrarily as half the number of sequences in
the dataset, because there are roughly that many footprinted sites of each type in
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Table 1. Overview of the contents of the datasets.

dataset samples  average length of samples  proven CRP sites proven LexA sites
CRP 18 105 18 0
LexA 16 192 1 11
CRP/LexA 34 150 19 11
promoter 231 58 NA NA

the dataset. As mentioned previously, the exact value of NSITES is not critical for
MEME to discover the motifs. The first pass of MEME yielded an excellent model
for the LexA binding site. The second pass produced a model for the CRP binding
site. Subsequent passes produced models of unknown significance. The results of
MEME on CRP/LexA are summarized in Table 2.

Table 2. The models found by each pass of MEME on the CRP/LexA dataset can be
visually summarized by the consensus sequence derived from the p matrix by choosing the
letter with the highest probability. The values of information content and log(likelihood)
give a qualitative idea of the statistical significance of the model. Higher values imply the
model is more significant. The models found for LexA and CRP on passes 1 and 2 of
MEME have considerably higher log(likelihood) and information content than the models
found on later passes. Note that W = 20 and NSITES = 17.

pass starting subsequence final consensus Imodel log(lz'kelz'hood)
1 TACTGTATATAAAACCAGTT TACTGTATATATATACAGTA 13.206 -435.174
2 TTATTTGCACGGCGTCACAC TTTTTTGATCGGTTTCACAC 9.087 -515.837
3 ATTATTATGTTGTTTATCAA TTTATTTTGATGTTTATCAA 6.527 -539.083
4 TGCGTAAGGAGAAAATACCG TGCGTAAGAAGTTAATACTG 7.912 -531.419
5 CAAATCTTGACATGCCATTT CAAATATGGAAAGGCCATTT 8.027 -533.662

The model produced by the first pass of MEME on CRP/LexA identified and
characterized the LexA binding site extremely well. The quality of the model can
be judged partly from the degree to which it correctly identifies the known LexA
binding sites in the dataset. One way of using the model produced by MEME is
to examine the values of z;; to see which positions in which samples in the dataset
are given high probabilities of being the start of a motif. MEME prints the four
highest values of z;; for each sample in the dataset after each pass. Table 3 shows
the values of z;; after pass 1 of MEME for the known LexA binding sites. It can be
easily seen that the model found in the first pass characterizes the LexA binding
site. Furthermore, all other values of z;; were below 0.17, so the model appears to
be very specific for the LexA binding site.

The consensus sequence for the model discovered in pass 1 of MEME on the
CRP/LexA dataset also agrees exceedingly well with the LexA binding site. MEME
prints the consensus (i.e., the most probable letter for each position in the motif as
determined from p) after each pass. The consensus after pass 1 was
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TACTGTATATATATACAGTA, which matches the consensus reported by [11] and is a
perfect DNA palindrome.

Table 3. Values of z;; for the model found by MEME in pass 1 on the
CRP/LexA dataset at the positions of the known LexA sites. Virtually
all of the known sites have very high values of z;; compared to the rest of
the positions in the samples. The table shows the positions of the known
sites (site 1, site 2 and site 3) and the values of z;; of the model at those
positions. All other positions have values of z;; below 0.17. Although the
site at position 112 in the colicin E1 sequence has z;; value only 0.05, this
is one of the four highest 2;; values for this sequence. No proven sites are
known for himA and uvrC and z;; for all positions in those samples was
very low, less than 0.0001.

sample site 1 e site 2 Zij site 3 e

cloacin DF13 97¢  0.998684

colicin E1 97  0.948441 112 0.051543
colicin Ia 99¢  0.998709

colicin Ib 99%¢  0.990472

recA 71 0.999987

reciN 71 0.999988 93 0.865704 111¢ 0.134281
sulA 85¢ 0.999990

umuDC 91 0.999931

wvrA 60 0.987786

wvrB 71 0.999972

wyrD 102 0.998539

colicin A 34¢ 0.683563 48¢ 0.314723
lexA 76 0.999982 55 0.999933
mucAB 49¢ 0.999978

himA

wvrC

?Indicates site known only by sequence similarity to known sites.

Another way of seeing how well the model that was learned during pass 1 of
MEME characterizes the LexA binding sites is to plot the information content score
of each subsequence of the input data. Figure 1 shows the information content
scores of both the CRP and LexA samples under the first pass model. (All scores
below zero have been set to zero in the figure to make it easier to interpret.) It can
easily be seen that the model gives the known binding sites high scores while most
other subsequences receive low scores.

On the next pass, MEME discovers the CRP motif. The consensus sequence it
reports for pass 2 is TTTTTTGATCGGTTTCACAC, which agrees well with the consensus
found with one-per model and reported in [14]. More significantly, the model char-
acterizes the CRP motif well, judging from the values of z;; for the various positions
in the samples in the dataset. Table 4 shows the values of z;; found during pass 2
on the CRP/LexA dataset. According to [14], the CRP dataset contains 24 known
CRP binding sites, 18 of which had been verified by protection experiments. The
value of z;; for eight of these is above 0.99 in the model, while eleven have z; values
above 0.1. It turns out that three of the samples from the LexA dataset also contain
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Figure 1. The information content score of each subsequence of the CRP/LexA dataset using the
specificity matrix found on pass 1 of MEME. The CRP samples are the short curves at the top,
while the LexA samples are the long curves at the bottom. Vertical scale is such that highest
peak is 24.3 bits. All values below zero have been set to zero.
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CRP binding sites. The sample labeled colicin E1 in the LexA dataset is actually
from the same sequence and overlaps the sample labeled cole 1 in the CRP dataset.
The overlap contains the CRP motif. LexA samples colicin la and colicin Ib also
appear to contain CRP sites which are virtually identical to the colicin E1/cole 1
CRP site. For these sites z;; is over 0.999, which is extremely high. Because of the
overrepresentation of this particular “version” of the CRP binding site, the model
learned during pass 2 seems to be biased towards representing the version of the
CRP binding site present in the colicin genes. This may explain why the model
does not fit all of the CRP sites equally well.

Table 4. Values of z;; for the model found by MEME in pass 2 on the
CRP/LexA dataset at the positions of the known CRP sites. Of 24
known CRP sites, eight have very high values of z;;, and twelve more
(those not stated as below some bound) have values of z;; among the
top four z;; values for the given sequence. The three last three sites
(labeled b, ¢, and d) are actually from the LexA dataset, not the CRP
dataset. The sequence named colicin E1 actually is from the same
gene as cole 1 and overlaps it in the CRP site region. The site in
colicin Ia may not have been reported previously, and the colicin Ib
site was previously reported as being a LexA site.

sample site 1 2ij site 2 Zij
colel 17 < .0004 61 0.999185
ecoarabob 17 < .0003 55 0.999051
ecobglrl 76  0.028134
ecocrp 63  0.998985
ecocya 50 0.006001
ecodeop 7¢ 0.999845 60 0.018088
ecogale 42 0.497545
ecoilvbpr 39¢ < .0015
ecolac 9  0.996939 80 0.002302
ecomale 14¢  0.997871
ecomalk 29¢ 0.00129 61 0.035443
ecomalt 41  0.014568
ecoompa 48  0.177722
ecotnaa 71¢  0.999222
ecouxul 17  0.998583
pbr-p4 53 0.004511
trn9cat 1 < .0001 84 0.000148
tdc 78% 0.506702
colicin E1 27%  0.999186
colicin Ta 13¢  0.999692
colicin Ib 139 0.999333

?Indicates site known only by sequence similarity to known sites.
bThis LexA dataset sample overlaps CRP sample cole 1.

¢This site may not have been reported previously.

dThis apparent CRP site may have been confused with a LexA site
by Varley and Boulnois [21] and Hertz et al. [11].

Figure 2 shows the information content scores of the CRP/LexA dataset com-
puted with the specificity matrix learned during pass 2 of MEME. Although the
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Figure 2. The information content score of each subsequence of the CRP/LexA dataset using the
specificity matrix found on pass 2 of MEME. The CRP samples are the short curves at the top.
The strong match of the model to three colicin samples in the LexA dataset is seen in the second,
third, and fourth long curves. The vertical scale is such that highest peak is 18.92 bits. All values
below zero have been set to zero.

model is not as well defined as that of pass 1, it clearly matches the known CRP
sites to a large degree.

3.2. MEME can discover two parts of a single binding site

MEME was run for 5 passes on the promoter dataset with W = 6, NSITES =
231. The value for W was chosen based on prior knowledge derived from the
literature that this is the approximate size of both the —10 and —35 regions of
E. coli promoters. The value of NSITES was chosen based on the assumption that
each sample in the dataset contains a promoter. The first pass of MEME yielded
a model whose consensus was TATAAT, which is the known —10 region consensus.
The second pass produced a model whose consensus was TTTACA, which is very
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close to the conventional —35 region consensus, TTGACA. Further passes produced
models of unknown significance. The results of MEME on the promoter dataset are
summarized in Table 5.

Table 5. The models found on each pass of MEME on the promoter
dataset are summarized as consensus sequences. The —10 and —35 region
models were found on the first two passes of MEME and have much higher
log(likelihood) and information content than the other models found.

pass  starting subsequence  final consensus Ipoder log(likelihood)
1 TAAAAT TATAAT 4.627 -1409.458
2 TTTTTT TTTACA 5.388 -1320.208
3 TGAAAA TGAAAA 4.210 -1657.897
4 TATACT TATACT 4.191 -1689.300
5 TTGCGC TTGCGC 4.727 -1709.490

The models learned on the first two passes of MEME on the promoter dataset
are applied to the first thirty samples in the dataset and the information content
score of each subsequence in the dataset is plotted in Figures 3 and 4. The base
corresponding to the start of transcription of each sample is at position 50 on the
horizontal axis of each plot. A column of peaks at position 37 in Figure 3 shows
that the model identifies the —10 consensus region of the promoters. A column of
peaks at position 15 of Figure 4 confirms that the second model identifies the —35
region of the promoters, even though its consensus sequence is slightly different
from the generally accepted one.

4. Robustness of the MEME algorithm

The CRP/LexA dataset and the promoter dataset were also used to test the useful-
ness of the various separate ideas entering into the design of the MEME algorithm,
and to evaluate the sensitivity of the algorithm to the particular values chosen
for several parameters. Overall, the algorithm appears to be gratifyingly robust.
Except where noted, MEME was run using the n-per model.

4.1. Subsequence-derived starting points work well with EM

The idea of running EM for only one iteration from starting points derived from each
possible subsequence of the input dataset was tested. As the following experiments
demonstrate, this method appears to work well at predicting good starting points
from which to run EM to convergence. The experiments consisted of running EM
for one iteration from each possible subsequence-derived starting point on the two
datasets. The likelihood of each of the models thus obtained was plotted against
the starting position of the subsequence from which the starting point was derived.
Thus, one point was plotted for each position in each sample in the dataset. It
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Figure 8. The information content score of each subsequence of the first 30 sequences of the
promoter dataset using the specificity matrix of pass 1 of MEME. The concept learned on pass 1
of MEME on the promoter dataset locates the —10 region of the promoters. The vertical scale is
such that highest peak is 7.21 bits. All values below zero have been set to zero.
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Figure 4. The information content score of each subsequence of the first 30 sequences of the
promoter dataset using the specificity matrix of pass 2 of MEME. The concept learned on pass 2
of MEME on the promoter dataset locates the —35 region of the promoters. The vertical scale is
such that highest peak is 7.74 bits. All values below zero have been set to zero.
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Figure 5. log(likelihood) after one iteration of EM from starting points derived from each possible
subsequence in the CRP/LexA dataset. EM appears to converge quickly from starting points
derived from subsequences at or near the LexA binding sites. The short curves at the top are the
CRP samples, while the longer curves are the LexA samples. The vertical axis for each curve is
scaled such that the highest peaks are at -481.6 and the lowest valleys are at -642.5.

was hoped that some starting points would yield models with significantly higher
likelihood even after just one iteration. Then EM could be run to convergence from
those starting points and the most likely model thus obtained could be selected as
the output of MEME.

In the first experiment, the combined CRP/LexA dataset was used. The MEME
algorithm was run with only one iteration of EM from each possible starting point.
When the log(likelihood) values of the derived models are plotted against the posi-
tion on the sequence from which the starting point was derived, it can be seen in
Figure 5 that large peaks in the likelihood function were occurring in most of the
LexA samples. (If the information content scores were plotted, the graph would
have a very similar appearance. Since EM maximizes the likelihood of the model
and not its information content, log likelihood was chosen as the criterion for choos-
ing starting points. Information content could also be used, with similar results.)
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Figure 6. EM finds models of high likelihood when run for one iteration on the CRP /LexA dataset
from starting points derived from subsequences of sample recN. The starting points correspond
well with the known LexA binding sites, whose left ends are indicated on the horizontal axis.

Further investigation showed that the peaks tended to occur at the positions of
the known LexA binding sites. Figure 6 shows an expanded view of the curve for the
sample from recN. The recN sample contains three LexA binding sites whose left
ends are marked on the horizontal axis of the figure. The peaks in the curve occur
at or near these positions. The same phenomenon was observed for the other LexA
samples; except for himA and uvrC which previous researchers [11] have noted do
not match the LexA consensus

4.2. “Erasing” one motif is necessary to find another

On closer inspection of the plots, peaks could also be seen in the curves from the
CRP samples at positions corresponding to known CRP binding sites. Figure 7
shows the expanded view for the CRP sample tnaa. As can be seen in the figure,
it is difficult to distinguish the peaks generated by starting points derived from



72 TIMOTHY L. BAILEY AND CHARLES ELKAN

performance of starting points for sanple ecotnaa
-580 T T T T T T T T

Pass 1 —
known CRP sites ¢

-590 -

-600 | E

-610 R

-620 -

I og(li kel i hood)

-630 -

-640 | .

_ 650 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
base number

Figure 7. The log(likelthood) of the model after 1 iteration of EM in MEME varies strongly with
the starting point. The plot shows the log(likelihood) of the model after one iteration of EM on
dataset CRP/LexA run from the starting points generated from the subsequences in the sample
labeled “tnaa”.

subsequences at the CRP binding sites from other peaks which do not correspond
to any known sites. It appears that the other peaks are due to EM starting to
converge to a model related to the LexA motif. Even a bad model of the highly
conserved LexA motifs may have log(likelihood) similar to the best model of the
CRP binding sites, due to the fact that the LexA binding sites are much more highly
conserved than the CRP binding sites. The highest peaks produced by subsequences
from the CRP samples were much lower than the highest peaks produced by the
LexA samples. Also, no CRP sample produced a peak at a position corresponding
to a CRP binding site that was clearly higher than all peaks produced from other
subsequences of the CRP samples. This shows the necessity of somehow eliminating
the LexA binding sites from the data in order to be able to discover the best starting
points from which to run EM to learn a model for the CRP binding sites.
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4.3. The expected number of motif appearances is not critical

If the choice of NSITES were critical to the ability of MEME using the n-per model
to find one or more distinct motifs or parts of motifs in a dataset, it would be
necessary to know in advance how many appearances of each motif were in the
dataset. This would restrict the usefulness of MEME in discovering completely
new motifs from sequence data alone. Fortunately, MEME discovers models for
motifs with NSITES set to a wide range of values. So running MEME with just a
few values of NSITES will probably suffice to find most motifs (if any) which are
represented in a dataset.

MEME was run on the CRP/LexA dataset with various values of NSITES and all
other parameters fixed. The models found by MEME on each pass were examined to
see if they fit the known consensus sequences for LexA and CRP. Table 6 shows the
passes of MEME on which models for LexA and CRP motifs were discovered and the
information content and log(likelihood) of the models. MEME always finds a model
for the LexA motif on the first pass. With low NSITES it finds LexA more than
once, due presumably to the fact the LexA binding sites do not get completely
erased. (MEME effectively erases at most NSITES occurrences of a motif after
each pass, so if NSITES = 5 and there are fifteen LexA binding sites, there are still
enough left for pass 2 to find another model of the LexA motif.) MEME found a
model of the CRP motif within four passes for all values of NSITES tried except
for NSITES = 5. Usually, CRP was the second model found. While the values
of information content and log(likelihood) of the LexA models were always much
higher than those of all other models found by MEME, this was not always true for
the CRP models. Only when NSITES was close to the actual number of known
CRP binding sites in the dataset was the information content and log(likelikood)
of the CRP model much higher than for the other models (of unknown biological
significance) found by MEME.

4.4. The n-per model is less sensitive to noise than the one-per model

The removal of the one-motif-appearance-per-sequence assumption was intended,
among other things, to make the n-per model less sensitive to noise than one-per
model. For example, if it is suspected that one or more of the sequences in a
dataset is noise (i.e., does not contain an appearance of a motif), NSITES can be
set to a value which is less than than the number of sequences in the dataset. If
MEME correctly locates just the appearances of the motif, the model found will
have higher log(likelihood) than that found by using the one-per model which is
forced to choose an appearance in every sequence in the dataset. To test this
assumption, MEME was run with both the one-per model and the n-per model on
datasets which contained varying numbers of randomly generated sequences (with
NSITES set to the same, fixed value each time). The random sequences had the
same letter frequencies as the dataset as a whole, and they were the same length.
The datasets used were CRP and LexA with various numbers of random sequences
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Table 6. MEME finds models of the LexA and CRP binding sites when NSITES
has values between 10 and 35. When NSITES is above 10, LexA and CRP are
usually found on the first two passes. Only with NSITES = 5 did MEME fail to
find CRP on any of the first five passes.

NSITES pass consensus Imoder  log(likelthood) — motif
5 1 ATACTGTATATAAAAACAGT 8.151 -154.337 LexA
2 AATACTGTATATGTATCCAG 7.667 -158.139 LexA
3 TGTGAAAGACTGTTTTTTTG 6.968 -161.024 ?
4 ACTATCATCAAATCTTGACA 5.406 -169.906 ?
5 GATGCGTAAGCAGTTAATTC 6.280 -167.133 ?
10 1 TACTGTATATAAAAACAGTA 11.740 -271.797 LexA
2 TAATACTGTATATGTATCCA 7.318 -319.596 LexA
3 GTGAAAGACTATTTTTTTGA 8.460 -303.710 ?
4 TTTCTGAACGGTATCACAGC 8.145 -317.833 CRP
5 AAGCAGATTATGCTGTTGAT 6.895 -318.830 ?
15 1 TACTGTATATATATACAGTT 13.513 -379.939 LexA
2 TTTTTTGAACGATTTCACAT 9.198 -454.496 CRP
3 TTTATTTTGATGTTTATCAA 6.620 -475.009 ?
4 TGCGTAAGAAGTTAATACTG 7.947 -471.933 ?
5 CAAAAATGGAAAGCCATTTT 7.292 -481.090 ?
20 1 AATACTGTATATATATACAG 12.883 -520.728 LexA
2 TTTTTGAACGGTTTAAAATT 8.237 -603.571 CRP
3 ATTATTGTGATGTTGATTAT 7.075 -634.142 ?
4 TGCGGAAGCAGATAATACTG 8.042 -627.719 ?
5 ATGAAAGTCTACATTTTTGT 7.042 -638.444 ?
25 1 TACTGTATATATATACAGTA 12.161 -669.214 LexA
2 TTTATTTTGATGTTTTTCAA 7.797 -760.468 ?
3 TTTCTGAAAGGTATAACATC 7.739 -786.765 CRP
4 CAAAAATGGAAAAGCAATTT 7.676 -789.667 ?
5 TGCGTAAGAAGATAATACTG 7.253 -803.956 ?
30 1 TACTGTATATATATACAGTA 11.087 -828.649 LexA
2 TTTTTGTGATCTGTATCACA 7.842 -929.059 CRP
3 CAAAAATGGATAACCATTTT 7.529 -952.776 ?
4 TATGCGTAAGCAGTAAAATT 7.401 -953.792 ?
5 TGAGGATGATAACGAATATC 6.820 -975.923 ?
35 1 TACTGTATATATATACAGTA 10.300 -995.800 LexA
2 ATTATTGTGATGTTGATCAT 7.247 -1092.196 CRP
3 CAAAAATGGAAAACCATTTT 7.425 -1112.207 ?
4 TTTCTGACCCAGTTCACATT 7.717 -1104.486 CRP
5 ATGCGTAAGCAATTTATTCA 6.826 -1135.477 ?

added. In both cases, MEME with the n-per model learned the correct concept on
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the first pass from datasets with more random sequences than the MEME using the
one-per model could tolerate. MEME with the n-per model learned a model for
the CRP binding site with 30 random sequences added to the 18 sequences of the
CRP dataset. (It learned the model even with 50 random sequences, although then
it learned it on the second pass.) MEME with the one-per model was not able to
learn a LexA binding site model with more than 60 random samples added to the
dataset, and it learned an “off-center” model when more than 20 random samples
were in the dataset. MEME with the n-per model, however, learned the correct
LexA model even with 80 random samples added to the dataset.

Figure 8 shows the information content of the CRP and LexA models learned by
MEME with the n-per model and the one-per model on the first pass from datasets
with various numbers of random sequences added. The CRP models learned with
the n-per model also consistently had higher information content than those learned
with the one-per model. This was true even for the model learned with no ran-
dom sequences added to the dataset. Presumably, this is indicative of the fact
that the n-per model is taking advantage of the sequences with multiple appear-
ances of the CRP site. The models learned with the n-per model for LexA were
extremely robust to the number of random samples added to the dataset. There
was almost no decrease in the information content no matter how many random
samples were present. The one-per model, on the other hand, found models with
lower information content when more random samples were in the dataset.

It is clear from Figure 8 that MEME using the n-per model will find a set of highly
conserved binding sites even in datasets where the vast majority of the sequences
do not contain it. The one-per model suffers from the fact that it must always
average in one supposed motif appearance from each sample. MEME with the n-
per model is thus able to deal with a particular type of noise—samples containing
no motif appearances—if a good estimate of the true number of motif appearances

(NSITES) is available.

5. Discussion

The MEME algorithm demonstrates the power of several new ideas. Subsequence-
derived starting points have been shown to be a powerful way of selecting starting
points for EM, and may be useful with other methods as well. Since EM tends to
converge quickly from good starting points, MEME saves a great deal of time by only
running EM for one iteration from each starting point and greedily selecting the
best starting point based on the likelihood of the learned model. The modifications
to the EM algorithm which allow MEME to drop the assumption that each sequence
contains exactly one appearance of a motif and fit the n-per model to a dataset
have been shown to give MEME the ability to discover motifs in datasets which
contain many sequences which do not contain the motif. Finally, the probabilistic
weighting scheme used by MEME to erase appearances of the motif found after each
pass was demonstrated to work well at finding multiple different motifs as well as
motifs with multiple parts.
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Figure 8. The information content of the LexA and CRP models found on the first pass of MEME
with the n-per model and the one-per model, run separately on the CRP and LexA datasets with
different numbers of random examples added. The comparative advantage of the n-per model is
clear. Especially with motifs whose occurrences are highly conserved, the n-per model finds very
good models even when many sequences not containing the motif are present. MEME was run

with W = 20 and NPASSES = 1. NSITES was set to 15 for the n-per model.
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The MEME algorithm should prove useful in analyzing biological sequence data.
It is a robust tool for discovering new motifs from sequence data alone when little
or no prior knowledge is available. When MEME is used to discover motifs from
sequence data alone, it is performing unsupervised learning. Effectively, MEME
finds clusters of similar subsequences in a set of sequences. Some measure of the
unlikeliness of a cluster, information content of the model for example, can then be
used to decide if other methods (i.e., wetlab experimentation) should be applied to
verify that the sites which match the model actually are biologically related. Plots
of information content scores of various positions of the sequences in the dataset
such as in Figure 1 and Figure 2 can also be helpful to a biologist for discovering
which clusters are significant and which may be statistical artifacts.

When MEME is used with a dataset of sequences each of which is known to
contain a motif, such as the promoter dataset, it is performing supervised learning.
Because the models MEME learns do not allow a motif to have variable length (i.e.,
no insertions or deletions are allowed), MEME is limited to learning a restricted
class of motifs. It may be possible to use the multiple models learned by MEME on
passes through the dataset as features for another learning algorithm. For example,
a decision tree learner such as ID3 [15] or CART [4] could use the models learned by
MEME on the promoter dataset as features to learn a classification rule for E. coli
promoters. Since the first two passes of MEME found models for the —10 and
—35 regions of the promoter, this approach should have a high chance of success.
Another promising idea is to use the short motifs learned by MEME to construct
starting points for hidden Markov models.

The innovations added to the EM algorithm in MEME can also be used with hid-
den Markov models (HMMs) [10]. The idea of using subsequence-derived starting
points may be adaptable for use with HMMs. The method used by MEME for
probabilistically erasing sites after each pass would certainly be easy to add to the
standard forward/backward HMM learning algorithm. It should also be possible
to design a HMM which, like the n-per model, eliminates the assumption of one
motif per sequence. It may also be possible to adapt MEME innovations to learning
stochastic context free grammars for biopolymer concepts [16].

MEME discovered CRP sites in the colicin Ia and colicin Ib samples. The site
in colicin Ib was mentioned in [21] as being either a LexA site or possibly a CRP
site. [11] appear to have classified it as a LexA site. The results reported here
indicate that the site is probably a CRP binding site, not a LexA binding site: the
information content score for the site under the CRP model was around 16, whereas
it was less than 1 under the LexA model. No mention of the CRP site found in
colicin Ia was found in the literature.
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Appendix

Reestimating p and z for the one-per and n-per models.

During each iteration of EM, the values of the letter probabilities of the motif model
p, and of the offset probabilities z, must be reestimated. With the one-per model,
the z values are reestimated using Bayes’ rule from the current estimate of p. For
both models, given the values of z, p is estimated as the expected values of the
letter frequencies. How this is done is described below.

To describe the EM algorithm for the two model types formally, the following
definitions are useful. Let N be the number of sequences, W be the length of the
motif, and L be the length of each sequence (assume all are of the same length).

Define ZZ(;»]) as the estimate after ¢ iterations of EM of the probability that the site

begins at position j in sequence ¢ given the model and the data. Let pgg) be the
estimate after ¢ iterations of EM of the probability of letter [ appearing in position
k of the motif. Let S; be the ith sequence in the dataset and S;; be the letter
appearing in position j of that sequence. Define an indicator variable Y;; that
equals 1 if the site starts at position j in sequence 7, and 0 otherwise.

We ignore the probability of the letters outside of the motif, and only consider the
probability of the letters in the motif. For both model types, EM must calculate
the probability of sequence S; given the motif start and the model. This can be
written as

w
P(SiYij = 1,p9) = ] pi?
k=1

where the sequence S; has letter [ at position j +k — 1, i.e., S;j4r—1 = {x. This
forms the basis for calculating z(%).
With the one-per model, Bayes’ rule is used to estimate 2(¢) from P(Si|Y;; =

1, p(Q)). Bayes’ rule states that
P(B|A)P(A

SO
P(Si|Yi; = 1, p)PO(Y;; = 1)

(¢) _ - (2) N
zj = P(Yij =1 p\9,8) = =
j Y £:1W+1 P(Si|Yir = 1, plO)PO(Y;, = 1)

where P°(Y;; = 1) is the prior probability that the motif begins at position j in
sequence 7. PY is not estimated and is assumed to be uniform,

PUY;j=0)=1/(L-=W+1), k=1,....,(L—- W+1)
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so the above simplifies to

(¢) _ P(S;|Yi; = 1,p(4))

Zii0 = — :
’ kot TUP(SiYi = 1, p0))

The probability is only estimated for sites which are completely within a sequence,
so j is assumed to be within the range 1,..., L — W + 1 in all calculations of 2(¢).

Notice that the above formula for z(9) ensures that it sums to 1.0 for each sequence.
This enforces the implicit assumption of the one-per model that each sequence
contains exactly one appearance of the shared motif. For the n-per model, our
modified EM algorithm normalizes z(¢) so that the sum over all positions in all
sequences is NSITES. This can be written formally as

P(Si|Yj = 1, p(0)
SN R P(SalYi = 1, p0))

) = NSITES

Once z has been calculated as above for the n-per model, it undergoes two nor-
v
and that the sum of the ZZ(]{»]) in any window of length W is less than or equal to
1.0. These constraints can be written formally as

malizations to enforce the constraints that each z::’ is less than or equal to 1.0,

27 <10, for 1<i<Nand 1<j<L

E+W-1
S AP <10, for1<i<Nand1<k<L—W+1.
i=k

There are many different ways in which the constraints could be enforced. A par-
ticular manner was chosen which reduces computational effort. No claim is made
that this is the only or best choice. The two constraints are enforced separately by
applying the following two algorithms in order. Figure A presents the first algo-
rithm, which makes one or more passes through the offset probabilities normalizing
them to sum to NSITES and “squashing” (setting to 1.0) any that would exceed
1.0 after normalization. After each pass, if any offset probabilities get squashed,
another pass is made to raise the value of offset probabilities that have never been
squashed so that the NSITES total is enforced. In practice, usually few passes are
needed. The second algorithm, given in Figure | is run next to enforce the constraint
that no window of W positions has offset probabilities that sum to more than 1.0.
This is achieved by dividing each sequence into adjacent windows of length W and
normalizing within each window separately. Windows are then shifted one to the
right and the process is repeated. This is done for all W possible shifts of the win-
dows, which guarantees that no window of width W will have offset probabilities
summing to greater than 1.0, but may reduce the total sum below NSITES. The
squashing algorithm could be repeated to correct this but this is not done in the
interest of saving computation time.



80

O 0 =1 O Ot = W N

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

TIMOTHY L. BAILEY AND CHARLES ELKAN

SQUASH ( z (unnormalized; zl(f) = P(Si|Y;; = 1, p9)),
total (the total of 2(9) for all sequences and positions),
NSITES (the number of appearances of the motif expected),
L (length of the sequences),

N (number of sequences)) {

renormalize = true

while (renormalize) {
renormalize = false
normalize = total /| NSITES
total = 0
fori=1to N {

forj=1toL— W+1{

p=zj
if (p<1){
p = p/normalize
if (p>1){
p=1
NSITES = NSITES — 1
renormalize = true
}
}
Zij =P
if (p < 1) total =total +p
}
}
}
return

Figure A.1. SQUASH: Normalize the z;; to sum to NSITES while constraining each to be between
0 and 1.
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SMOOTH ( (9 (normalized offset probabilities),

L (length of the sequences),
N (number of sequences) ) {
fori=1to N {
foroffset =1 to W {
forj=offset to L—2% W by W {
localp = 0
fork=1to W {
localp = localp + 22(74]»)_'_,6
}
if (localp > 1) {
fork=1to W {

L4 (9)

ij+k = 20 4/ localp

}

return
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Figure A.2. SMOOTH: Constrain the sum of offset probabilities in any window of width W to
sum to no more than 1.0.
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Notes

1. The name MEME has several explanations. First, it is an acronym for multiple EM for motif
elicitation. Second, as an English word “meme” means a theme or motif whose propagation
through cultural evolution is similar to the propagation of a gene in biological evolution. Third,
MEME is a greedy algorithm—a “me! me!” algorithm.

2. A related measure used occasionally in this paper, I,,,4¢; is the information content of the
model [17]. It is the sum of the information content of each position in the motif, I}, over all
the positions in the motif. The information content of a position in the motif is defined as

Pl
L= ny log(" "),

lel
where p; is the overall frequency of letter | in the dataset. The information content of the

model is thus defined as
w
Imodet = Z I] .
j=1

The relationship between I,;,,4.; and log(likelihood ) is discussed by Stormo [18] and Bailey [1].

3. Promoter sequences are DNA sequences that precede genes and are necessary for the tran-
scription of DNA to messenger RNA.

4. The consensus sequence of a motif is the sequence consisting of the most commonly occurring
letter in each position of the appearances of the motif. Ties are resolved arbitrarily.

See [17] for a discussion of matrix-based scoring of sequences.

6. Using all possible subsequences of the first dataset sequence is suggested in [19]. The MEME
approach of using all subsequences of all sequences is preferable since it makes the order in
which sequences are given unimportant. Not using just the first sample also eliminates the
problem of the first sample happening to contain no motif occurrence.

7. The idea of a “conserved motif” comes from the biological idea that the occurrences of motifs
are often related to each other by evolution. A well conserved motif is one whose appearances
are all almost identical to each other because little mutation has occurred in them since they
separated from each other or from a common ancestor.

8. Biologists often number the “bases” (i.e., letters) in a DNA sequence with base 1 being the
base where transcription from DNA to messenger RNA begins. Bases preceding the start of
transcription are given negative numbers, starting at -1, with 0 not used.)

9. If the best value of W is not known in advance, MEME can be run repeatedly with different
values. [14] addresses the question of choosing the best value of W. Each run of MEME uses
a single value of W for all motifs found.
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