Computational Genomics

10-810/02-710, Spring 2009

000
Advanced models and algorithms for 0000
i 3 ( X X
motif detection eeo
o0
[
Reading: Durbin Chap 9,
© Eric Xing @ CMU, 20052009 class assignment 4
[ X X ]
- - eecs
The product multinomial model 3
[Lawrence et al. Science 1993] °
e Positional specific multinomial distribution:
0,= [Op ..., O]
o, 0, 0; 6
] |
@
AAAAGAGTCA
AAATGACTCA
ARAAGAGTCA
atGCeTCA = A A~P,(A|6)

AATGAGTCA
AATGAGTCA
i AAAGAGTCA

e Position weight matrix (PWM): @

e The nucleotide distributions at different positions are independent
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Bayesian approach

e For model AA|0):
e Treat parameters @ as unobserved random variable(s)

e probabilistic statements of @is conditioned on the values of the observed
variables A

_r"p'@"“—-..
w|_ (%%
a A A - A

M M M M

9,

"
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e Bayes' rule: p(O|A)oc p(A|6)p(0)
posterior likelihood  prior
e Bayesian estimation: Opayes = I Gp(6| A)ab
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Bayesian missing data problem

e (: parameter of interest

o X={x,,...,.xy}: asetof complete i.i.d. observations from a
density that depends upon 6: p(X | 6)

PO 1X) = Ny px; | 6) )/ p(X)

¢ In practical situations, x; may not be completely observed.
e Assuming the unobserved values are missing completely at random,
o let X=(Y,2), x~(y,z) ~1,....n
e y; observed part, z; missing part

pO1Y) = [p®lY, 2)pZ]|Y)dZ
e This integration is usually hard obtain in close-form - Imputation
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57— TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT  HIST
—
57— ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG - ARD4
—
57~ CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT . ILV6
—
57— TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC . THR4
—
57— ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA . ARO1
—
57— ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA . HOMZ
57~ GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA  PROS
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data imputation o

e Multiple values, Z" ,...,Z are drawn from p(Z | Y) to
form m complete data sets.

e With these imputed data sets and the ergodicity
theorem,

pOIY)=1m {pO|Y, 20+ ..+ p6|Y, ZM)}

e But in most applied problems it is impossible to draw
Z from (Z | Y) directly.
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Data Augmentation

\
e Tanner and Wong’s data augmentation (DA)

e apply Gibbs Sampler to draw multiples of 8's and multiples of Z's jointly
from p(6, Z | Y)

e DA algorithm
Notice that: p(Z | Y)=[p(6,Z | Y)d8=IpZ | 6, Y)p(6 | Y)d6
=1m {pZ | 60Y)+ ... + p(Z | 6™,Y)}

e Istep Zm~ p(Z | 6mY)

Recall that: p(8 | Y) = 1/m " {p(6 | Y, Z0)+ ..+ p(@ | Y, Zm)}
e P-step 6m~ pO|Y, Zm)

¢ By iterating between drawing 6 from p(6 | Y,Z) and drawing Z
from p(Z | 8,Y), DA constructs a Markov chain whose
equilibrium distribution is p(6, Z | Y)

Collapsed Gibbs Sampler (J. Liu) G

e Consider Sampling from p(6 | D), 6=(6,,6,,6,)

e Original Gibbs Sampler
(i) 6 ~ p(6]6,.6.0)
(i) 6, ~ p(6.|6,,65,D)
(i) 65~ p(65]6,,6,,D)

e Collapsed Gibbs Sampler (J. Liu):

() (6,,6,)~ p(6,,6,|D)
(i) 6, ~ p(65)6,,6,,D)
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Back to de novo Motif Detection
— Bayesian missing data problem

e The oops model (one occurrence per sequence)
Motif
ds
width = w
4 length n,
e Parameter of Interest
elA HZA QWA HOA
9 - Or Oy Our 0 _ Gor
4w P 0 0 0,4x1 — 0
1G 2G nwG 0G
910 HZC 91/1/(3 6)OC
e Missing Data A={a,,a,,...,a}
e Observed Data Y= Given Sequences
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The Gibbs Motif Sampler

o Standard Gibbs Sampler (Iterative sampling): p(6A,Y); p(A|6,Y)
Draw from [@] A, Data], then draw from [A | 6, Data]

° Collapsed Gibbs Sampler (Predictive Updating): A~ p(A | Y)

pretend that K-7 motif instances have been found. We stochastically predict
for the K-th instance!!

o Step0. choose an arbitrary starting point
A0=(a,©,a,0),...,a,0);

e Step1. Generate A" =(a,t*N, a,t*1, ... a\®*" ) as follows:
Generate a,*" ~ p(a, | a,,...,a,0, Y);
Generate a,*" ~ pa, | a,*", a,0 ,...,a,0, Y);

Generate a, "~ play | a,", a,*1,...,a, D, Y);
Generate 00 ~ p(0] a,), a,t,...,a,D, Y);

o Step2. Set t=t+1, and go to step 1
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The Predictive Update Version

e |[nitialized by choosing random starting positions

(0) 45(0) (0)
a7, 8y ey Ay
e lterate the following steps many times:
e Randomly or systematically choose a o e

sequence, say, sequence k, to exclude. a
3

e Carry out the predictive-updating step "
to update a, k-

(no need to sample @ at each t, we can compute it in close-form, see next slide
Notations:
An=1a 0. ac) = G iuy /=1 W, j=ATG,C
a = ¢,a,)

e Stop when not much change observed, or some criterion met.
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Predictive Distribution

e The predictive distribution for a,:

C/,‘/ (/)

w .
p(ak =/ | 4_,(],)/) ~Const e HH(://[“) *)
/=1 4

0./[-k1

e Predictive update:

5 Cjint b ~
6, = 8, ., similarl
/. J K] K-1+ Zﬂ/,‘/’ 0./.[-41 y
J

assuming: 8, ~ Dirichlet(a), ® ~ Product Dirichlet(B), B = (8,;), a ~ Uniform

e Sampling: every segment of width Win Y, has probability (*).
Choose one at random according to these probabilities, and
this becomes the new a,.
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erivation °
\
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Phase-shift and fragmentation o
e Sometimes get stuck in a local shift optimum
: True motif locations
a ?
e How to “escape” from this local optimum?
e Simultaneous move: A —5A+3, A+d={a,+, ..., axt+d}
e Use a Metropolis step: accept the move with prob=p,
; p(A+351Y) Compare entropies between
r=min{l,=—————"}
{ PAY) } new columns and left-out ones.
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Natural Extensions to Basic
Model |

\
e Multiple Pattern Occurances in the same sequences:

Liu, J. "The collapsed Gibbs sampler with applications to a gene regulation problem," Journal of the American Statistical Association 89 958-966.

e Prior: any position i has a small probability ¢ to start a binding site:

A=(a,...8) P(A) = e¥(1-&)¥* (with nonoverlapping constraints)
width =w

3 length n,

e Recall
PV a A ) pP(A)
> pYla =iA m)p(A)

7

p(ak“]i!”"ak—vak+1l'“!akvy):

augmented proposal distribution for the Gibbs motif sampler

© Eric Xing @ CMU, 2005-2009 17

Back to the binary indicator
model H

58 g

Z {0, 1

Although sampling z directly is prohibitive, a very simple form of
the conditional distribution of any z, given all the rest z_, is
available

~ N\O(Ynuar)

p(z, =17 ,,y) & ﬁﬁ 0L

P(z, =01z, y) 1-E14 54l 6,

where £and @ are estimated from y and z,.
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: 82
Any problem with the model? 5
Z {0, 1}V
* How about multiple types of motifs?
« Can motif overlap?
» Are motif sites independent?
© Eric Xing @ CMU, 2005-2009 19
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Natural Extensions to Basic sels
Model I -
e Composite Patterns:
e Multiply the motif p-values
—{T—— N —See—
Combined p-value = 0.00001 * 0.0035 * 0.007 * 0.00000005
=1.225* 107

© Eric Xing @ CMU, 2005-2009 20




The product of p-values

e Theorem: The probability Fn(p) that the product of n
independent, uniform [0,1] random variables

n

z,-11#

/

e has an observed value less than or equal to p, is given by

F(p)= P 1(_'?.!” )

/=0

e for0 < p<1,andis zero when pis zero.

Timothy L. Bailey and Michael Gribskov, “Combining evidence using p-values: application to

sequence homology searches,” Bioinformatics, 14:48-54, 1998.

© Eric Xing @ CMU, 2005-2009
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Natural Extensions to Basic
Model Il

e Correlated in Nucleotide Occurrence in Motif:

Modeling within-motif dependence for transcription factor binding site predictions. Bioinformatics, 6, 909-916.

AR )

e Insertion-Deletion

BALSA: Bayesian algorithm for local sequence alignment Nucl. Acids Res., 30 1268-77.

Wi

Ws

Wy
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Recall the PM Model

e The PM parameter, 6, = [0,, ..., 6:]", corresponds exactly to the

B,@ H;@ U,,@

M M M

The nucleotide distributions at different sites are independent !

e The score (likelihood-ratio) of a candidate substring: AAAAGAGTCA

_ p(x={AAAAGAGTCA}|PWM) 1_[ p(y, IPWM) ﬁh
p(x ={AAAAGAGTCA} | bk) i p(y, | bk) i1 Oy,
© Eric Xing @ CMU, 2005-2009 23
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Mixture of PM models °°
Weighted PWMs __.©® _________ @
L 6 6. k! | (Barash etal. 2002)

The nt-distributions at different sites are conditionally independent but marginally dependent !
The likelihood of a candidate substring: AAAAGAGTCA
P(x={AAAAGAGTCA}) = 7, p(-| PWM,) + 7, p(-| PWM,)

© Eric Xing @ CMU, 2005-2009 24
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Tree models o
Tree CPTs — 5 @ 0, @ O @
@ b;/ M (Barash et al. 2002)
The nt-distributions at different sites are pairwisely dependent !
The likelihood of a candidate substring: AAAAGAGTCA
P(x={AAAAGAGTCA}) = | p(x | Pi(X)) =P(X | %) P(X | X,)-- P(X, | X,)
|
Mixture of trees
© Eric Xing @ CMU, 2005-2009 25
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MotifPrototyper: sels
A Bayesian Markovian model o
T -{T-l:‘i’-l I [Xing and Karp, PNAS 2004]
Local HMM | |~
parameters !
Dirichlet |
parameters
Learning: empirical Bayes estimation:
a family of training motifs {A}, = hyperparameters {¢, 7, B},
© Eric Xing @ CMU, 2005-2009 26
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Enhanceosome:
Cis-Regulatory Modules

Space [ time Domain 1 Space ( time Domain 2

different spatial repressors ====

|
different signals ___ =
acentcels | s other inputs

[ X X ]
0000
s
Cluster Finding Methods '
e Poisson model
e A. Wagner
e Cister (CIS-element clusTER finder)
e M. Frith et al.
e Comet (Cluster Of Motifs E-value Tool)
e M. Frith et al.
e cis-regulatory module finder
e GuptaM, Liu JS.
e LOGOS
e Xing et al.
© Eric Xing @ CMU, 2005-2009 28
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Finding Motif Clusters g
e Poisson Method
{} o, o, {} i1
| | 1 ]
Exponential distribution: “Pearson type Il distribution”:
a k-2 _
df (x)=ae™ pdf (x)=——(ax) e ™
paf (x) (0= (™)
e Regulatory Modules:
Cister & Comet Statt ——> |E|
De novo cis-regulatory module elicitation for eukaryotic genomes. Proc Nat’l Acad Sci USA, 102, 7079-84
LOGOS j \\&
N Gene A N ; i
o Gene B .
© Eric Xing@CMU 2005-2009 29
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Cister & Comet: Introduction .
DNA sequence segment
score(segment) = In Prob(segment | cluster model )
Prob(segment | random model)
Cluster model:
—Y— - —
Poisson-distributed cis-elements, embedded in random DNA
© Eric Xing@CMU 2005-2009 30
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Hidden Markov Model

Random DNA

© Eric Xing @ CMU, 2005-2009
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Cister

Random DNA

0.001
0.999

Random DNA

© Eric Xing @ CMU, 2005-2009

Cluster
model

Random
model
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Cister applied to Human c-fos c
position in sequence (hases)
Loy 2000 ool L] 2000 (2528
1
k-]
=
g
< 0.8
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0.6
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= 0.2
2
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: || “ ‘ ‘ H ‘ ‘ ‘
]
& e
g2
0.4
0.6
=
z
o G
'
1
—— cluster probability protein coding region
cis-elements:  TATA Spl Ets LSF
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DNA sequence segment

Prob(segment ~optimal parse | cluster model)

score(segment) = In
Prob (segment | random model)

Parse:
——a—a—
One particular arrangement of cis-elements in the segment

© Eric Xing @ CMU, 2005-2009
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The CisModuler global HMM

» Space of hidden states

— all possible functional annotations
» Parameters

— transition parameters {5}
 Empirical priors for {5}
* Posterior decoding

£CTATAATC
g AR . 2 3t G EAE ECgE A Ct G Cat CgEC A CELCE GGG e CEGEEE G-t Eg
1o SOEAPTRRG s g0gc et ggaatacsatcecgatenctagcacet cecaatencaatcacasterctt
FEGEER £t cat b agaaayt SRR A At A 5t At gat it cga CEEATIReR) C g rdc A FiEcaTEcaRcTEaa
“taacggactagegaactygytt a ENNINNcg-cgactt agecct gatoogegaget MNNRENR t9<decgygea
jeagetagttatoggtagacceeacy MMM caaacct ceaagetaacttgogcaagtggeaagtcgecgyttt

jetgececcogagecetgetgtt ottt ggeect gbtttettbtttgtqgttagaagt ceaatttttagetaata
tctgecageoctgetgttetttttggeecteaacyttaaceeygtygtaggttagaagtggacceaatttttagetaata

[Xing, Wu, Jordan and Karp. JBCB 2004]
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Systems Biology Approach:

Combining Signals and other Data

e Expresssion and Motif Regression: Motifs Coding regions
Integrating Motif Discovery and Expression Analysis Proc.Natl.Acad.Sci. 100.3339-44 \\

1. Rank genes by E=log2(expression fold change)
2. Find “many” (hundreds) candidate motifs

3. For each motif pattern m, compute the vector S, of matching scores for genes
with the pattern

4. RegressEon S, yg =a+ ,Bmsmg té,

e ChIP-on-chip - 1-2 kb information on protein/DNA interaction:

An Algorithm for Finding Protein-DNA Interaction Sites with Applications to Chromatin Immunoprecipitation Microarray
Experiments Nature Biotechnology, 20, 835-39

Protein binding
in neighborhood Coding regions

© Eric Xing @ CMU, 2005-2009 36
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Phylogenetic Footprinting
(homologous detection)

\
e Term originated in 1988 in Tagle et al. Blanchette et al.: For

unaligned sequences related by phylogenetic tree, find
all segments of length k with a history costing less than
d. Motif loss an option.

o
H
3
H
g
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B
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8
’ . g
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=
&
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I I Lates 5
3
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l | | Dag @
@
l . Sheep %
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ISCUSSION o

e Model versus algorithm:

e Model: e.g., oops, zoops, HMM,
e Algorithms: EM, Gibbs, heuristics ...

e Different algorithms can be used for solving the same model!

e Need to be clear whether improvement/loss is due to model or algorithm
(many paper/author got confused with these two aspects, and discuss
results in convolved way!)

e Fix one, and analyze the other, one at a time!!

© Eric Xing @ CMU, 2005-2009 38
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Databases

TRANSFAC: http://www.gene-regulation.com/pub/databases.html#transfac

 TRANSFAC

TRANSFAC FACTOR TABLE, Release 7.0 — public - 2005-09-30 {(C) Biobase C

Tao3oz
Taoa02

15.10.1992 (created); ewi.
26.08.2002 (updated); hom.
cpase GmbHE.

yeast, Saccharomyces cerevisiae
Eukaryota; Fungi; Ascomycota; Hemiascomycetes; Saccharomycetales;
Saccharomycetaceae; Saccharomyces.

MELLSSIEQACDICR LEKLECSHERPRCAKCLENNWECRY SPRTRRIPLTRAELTEVESR
LERLEQLFLLIFPREDLOMILEMDSLODIKALLIGLEVQD

QHRISAT. sssr_r_ssmﬂ:qud:\.sr SARHEDNSTIPLDFMPRDALEGFDWSEEDDM
ENYIHENVNRLE THITORYTLASRETT

§ ROHTHTSVNFHEFS TRMATSLG
WEIQLSLLYGRSIQLSONTISFPSSVDDVORTT

FTAEKED ICAKKCLMICNE [EEVWROADKFLQ
THETQKKSQLEQDONDHOS
YEFHAVLVPIKTLLENSKSN

Binding Sites

© Eric Xing @ CMU, 2005-2009
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More Databases

The high-quality transcription factor binding profile database

BROWSE profies by |I0| Name || Species || Slass | [ Tacnomic graup |
cambine seanches vl
Nama | | AND
SEARCHE  Mame AND

e Species-specific: o W =
e SCPD (yeast) http://rulai.cshl.edu/SCPD/
e DPInteract (e. coli) http://arep.med.harvard.edu/dpinteract/
e Drosophila DNase | Footprint Database (v2.0) http://www.flyreg.org/
© Eric Xing @ CMU, 2005-2009

40

20



LOQOS: http://weblogo.berkeley.edu/

rantn Segquance Logos - Microzof Intermet Explores provided

wiew Fgoontss  Toale  Help

3 - [®) B & JOseaeh frraveres @ I ) @ - LB
4] hitp:webloga chr nre calogo coi ~ oo

O Deed @1BEC E]CNN ] Yahoo Med

WEBLOGO - about - create - examples -

& Multiple Sequence Alignment
@ Upload Sequence Data Erowig
Image Format & Size
@ Imags Format PHG (betmag) |+ @ Lot Size per Lins

18 X|s em b

[ Ceoetom [Fese]

Gibbs Motif Sampler

http://bayesweb.wadsworth.org/gibbs/gibbs.html

The Gibbs Motif Sampler

(for DNA)
options
Email Address: ‘
Flease enter the data sequence: (FASTA format) *

|[ Browse.. |
%‘;& Prokaryotic Defaults %%m Eukaryotic Defaults
Sampler Mode ) Site Sampler OMotif Sampler ) Recursive Sampler
oo .
motifs (patterns): recursive samnpler’

MoV | gmmesels
zach motif type:

© Eric Xing @ CMU, 2005-2009
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MEME

http://meme.sdsc.edu/meme/website/meme.html

-

Eile Edn Vwew Fgwortes Tools Help

Qees - © - %] [B) 0 Oseweh forovies @ 5 | & - [LJE

) bt fimerme sduc edufmemememe bl ~ Eyao L C3David @1E8C EICNN &)'vahoo Mail
-
Hosted by
e MEME Verion 350
"\ Multiple Em for Mot Eicitation NBCR

Dhata Submission Form

st thas Eoren to subenit DA or protéin sequénces to MEME. MEME vwall analyze your sequences For indarities ameng them and produce a destaption (motif)
for each pattem it dscovers. Your results will be sent o you by &-mad

Your eamail address:

kechrisg@genome.ucel ady

Ee-enter e-mal addrese:

kechnsg@genome. ue sl edu

Please enter the gequences which you bebeve share one oo = Enter the name g
moee matis. The sequences may contain no more than 60,000

characters total m asy of a large number of fonmats.

[Optional] Dexcription of your sequences.

‘or the actual sequences here (Sample Input Sequences)
SYNRDIOE_176 433 648

TTGETARAGT. AATTTTTCCCCTTTATTTTSTICATACATT
CTTALAT TG TTTOCC TE TEC TTTTOG AAAGE TATACT
TTGAGCGAMGGC TCATTAGATATATTTTC TGTCATTTTCCTTAMCCC AL
CEARAGGETOC AALARGOGC TOGEACARC TGTTGACCGTGAL,

How da wou think the accarences of a snghe mo
distribated among the seqaences?
© One per squiane

L Zere or one per seauence Dlinim ses(>= 2) -
N
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