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The product multinomial model 3
[Lawrence et al. Science 1993] °
e Positional specific multinomial distribution:
0,= [0p -\ O]"
8,714 o, o, T} TL
I
l v
AAAAGAGTCA
AAATGACTCA
AGTGAGTCA
ABAAGAGTCA
— ATGCOTCA = A———A~FAHALQ)

AATGAGTCA
AATGAGTCA
i AAAGAGTCA

e Position weight matrix (PWM): @

e The nucleotide distributions at different positions are independent
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The oops model: :
a, Motif
width = w =
4 length n,
Datn:  sefrnce . Y = motd bk,
mode [ pova: Y O
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The oops model: :

Motif
i

a,

width = w

ay

Data:  sefrence . Y = motd + bk,
mode | pora: 4 Oux

1

ot . mokf foution . Z= 3 :
1o

geen 2y Y we can b abgrtest midnx A,

ho\/i“\j Ay we cn ompie B, Bu.
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The oops model: :
__ .. N[y H\
a, Motif _H
ds
(@ width = w
% length n,
Data- ée‘ﬁﬂmce,: \f =motd bk,
'm,ude{ r)ﬁvﬁ: W 9bk
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hoviig A, we con compue B, B
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Thué'%%ﬁs model: !: o
i Motif
ds
width = w
% length n,
xPZZ—A.)
Data.  sefpnce . Y =motd thk. EM: witel: pess O, vt
muo{e{ pora: ¢ Gox “""I'Z"- 9'=_'(‘( A)
N 07! or direcH, VR
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ﬁwm =
width = w . ‘/-n——§
4 - length #,
EM: witel . ves Ou, vk,  ariwnts,
(ompite 9= (A") A - 90 -
or direct, ;(l:eés 6 M- Anse
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@ C,oh'hi'(. P[Zkl‘fk.ﬁ ),Vf.lk S&wdltﬁ
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The Zoops model: :
; @) & - @) One mow poraneter- ¢
Y o
—_— Zk —> aas ZE{O, 1}N
EM: witel . s 0, vk, { Y(2e.5)
(ompite. O=f(A") e W

or directh guecs, 6'
Tterte

O cople PIZ Y BY) pi 4.
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Bayesian models:

. One mow parametey - ¢ "
@) @) % whith 1o o fregency of moty

Fz=1) = ¢
- Z<{0, 1V
EM: witel . e On, vt
(ovpite. G=f(A') Pl €1 )
or dirct) guesg, 0
ierde 9 P (61 }/)

) C,oh'hi'(. P[Zil‘fk.9+),V?.lk

Pw|Y. 7 7)

Form {A)

@ compe O Lrom <A

—)
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Bayesian approach

e For model AA|0):
e Treat parameters @ as unobserved random variable(s)

e probabilistic statements of @is conditioned on the values of the observed
variables A

p(é)
&) [©) - [©

M M M

HORMORNROIN
o] - [@

M M

e Bayes’ rule: p(O|A) < p(A]6)p(0)
posterior likelihood  prior
e Bayesian estimation: Otoyes = J'gp(g | A)do

© Eric Xing @ CMU, 2005-2009 10




Bayesian estimation for Bernoulli

e Beta distribution:

. _T(a+p) e v adpq i :
P(e,a,ﬂ)—r(a)r(ﬂ)e (1-6)"" =B(a, PO (1-0) R

[ T Nh N+ " N
¥ I P[x‘-"'XN) z l? Q’b) L %0 w u3 e ox 5 0e oW oar o8

e Posterior distribution of 4:

e Notice the isomorphism of the posterior to the prior,
e such a prior is called a conjugate prior

© Eric Xing @ CMU, 2005-2009 11

Bayesian missing data problem

e (: parameter of interest

o X={x,,...,.xy}: asetof complete i.i.d. observations from a
density that depends upon 6: p(X | 6)

PO 1X) = Ny px; | 6) )/ p(X)

¢ In practical situations, x; may not be completely observed.
e Assuming the unobserved values are missing completely at random,
o let X=(Y,2), x~(y,z) ~1,....n
e y; observed part, z; missing part

pO1Y) = [p®lY, 2)pZ]|Y)dZ
e This integration is usually hard obtain in close-form - Imputation

© Eric Xing @ CMU, 2005-2009 12
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—
57— TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT  HIST
—
57— ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG - ARD4
—
57~ CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT . ILV6
—
57— TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC . THR4
—
57— ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA . ARO1
—
57— ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA . HOMZ
57~ GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA  PROS
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data imputation o

e Multiple values, Z" ,...,Z are drawn from p(Z | Y) to
form m complete data sets.

pty= | ——— Pl ds.

e With these imputed data sets and the ergodicity
theorem, 2z ~ pr=lY)

pOIY)=1m {pO|Y, 20+ ..+ p6|Y, ZM)}

e But in most applied problems it is impossible to draw
Z from (Z | Y) directly.

P(=2(Y. 6)

© Eric Xing @ CMU, 2005-2009 14




Data Augmentation

\
e Tanner and Wong’s data augmentation (DA)

e apply Gibbs Sampler to draw multiples of 8's and multiples of Z's jointly
from p(6, Z | Y)
e DA algorithm
Notice that: p(Z | Y)=[p(6,Z | Y)dO=IHZ | 6, Y)p(O | Y)d6
=1/m {pZ | OVY)+ ... + pZ | 6™,Y)}

o l-step A~ pz | om,Y) < g4yt G VN

—_—

Recall that: p(6 | Y) =~ 1/m " {p(6 | Y, Z0)+ ...+ p(6 | Y, Zm)}
e P-step 6m~ pO|Y, Zm) — j?’yl vl

—_—
P

e By iterafing bet n dp wir from p(6 IFMY cf wing Z
Y), ?’E)coéastrg?cgt%l\?rkovzbgﬁ};@&b%?
ki )

equilibriurm distribution s »(6

Collapsed Gibbs Sampler (J. Liu) G

e Consider Sampling from p(6 | D), 6=(6,,6,,6,)

e Original Gibbs Sampler
i 6~ p(91\92,6’3,0) z
(i) 6,~p(0,)6,0,0)  WPwA
(i) 65 ~ ,0(93‘491,92,0)

e (Collapsed Gibbs Sampler (J. Liu):
(i) (6.6,)~ p(6,.6,|0)
(i) 65~ p(65]6,.6,,.0)

© Eric Xing @ CMU, 2005-2009 16




Back to de novo Motif Detection
— Bayesian missing data problem

e The oops model (one occurrence per sequence)
Motif

ds

width = w

ay

length n,
e Parameter of Interest
glA HZA HWA HOA
04xw _ ‘91T 02T QWF ‘90,4x1 _ HOT
916 ‘926 9% QOG
910 QZC 91/1/(3 QOC
e Missing Data A={a,a,,...,a.}
e Observed Data Y= Given Sequences
© Eric Xing @ CMU, 2005-2009 17
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The Gibbs Motif Sampler /(1o i 5. £

\
o Standard Gibbs Sampler (Iterative sampling): p(6A,Y); p(A|6,Y)

Draw from [@]| A, Data], then draw from [A | 6, Data]

° Collapsed Gibbs Sampler (Predictive Updating): A~ p(A | Y)

pretend that K-7 motif instances have been found. We stochastically predict
for the K-th instance!!

o Step0. choose an arbitrary starting point )
ﬂ’=(a1(°”az‘°’:---’ax(‘”)i —_—
o Step1. Generate At*N =(a,tN, a,tN, . a,®" ) as follows: M
—_—
Generate a,*" ~ p(a, | a,,...,a,0, Y);
_—

Generate a,*) ~ pla, | a,= ", a,0 ,...,a,, -
e —

Generate a, "~ play | a,", a,*1,...,a, D, Y); I<
Ge t+1

10 Ty AT ey

o Step2. Set t=t+1, and go to step 1

© Eric Xing @ CMU, 2005-2009 18




The Predictive Update Version

e |[nitialized by choosing random starting positions

al”,a%,....,al

e lterate the following steps many times:

a

e Randomly or systematically choose a -
2

sequence, say, sequence k, to exclude. a
3

e Carry out the predictive-updating step "
to update a, k-

(no need to sample @ at each t, we can compute it in close-form, see next slide

Notations:
A 5{01,»“,0,( 1 0 1“"va/(} = Gk /=1 W,j=AT,G,C

a = ¢,a,)

e Stop when not much change observed, or some criterion met.

© Eric )MU 2005-2009 19
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Predictive Distribution B

e The predictive distribution for a,:

C/,‘/ (/)

w .
p(ak =/ | 4_,(],)/) ~Const e HH(://[“) *)
/=1 4

0./[-k1

e Predictive update:

5 Cjint b ~
6, = 8, ., similarl
/. J K] K-1+ Zﬂ/,‘/’ 0./.[-41 y
J

assuming: 8, ~ Dirichlet(a), ® ~ Product Dirichlet(B), B = (8,;), a ~ Uniform

e Sampling: every segment of width Win Y, has probability (*).
Choose one at random according to these probabilities, and
this becomes the new a,.

© Eric Xing @ CMU, 2005-2009 20
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Derivation )
\
o P IaLABA bl 1a,A L)
L JSVAPRS N e 7Y ST PR )
PO A) = [ P 16,00, A)p(0) p(6)dloct, @
Y16,6,, A) p&B) p6,| B) =| TT62:/ " xTT67/ 9"‘” r(s) 9’“
PI16.60. A p(E1A)p 60| B) [l‘[ 514 ][*(—)F o)L XH*(ﬂ—)H » [1
(J 0. (A)+fo ;-] q /D €1 (A)+fy -1
a5y o 9 s
T T e ©

POA) = [ P 10,0, 4)p(0) p(0y) b

F(Z ﬂo/) B+, (A) F(Z ﬂ//) r(ﬁu‘*“—'//(/’))
[H p,) T ﬂmco/(/v))] [HH 5, T, ﬂ,J+c,,<A>)]
5,) T1
)

o)) TLE, +eo A+ @) (o 1(8,8,) T1(6, v, 0+ 56, @)
H F(ﬂ F(Z ﬂo,*‘b,(’i k])+col/(ak)) H r(ﬁ//) U'*z/ﬁ/‘/ +C/,/(44{])) 4)
PV 120 A 1) e L e
Aol Bt ae )= Zp(ylaf—u]u H(_ffsjﬂ‘i;f?ff,) gt )
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Phase-shift and fragmentation o

e Sometimes get stuck in a local shift optimum

: True motif locations

a ?

e How to “escape” from this local optimum? Vil — )
e Simultaneous move: A —5A+3, A+d={a,+, ..., axt+d}
e Use a Metropolis step: accept the move with prob=p,

r=min{l p(A+35| y)} 3 Compare entropies between

PAY) new columns and left-out ones.

© Eric Xing @ CMU, 2005-2009 22
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Convergence s
” N —
16
5
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iz
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06
0.4
[ 1000 2000 3000 4000 6000
NumbBer of iterations .
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Model Selection :
wia
E .. . P T R T N
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E t
&1 4
[
a
1.2
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= tT o - ;‘- - > w n
E-Lﬂ__ . L 5 .
2
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Pattern width
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Natural Extensions to Basic
Model |

\
e Multiple Pattern Occurrences in the same sequences:

Liu, J. "The collapsed Gibbs sampler with applications to a gene regulation problem," Journal of the American Statistical Association 89 958-966.

e Prior: any position i has a small probability ¢ to start a binding site:

A=(a,...8) P(A) = e¥(1-&)¥* (with nonoverlapping constraints)
width =w

3 length n,

e Recall
PV a A ) pP(A)
> pYla =iA m)p(A)

7

p(ak“]i!”"ak—vak+1l'“!akvy):

augmented proposal distribution for the Gibbs motif sampler

© Eric Xing @ CMU, 2005-2009 25
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Back to the binary indicator sels
model o
Z {0, 1V
Although sampling z directly is prohibitive, a very simple form of
the conditional distribution of any z, given all the rest z_, is
available
AL a4 Y OmaD
p(Zn :1| Z[—n]! y) _ & HH I,
p(zn = 0| Z[—n]l y) 1-¢ =1 j=1 90'1'
where £ and é are estimated fromy and z_,.
© Eric Xing @ CMU, 2005-2009 26
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(X X J
0000
( X XX
: 82
Any problem with the model? 5
Fo—o
Z {0, 1V
* How about multiple types of motifs?
« Can motif overlap?
» Are motif sites independent?
© Eric Xing @ CMU, 2005-2009 27
. . e0o0
Natural Extensions to Basic sels
Model I -
e Composite Patterns:
e Multiply the motif p-values
—{T—— N —See—
Combined p-value = 0.00001 * 0.0035 * 0.007 * 0.00000005
=1.225* 107

© Eric Xing @ CMU, 2005-2009 28




The product of p-values

e Theorem: The probability F,(p) that the product of n
independent, uniform [0,1] random variables

n

z,-11#

/

e has an observed value less than or equal to p, is given by

F(p)= P 1(_'?.!” )

/=0

e for0 < p<1,andis zero when pis zero.

Timothy L. Bailey and Michael Gribskov, “Combining evidence using p-values: application to

sequence homology searches,” Bioinformatics, 14:48-54, 1998.

© Eric Xing @ CMU, 2005-2009
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Natural Extensions to Basic
Model Il

e Correlated in Nucleotide Occurrence in Motif:

Modeling within-motif dependence for transcription factor binding site predictions. Bioinformatics, 6, 909-916.

AR )

e Insertion-Deletion

BALSA: Bayesian algorithm for local sequence alignment Nucl. Acids Res., 30 1268-77.

Wi

Ws

Wy

© Eric Xing @ CMU, 2005-2009
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Recall the PM Model

e The PM parameter, 6, = [0,, ..., 6:]", corresponds exactly to the

B,@ H;@ U,,@

M M M

The nucleotide distributions at different sites are independent !

e The score (likelihood-ratio) of a candidate substring: AAAAGAGTCA

_ p(x={AAAAGAGTCA}|PWM) 1_[ p(y, IPWM) ﬁh
p(x ={AAAAGAGTCA} | bk) i p(y, | bk) i1 Oy,
© Eric Xing @ CMU, 2005-2009 31
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Mixture of PM models °°
Weighted PWMs __.©® _________ @
L 6 6. k! | (Barash etal. 2002)

The nt-distributions at different sites are conditionally independent but marginally dependent !
The likelihood of a candidate substring: AAAAGAGTCA
P(x={AAAAGAGTCA}) = 7, p(-| PWM,) + 7, p(-| PWM,)

© Eric Xing @ CMU, 2005-2009 32
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0000
0000
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Tree models o
Tree CPTs — 5 @ 0, @ O @
@ b;/ M (Barash et al. 2002)
The nt-distributions at different sites are pairwisely dependent !
The likelihood of a candidate substring: AAAAGAGTCA
P(x={AAAAGAGTCA}) = | p(x | Pi(X)) =P(X | %) P(X | X,)-- P(X, | X,)
|
Mixture of trees
© Eric Xing @ CMU, 2005-2009 33
. e0o0
MotifPrototyper: sels
A Bayesian Markovian model o
T -{T-l:‘i’-l I [Xing and Karp, PNAS 2004]
Local HMM | |~
parameters !
Dirichlet |
parameters
Learning: empirical Bayes estimation:
a family of training motifs {A}, = hyperparameters {¢, 7, B},
© Eric Xing @ CMU, 2005-2009 34

17



Enhanceosome:
Cis-Regulatory Modules

Space [ time Domain 1 Space ( time Domain 2

different spatial repressors ====

|
different signals ___ =
acentcels | s other inputs

[ X X ]
0000
ecerl
Cluster Finding Methods '
e Poisson model .- el
e A. Wagner
e Cister (CIS-element clusTER finder)
e M. Frith et al.
e Comet (Cluster Of Motifs E-value Tool)
e M. Frith et al.
e cis-regulatory module finder
e GuptaM, Liu JS.
e LOGOS
e Xing et al.
© Eric Xing @ CMU, 2005-2009 36
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Finding Motif Clusters g
e Poisson Method
{} o, o, {} i1
| | 1 ]
Exponential distribution: “Pearson type Il distribution”:
a k-2 _
df (x)=ae™ pdf (x)=——(ax) e ™
paf (x) (0= (™)
e Regulatory Modules:
Cister & Comet Statt ——> |E|
De novo cis-regulatory module elicitation for eukaryotic genomes. Proc Nat’l Acad Sci USA, 102, 7079-84
LOGOS j \\&
N Gene A N ; i
o Gene B .
© Eric Xing@CMU 2005-2009 37
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Cister & Comet: Introduction .
DNA sequence segment
score(segment) = In Prob(segment | cluster model )
Prob(segment | random model)
Cluster model:
—Y— - —
Poisson-distributed cis-elements, embedded in random DNA
© Eric Xing@CMU 2005-2009 38
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Hidden Markov Model

Random DNA

© Eric Xing @ CMU, 2005-2009
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Cister

Random DNA

0.001

0.999
Random DNA

[ © Eric Xing @ CMU, 2005-2009

Cluster
model

Random
model
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Cister applied to Human c-fos c
position in sequence (hases)
Loy 2000 ool L] 2000 (2528
1
k-]
=
g
< 0.8
+
0.6
0.4
=
= 0.2
2
: LA I
54 "
: || “ ‘ ‘ H ‘ ‘ ‘
]
& e
g2
0.4
0.6
=
z
o G
'
1
—— cluster probability protein coding region
cis-elements:  TATA Spl Ets LSF
© Eric Xing @ CMU, 2005-2009 41
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DNA sequence segment

Prob(segment ~optimal parse | cluster model)

score(segment) = In
Prob (segment | random model)

Parse:
——a—a—
One particular arrangement of cis-elements in the segment

© Eric Xing @ CMU, 2005-2009
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The CisModuler global HMM

» Space of hidden states

— all possible functional annotations
» Parameters

— transition parameters {5}
 Empirical priors for {5}
* Posterior decoding

= TATAATC
e R - g2yt cajgqeattecgeegatct agecategecat ctict gegyyegttt ettt g

1o SOEAPTRRG s g0gc et ggaatacsatcecgatenctagcacet cecaatencaatcacasterctt
FEGEER £t cat b agaaayt SRR A At A 5t At gat it cga CEEATIReR) C g rdc A FiEcaTEcaRcTEaa
“taacggactagegaactygytt a ENNINNcg-cgactt agecct gatoogegaget MNNRENR t9<decgygea
osgetagtEgtaggzagaecreacss BRNHHR e saccr coaa et a8CEGOHCAGTOaRAHL COuEgyELE

[Xing, Wu, Jordan and Karp. JBCB 2004]

© Eric Xing @ CMU, 2005-2009 43
esse
Systems Biology Approach: 3
Combining Signals and other Data 4

Coding regions

Integrating Motif Discovery and Expression Analysis Proc.Natl.Acad.Sci. 100.3339-44

e Expresssion and Motif Regression: MT\

1. Rank genes by E=log,(expression fold change)
2. Find “many” (hundreds) candidate motifs
3. For each motif pattern m, compute the vector S, of matching scores for genes

with the pattern
4. RegressEon S, yg =a+ ,Bmsmg té,

i T N Protein binding
t’ N in neighborhood Coding regions
o

© Eric Xing @ CMU, 2005-2009 44
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Phylogenetic Footprinting
(homologous detection)

\
e Term originated in 1988 in Tagle et al. Blanchette et al.: For

unaligned sequences related by phylogenetic tree, find
all segments of length k with a history costing less than
d. Motif loss an option.

o
H
3
H
g
El
B
B
8
’ . g
begin signal end g
=
&
s
] n Salmon 2
g,
I I Lates 5
3
l ! Fugu 5
K
5
B | ] !_ Chicken €
2
T .
g
£
| ] | ] Mouse E
3
I . Human Z
2
l | | Dag @
@
l . Sheep %
S

© Eric Xing @ CMU, 2005-2009 45

[ X X ]

0000
0000
[ LX)
H H (X J
ISCUSSION o

e Model versus algorithm:

e Model: e.g., oops, zoops, HMM,
e Algorithms: EM, Gibbs, heuristics ...

e Different algorithms can be used for solving the same model!

e Need to be clear whether improvement/loss is due to model or algorithm
(many paper/author got confused with these two aspects, and discuss
results in convolved way!)

e Fix one, and analyze the other, one at a time!!

© Eric Xing @ CMU, 2005-2009 46
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Databases

TRANSFAC: http://www.gene-regulation.com/pub/databases.html#transfac

 TRANSFAC

TRANSFAC FACTOR TABLE, Release 7.0 — public - 2005-09-30 {(C) Biobase C

Tao3oz
Taoa02

15.10.1992 (created); ewi.
26.08.2002 (updated); hom.
cpase GmbHE.

yeast, Saccharomyces cerevisiae
Eukaryota; Fungi; Ascomycota; Hemiascomycetes; Saccharomycetales;
Saccharomycetaceae; Saccharomyces.

MELLSSIEQACDICR LEKLECSHERPRCAKCLENNWECRY SPRTRRIPLTRAELTEVESR
LERLEQLFLLIFPREDLOMILEMDSLODIKALLIGLEVQD

QHRISAT. sssr_r_ssmﬂ:qud:\.sr SARHEDNSTIPLDFMPRDALEGFDWSEEDDM
ENYIHENVNRLE THITORYTLASRETT

§ ROHTHTSVNFHEFS TRMATSLG
WEIQLSLLYGRSIQLSONTISFPSSVDDVORTT

FTAEKED ICAKKCLMICNE [EEVWROADKFLQ
THETQKKSQLEQDONDHOS
YEFHAVLVPIKTLLENSKSN

Binding Sites

© Eric Xing @ CMU, 2005-2009
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More Databases

The high-quality transcription factor binding profile database

BROWSE profies by |I0| Name || Species || Slass | [ Tacnomic graup |
cambine seanches vl
Nama | | AND
SEARCHE  Mame AND

e Species-specific: o W =
e SCPD (yeast) http://rulai.cshl.edu/SCPD/
e DPInteract (e. coli) http://arep.med.harvard.edu/dpinteract/
e Drosophila DNase | Footprint Database (v2.0) http://www.flyreg.org/
© Eric Xing @ CMU, 2005-2009
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LOQOS: http://weblogo.berkeley.edu/

rantn Segquance Logos - Microzof Intermet Explores provided

wiew Fgoontss  Toale  Help

3 - [®) B & JOseaeh frraveres @ I ) @ - LB
4] hitp:webloga chr nre calogo coi ~ oo

O Deed @1BEC E]CNN ] Yahoo Med

WEBLOGO - about - create - examples -

& Multiple Sequence Alignment
@ Upload Sequence Data Erowig
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Gibbs Motif Sampler

http://bayesweb.wadsworth.org/gibbs/gibbs.html

The Gibbs Motif Sampler

(for DNA)
options
Email Address: ‘
Flease enter the data sequence: (FASTA format) *

|[ Browse.. |
%‘;& Prokaryotic Defaults %%m Eukaryotic Defaults
Sampler Mode ) Site Sampler OMotif Sampler ) Recursive Sampler
oo .
motifs (patterns): recursive samnpler’

MoV | gmmesels
zach motif type:
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http://meme.sdsc.edu/meme/website/meme.html
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Dhata Submission Form

st thas Eoren to subenit DA or protéin sequénces to MEME. MEME vwall analyze your sequences For indarities ameng them and produce a destaption (motif)
for each pattem it dscovers. Your results will be sent o you by &-mad

Your eamail address:

kechrisg@genome.ucel ady

Ee-enter e-mal addrese:

kechnsg@genome. ue sl edu

Please enter the gequences which you bebeve share one oo = Enter the name g
moee matis. The sequences may contain no more than 60,000

characters total m asy of a large number of fonmats.

[Optional] Dexcription of your sequences.

‘or the actual sequences here (Sample Input Sequences)
SYNRDIOE_176 433 648

TTGETARAGT. AATTTTTCCCCTTTATTTTSTICATACATT
CTTALAT TG TTTOCC TE TEC TTTTOG AAAGE TATACT
TTGAGCGAMGGC TCATTAGATATATTTTC TGTCATTTTCCTTAMCCC AL
CEARAGGETOC AALARGOGC TOGEACARC TGTTGACCGTGAL,

How da wou think the accarences of a snghe mo
distribated among the seqaences?
© One per squiane

L Zere or one per seauence Dlinim ses(>= 2) -
N
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