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Computational GenomicsComputational Genomics

1010--810/02810/02--710, Spring 2009710, Spring 2009

Advanced models and algorithms for Advanced models and algorithms for 
motif detectionmotif detection

Eric XingEric Xing

Lecture 9, February 11, 2009

Reading: Durbin Chap 9, 
class assignment
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The product multinomial model
[Lawrence et al. Science 1993]

Positional specific multinomial distribution: 
θl =  [θlA, …, θlC]T

Position weight matrix (PWM): θθ
The nucleotide distributions at different positions are independent

A1

θ1 θ2 θ3 ... θL

A2 A3 ... AL

AAAAGAGTCAAAAAGAGTCA
AAATGACTCA
AAGTGAGTCA
AAAAGAGTCA
GGATGCGTCA
AAATGAGTCA
GAATGAGTCA
AAAAGAGTCA

A≡ )|(~ PM θAPA
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The oops model:
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The oops model:
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The oops model:
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The oops model:
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The oops model:
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The Zoops model:

z1 z2 zN
…

y1 y2 yN
… Z∈{0, 1}N
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Bayesian models:

z1 z2 zN
…

y1 y2 yN
… Z∈{0, 1}N
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For model P(A|θ ): 
Treat parameters θ as unobserved random variable(s) 
probabilistic statements of θ is conditioned on the values of the observed 
variables Aobs

Bayes’ rule:

Bayesian estimation:

p(θ)

)()|()|( θθθ ppp AA ∝
posterior likelihood prior

θθθθ dpBayes ∫= )|( A

Bayesian approach
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Bayesian estimation for Bernoulli 
Beta distribution:  

Posterior distribution of θ : 

Notice the isomorphism of the posterior to the prior, 
such a prior is called a conjugate prior
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Bayesian missing data problem
θ : parameter of interest
X={x1,…,xN }: a set of complete i.i.d. observations from a 
density that depends upon θ: p(X┃θ)

p(θ┃X)  =  Πi=1,…,np(xi┃θ) p(θ) / p(X)

In practical situations, xi may not be completely observed.
Assuming the unobserved values are missing completely at random, 
let X=(Y,Z), xi=(yi,zi) i=1,…,n
yi: observed part, zi: missing part

p(θ┃Y)  =    ∫ p(θ┃Y, Z) p(Z┃Y)dZ

This integration is usually hard obtain in close-form  Imputation
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Example

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3
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Multiple values, z(1) ,…,z(m) are drawn from p(Z┃Y) to 
form m complete data sets. 

With these imputed data sets and the ergodicity
theorem,

p(θ┃Y) ≈ 1/m ´{p(θ┃Y, z(1))+ … + p(θ┃Y, z(m))}

But in most applied problems it is impossible to draw 
Z from (Z┃Y) directly. 

Data Imputation
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Data Augmentation
Tanner and Wong’s data augmentation (DA)

apply Gibbs Sampler to draw multiples of θ’s and multiples of Z’s jointly 
from p(θ, Z┃Y) 

DA algorithm 
Notice that: p(Z┃Y) = ∫p(θ, Z┃Y)dθ =∫p(Z┃θ, Y)p(θ┃Y)dθ

≈1/m ´ {p(Z┃θ(1),Y)+ … + p(Z┃θ(m),Y)}

I-step z(m) ~ p(Z┃θ(m) , Y)

Recall that: p(θ┃Y) ≈ 1/m ´ {p(θ┃Y, z(1))+ … + p(θ┃Y, z(m))}

P-step θ(m) ~ p(θ┃Y, z(m) )

By iterating between drawing θ from p(θ┃Y,Z) and drawing Z 
from p(Z┃θ,Y), DA constructs a Markov chain whose 
equilibrium distribution is p(θ, Z┃Y)
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Collapsed Gibbs Sampler (J. Liu)
Consider Sampling from p(θ┃D), θ=(θ1,θ2,θ3)

Original Gibbs Sampler

Collapsed Gibbs Sampler (J. Liu):

),,(~   (iii)

),,(~   (ii)

),,(~   (i)

Dp
Dp
Dp

2133

3122

3211

θθθθ

θθθθ

θθθθ

),,(~   (ii)

),(~),(    (i)

Dp
Dp

2133

2121

θθθθ

θθθθ
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The oops model (one occurrence per sequence)

Parameter of Interest

Missing Data A= {a1,a2,…,ak}
Observed Data Y= Given Sequences

Back to de novo Motif Detection
⎯ Bayesian missing data problem
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The Gibbs Motif Sampler

Standard Gibbs Standard Gibbs Sampler (Sampler (Iterative sampling):Iterative sampling): p(θ|A,Y);  p(A|θ,Y)
Draw from [θ | A, Data], then draw from [A | θ, Data]

Collapsed Gibbs Sampler (Collapsed Gibbs Sampler (Predictive Updating)Predictive Updating): A ~ p(A┃Y)
pretend that  K-1 motif instances have been found. We stochastically predict 
for the K-th instance!!

Step0. choose an arbitrary starting point
A(0)=(a1

(0),a2
(0),…,aK

(0));

Step1. Generate A(t+1) =(a1
(t+1), a2

(t+1),…,aN
(t+1) ) as follows:

Generate a1
(t+1) ~ p(a1┃ a2

(t),…,aK
(t), Y);

Generate a2
(t+1) ~ p(a2┃ a1

(t+1) , a3
(t) ,…,aK

(t), Y);
…
Generate aK

(t+1) ~ p(aN┃ a1
(t+1) , a2

(t+1) ,…,aK-1
(t+1) , Y);

Generate θ (t+1) ~ p(θ┃ a1
(t+1) , a2

(t+1) ,…,aK
(t+1) , Y);

Step2. Set t=t+1, and go to step 1
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Initialized by choosing random starting positions 

Iterate the following steps many times:

Randomly or systematically choose a 
sequence, say, sequence k,  to exclude.

Carry out  the predictive-updating step 

to update ak

(no need to sample θ (t) at each t, we can compute it in close-form, see next slide

Notations:

Stop when not much change observed,  or some criterion met.

)0()0(
2

)0(
1 ,......,, Kaaa

The Predictive Update Version

ak ?

a1
a2

a3

{ } CG,T,A,,,  ,         ,,,, ]-[,,,][ ==⇒≡ +−− jWlcaaaaA kjlKkkk LLL 1111

)(        , kjlk aca ⇒
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The predictive distribution for ak:

Predictive update:

Sampling: every segment of width W in Yk has probability (*). 
Choose one at random according to these probabilities, and 
this becomes the new ak.
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Derivation
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ak ?

: True motif locations

}
) |(

) | (,min{
YAp
YApr δ+

= 1 Compare entropies between 
new columns and left-out ones.

Phase-shift and fragmentation
Sometimes get stuck in  a local shift optimum

How to  “escape” from this local optimum?
Simultaneous move:  A →A+δ,  A+δ={a1+δ, … , aK+δ} 

Use a Metropolis step: accept the move with prob=p, 
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Convergence
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Model Selection
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Multiple Pattern Occurrences in the same sequences:
Liu, J. `The collapsed Gibbs sampler with applications to a gene regulation problem," Journal of the American Statistical Association 89 958-966.

Prior: any position i has  a small probability ε to start a binding site:

Recall

augmented proposal distribution for the Gibbs motif sampler 

width = w

length nLak

),,( 1 kaaA K= s)constraint pingnonoverlap(with    )()( kNkAP −−≈ εε 1

Natural Extensions to Basic 
Model I
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Although sampling z directly is prohibitive, a very simple form of 
the conditional distribution of any zn given all the rest z[-n] is 
available

where are estimated from y and z[-n]. θε ˆ and ˆ

z1 z2 zN
…

y1 y2 yN
…

Z ∈{0, 1}N

Back to the binary indicator 
model
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z1 z2 zN
…

y1 y2 yN
…

Z ∈{0, 1}N

• How about multiple types of motifs?

• Can motif overlap?

• Are motif sites independent?

This model can be easily extended to solving K different types motif 
simultaneously by letting Z ∈{0, …, K}NT

A Markov chain for Z.

See next ...

Any problem with the model?
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Composite Patterns:
BioOptimizer: the Bayesian Scoring Function Approach to Motif  Discovery  Bioinformatics

Multiply the motif p-values

Natural Extensions to Basic 
Model II

Combined p-value = 0.00001 * 0.0035 * 0.007 * 0.00000005
= 1.225 * 10-17

Seq1
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The product of p-values
Theorem: The probability Fn(p) that the product of n 
independent, uniform [0,1] random variables

has an observed value less than or equal to p, is given by

for 0 < p ≤ 1, and is zero when p is zero.

∏
=

=
n

i
in PZ

1

( ) ( )∑
−

=

−
=

1

0

n

i

i

n i
pppF

!
ln

Timothy L. Bailey and Michael Gribskov, “Combining evidence using p-values: application to 
sequence homology searches,” Bioinformatics, 14:48-54, 1998. 
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1

K

w1

w2

w3

w4

Natural Extensions to Basic 
Model III

Correlated in Nucleotide Occurrence in Motif:
Modeling within-motif dependence for transcription factor binding site predictions. Bioinformatics, 6, 909-916.

Insertion-Deletion
BALSA: Bayesian algorithm for local sequence alignment Nucl. Acids Res., 30 1268-77. 
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The PM parameter, θl =  [θlA, …, θlC]T, corresponds exactly to the 
PWM of a motif

The score (likelihood-ratio) of a candidate substring: AAAAGAGTCA

)bk|}AAAAGAGTCA{(
)PWM|}AAAAGAGTCA{(

=
=

=
xp

xpR

The nucleotide distributions at different sites are independent !

∏
=

=
10

1 )bk|(
)PWM|(  

l l

l

yp
yp ∏

=

=
10

1 ,0

,  
l y

yl

l

l

θ
θ

Recall the PM Model 
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The likelihood of a candidate substring: AAAAGAGTCA

Weighted PWMs 

)PWM|()PWM|(})AAAAGAGTCA{( 2211 ⋅+⋅== ppxP ππ

The nt-distributions at different sites are conditionally independent but marginally dependent !

(Barash et al. 2002)

Mixture of PM models
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(Barash et al. 2002)

Mixture of treesMixture of trees

The likelihood of a candidate substring: AAAAGAGTCA

)|()|()|())(|(})AAAAGAGTCA{( 1221 xxpxxpxxpxpixpxP ml
l

ll L∏ ===

The nt-distributions at different sites are pairwisely dependent !

……

Tree CPTs

Tree models
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Dirichlet 
parameters

Local HMM 
parameters

Learning: empirical Bayes estimation: 

a family of training motifs {A}k ⇒   hyperparameters {α, π, B}k

[Xing and Karp, PNAS 2004]

MotifPrototyper: 
A Bayesian Markovian model
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Enhanceosome: 
Cis-Regulatory Modules

© Eric Xing @ CMU, 2005-2009 36

Cluster Finding Methods

Poisson model
A. Wagner

Cister (CIS-element clusTER finder)
M. Frith et al.

Comet (Cluster Of Motifs E-value Tool)
M. Frith et al.

cis-regulatory module finder
Gupta M, Liu JS.

LOGOS
Xing et al.
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Finding Motif Clusters
Poisson Method

Regulatory Modules:
Cister & Comet
De novo cis-regulatory module elicitation for eukaryotic genomes. Proc Nat’l Acad Sci USA, 102, 7079-84
LOGOS

“Pearson type III distribution”:

( ) ( ) 2

( 2)!
k axapdf x ax e

k
− −=

−

Exponential distribution:

( ) axpdf x ae−=

M1

M2

M3

Stop

Start

12p

21p

Gene A
Gene B
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Cister & Comet: Introduction

DNA sequence segment

( ) ( )
( )

Prob segment | cluster model
score segment ln

Prob segment | random model
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Cluster model:

Poisson-distributed cis-elements, embedded in random DNA
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Hidden Markov Model

0.1

0.5

0.9

0.5

Cis-element

Cis-element

Random DNA
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0.1

0.5

0.9

0.5

Cis-element

Cis-element

Random DNA

Random DNA
0.999

0.001

Cluster
model

Random
model

Cister
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Cister applied to Human c-fos

© Eric Xing @ CMU, 2005-2009 42

Comet

DNA sequence segment

( ) ( )
( )

Prob segment optimal parse | cluster model
score segment ln

Prob segment | random model
⎡ ⎤∧

= ⎢ ⎥
⎣ ⎦

Parse:

One particular arrangement of cis-elements in the segment
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The CisModuler global HMM

• Space of hidden states 
– all possible functional annotations

• Parameters
– transition parameters {β}

• Empirical priors for {β}
• Posterior decoding

[Xing, Wu, Jordan and Karp. JBCB 2004]
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Motifs Coding regions

Protein binding 
in neighborhood Coding regions

Systems Biology Approach:
Combining Signals and other Data

Expresssion and Motif Regression:
Integrating Motif Discovery and Expression Analysis  Proc.Natl.Acad.Sci. 100.3339-44

1. Rank genes by E=log2(expression fold change)
2. Find “many” (hundreds) candidate motifs
3. For each motif pattern m, compute the vector Sm of matching scores for genes 

with the pattern 
4. Regress E on Sm

ChIP-on-chip - 1-2 kb information on protein/DNA interaction:
An Algorithm for Finding Protein-DNA Interaction Sites with Applications to Chromatin Immunoprecipitation Microarray
Experiments Nature Biotechnology, 20,  835-39

gmgmg SY εβα ++=
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B
lanchette

and Tom
pa

(2003) “FootPrinter: a program
 designed for phylogenetic

footprinting”
N

A
R

  31.13.3840-

begin signal end

Phylogenetic Footprinting
(homologous detection)

Term originated in 1988 in Tagle et al. Blanchette et al.: For 
unaligned sequences related by phylogenetic tree, find 
all segments of length k with a history costing less than 
d.  Motif loss an option.

© Eric Xing @ CMU, 2005-2009 46

Discussion
Model versus algorithm:

Model: e.g., oops, zoops, HMM,
Algorithms: EM, Gibbs, heuristics …

Different algorithms can be used for solving the same model!
Need to be clear whether improvement/loss is due to model or algorithm 
(many paper/author got confused with these two aspects, and discuss 
results in convolved way!)
Fix one, and analyze the other, one at a time!!
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Binding Sites

Databases
TRANSFAC: http://www.gene-regulation.com/pub/databases.html#transfac

© Eric Xing @ CMU, 2005-2009 48

Species-specific:
SCPD (yeast) http://rulai.cshl.edu/SCPD/
DPInteract (e. coli) http://arep.med.harvard.edu/dpinteract/
Drosophila DNase I Footprint Database (v2.0) http://www.flyreg.org/

More Databases
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Logos: http://weblogo.berkeley.edu/

© Eric Xing @ CMU, 2005-2009 50

Gibbs Motif Sampler
http://bayesweb.wadsworth.org/gibbs/gibbs.html
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MEME
http://meme.sdsc.edu/meme/website/meme.html
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