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Motif Detection Motif Detection 

Eric XingEric Xing

Lecture 8, February 4-9, 2009

Reading: Durbin Chap 9, 
class assignment

© Eric Xing @ CMU, 2005-2009 2

Motifs - Sites - Signals - Domains
For this lecture, I’ll use these terms interchangeably to 
describe recurring elements of interest to us.

In PROTEINS we have: transmembrane domains, coiled-coil 
domains, EGF-like domains, signal peptides,  phosphorylation
sites, antigenic determinants, ...  

In DNA / RNA we have: enhancers, promoters, terminators, 
splicing signals, translation initiation sites, centromeres,  ...
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Motif
Set of similar substrings, 

within a single long sequence 

or a family of diverged sequences

Motiflong biosequence
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..YKFSTYATWWIRQAITR..

Protein Motif: Activity Sites
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HBHU    AVMGNpKVKAHGK.KVLGA..FSDGLAHLDNLKGT...FATLS.E.LHCDKL....HVDPENF.RL.LGNVL
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HBDK    AILGNpMVRAHGK.KVLTS..FGDAVKNLDNIKNT...FAQLS.E.LHCDKL....HVDPENF.RL.LGDIL
MYHU    EMKASeDLKKHGA.TVL......TALGGILKKKGHH..EAEIKPL.AQSHATK...HKIPVKYLEFISECII
MYOR    EMKASaDLKKHGG.TVL......TALGNILKKKGQH..EAELKPL.AQSHATK...HKISIKFLEYISEAII
IGLOB   T.GA...FATHATRIVSFLseVIALSGNTSNAAAV...NSLVSKL.GDDHKA....R.GVSAA.QF..GEFR
GPUGNI  NNPK...LKAHAAVIFKTI...CESATELRQKGHAVwdNNTLKRL.GSIHLK....N.KITDP.HF.EVMKG
GPYL    NNPD...LQAHAG.KVFKL..TYEAAIQLEVNGAVAs.DATLKSL.GSVHVS....K.GVVDA.HF.PVVKE
GGZLB   Q......PKALAM.TVL......AAAQNIENLPAIL..PAVKKIAvKHCQAGVaaaH.YPIVGQEL.LGAIK

xxxxxxxxx.xxxxxxxxx.xxxxxxxxxxxxxxxxxxxxxxx..x
HAHU    VT.LAA.H..LPAEFTPA..VHASLDKFLASV.STVLTS..KY..R
HAOR    VV.LAR.H..CPGEFTPS..AHAAMDKFLSKV.ATVLTS..KY..R
HADK    VV.VAI.H..HPAALTPE..VHASLDKFMCAV.GAVLTA..KY..R
HBHU    VCVLAH.H..FGKEFTPP..VQAAYQKVVAGV.ANALAH..KY..H
HBOR    IVVLAR.H..FSKDFSPE..VQAAWQKLVSGV.AHALGH..KY..H
HBDK    IIVLAA.H..FTKDFTPE..CQAAWQKLVRVV.AHALAR..KY..H
MYHU    QV.LQSKHPgDFGADAQGA.MNKALELFRKDM.ASNYKELGFQ..G
MYOR    HV.LQSKHSaDFGADAQAA.MGKALELFRNDM.AAKYKEFGFQ..G
IGLOB   TA.LVA.Y..LQANVSWGDnVAAAWNKA.LDN.TFAIVV..PR..L
GPUGNI  ALLGTIKEA.IKENWSDE..MGQAWTEAYNQLVATIKAE..MK..E
GPYL    AILKTIKEV.VGDKWSEE..LNTAWTIAYDELAIIIKKE..MKdaA
GGZLB   EVLGDAAT..DDILDAWGK.AYGVIADVFIQVEADLYAQ..AV..E

Example: Globin Motifs

Hemoglobin alpha subunit
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RNA polymerase-promotor interactions
Transcription Initiation in E. coli

In E. coli transcription is initiated at the promotor , whose 
sequence is recognised by the Sigma factor of RNA 
polymerase.

DNA Motif



4

© Eric Xing @ CMU, 2005-2009 7

Given a collection of genes with common expression,
Can we find the TF-binding site in common?

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

…HIS7 

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

Example: Gcn4

Regulatory Signals
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Motif discovery problem
Given sequences

Find motif 
the number of motifs
the width of each motif
the locations of motif occurrences
and a “model” for evaluating a motif candidate …

IGRGGFGEVY at position 515
LGEGCFGQVV at position 430
VGSGGFGQVY at position 682

seq. 1
seq. 2
seq. 3
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Why finding motifs?
In proteins—may be a critical component

Find similarities to known proteins
Find important areas of new protein family
Prediction of protein function

In DNA—may be a binding site
Discover how the gene expression is regulated
Prediction of temporal/spatial gene activity
Inference of regulatory network
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Why is this hard?
Input sequences are long (thousands or millions of              
residues)
Motif may be subtle

Instances are short.
Instances may be only slightly similar.

?

?
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Tiny

Highly Variable

~Constant Size
Because a constant-size 
transcription factor binds

Often repeated

Low-complexity-ish

Characteristics of Regulatory 
Motifs

© Eric Xing @ CMU, 2005-2009 12

Motif Representation
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Measuring similarity
What counts as a similarity?
How can such a pattern be searched for?
Need a concrete measure of how good a motif is,                            
and how well-matched an instance is.

?

?

?
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σ Factor     Promotor consensus sequence
-35 -10

σ70  TTGACA               TATAAT
σ28 CTAAA                  CCGATAT

Similarly for σ32 , σ38 and σ54. 

Consensus sequences have the obvious limitation: there 
is usually some deviation from them.

Determinism 1: 
Consensus Sequences
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Determinism 2: 
Regular Expressions

The characteristic motif  of a Cys-Cys-His-His zinc finger DNA 
binding domain has regular expression

C-X(2,4)-C-X(3)-[LIVMFYWC]-X(8)-H-X(3,5)-H

Here, as in algebra, X is unknown. The 29 a.a. sequence of an 
example domain 1SP1 is as follows, clearly fitting the model.

1SP1: 

KKFACPECPKRFMRSDHLSKHIKTHQNKK

© Eric Xing @ CMU, 2005-2009 16

Regular Expressions Can Be 
Limiting

The regular expression syntax is still too rigid to represent 
many highly divergent protein motifs.

Also, short patterns are sometimes insufficient with today’s 
large databases. Even requiring perfect matches you might 
find many false positives.  On the other hand some real sites 
might not be perfect matches.

We need to go beyond apparently equally likely alternatives, 
and ranges for gaps. We deal with the former first, having a 
distribution at each position. 
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216433112419193

5293829218

13523126722

8118142632149A
C
G
T .89.18.13.51.08.80

.02.12.16.12.01.07

.05.21.13.11.03.09

.03.49.59.26.88.04A
C
G
T

Weight Matrix Model (WMM)
Weight matrix model (WMM) = Stochastic consensus 
sequence

Weight matrices are also known as
Position-specific scoring matrices
Position-specific probability matrices
Position-specific weight matrices

A motif is interesting if it is very different from the background 
distribution

more interesting

less interesting
Counts from 242 known σ70 sites                Relative frequencies: θli
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Weight matrix model (WMM) = Stochastic consensus sequence

2

1

0

1 2 3 4 5 6

Counts from 242 known σ70 sites               Relative frequencies: fbl

10 log2θli/θ0i Informativeness: 2-Σiθli log2θli/θ0i

216433112419193

5293829218

13523126722

8118142632149A
C
G
T .89.18.13.51.08.80

.02.12.16.12.01.07

.05.21.13.11.03.09

.03.49.59.26.88.04A
C
G
T

Weight Matrix Model (WMM)

19-6-98-3217

-40-10-7-6-48-13

-32-3-10-8-38-15

-481012119-38A
C
G
T
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Relative entropy
A motif is interesting if it is very different from the background 
distribution
Use relative entropy:

Relative entropy is sometimes called 
information content

θli = probability of i in matrix position l
θ0i = background frequency (in non-motif sequence)

∑ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

l i i

li
li

position letter 
log

0
2 θ

θ
θ

Informativeness: 2-Σiθli log2θli/θ0i

A
C
G
T .89.18.13.51.08.80

.02.12.16.12.01.07

.05.21.13.11.03.09

.03.49.59.26.88.04
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Information at pos’n l, H(l) = – Σ{letter i} θli log2 θli
Height of x at pos’n l, L(l,i) = θli (2 – H(l))

Examples: 
θlA = 1; H(l) = 0; L(l, A) = 2
A: ½;  C: ¼;  G: ¼; H(l) = 1.5; L(l, A) = ¼;  L(l, not T) = ¼

Sequence Logo
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[Lawrence et al. Science 1993]

A1

θ1 θ2 θ3 ... θL

A2 A3 ... AL

AAAAGAGTCAAAAAGAGTCA
AAATGACTCA
AAGTGAGTCA
AAAAGAGTCA
GGATGCGTCA
AAATGAGTCA
GAATGAGTCA
AAAAGAGTCA

The Product Multinomial (PM) 
Model

Positional specific multinomial distribution: θl =  [θlA, …, θlC]T

Position weight matrix (PWM): θ
The nucleotide distributions at different positions are independent
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The PM parameter, θl =  [θlA, …, θlC]T, corresponds exactly to the 
PWM of a motif

The score (likelihood-ratio) of a candidate substring: AAAAGAGTCA

Log Likelihood-Ratio: 

001000.635000T

000.875010.125.125.250G

010.125000000C

100010.375.875.875.750A

10987654321

)bk|}AAAAGAGTCA{(
)PWM|}AAAAGAGTCA{(

=
=

=
xp

xpR

The nucleotide distributions at different sites are independent !

∏
=

=
10

1 )bk|(
)PWM|(  

l l

l

yp
yp ∏

=

=
10

1 ,0

,  
l y

yl

l

l

θ
θ

More on PM Model 

∑ ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

l i y

yl
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position letter ,
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5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA+
⇒⇒

1: AAAAGAGTCA
2: AAATGACTCA
. AAGTGAGTCA
. AAAAGAGTCA
. GGATGAGTCA
. AAATGAGTCA
. GAATGAGTCA
M: AAAAGAGTCA

⇒⇒

de novo motif detection

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

⇒⇒
5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

+

Computational problems for in 
silico motif detection

Extract a motif model based on (experimentally) identified 
motifs

Search for motif instances based on given motif model(s)

Uncover novel motifs computationally from genomic 
sequences

© Eric Xing @ CMU, 2005-2009 24

PredictionPrediction

Supervised learningSupervised learning

Unsupervised learningUnsupervised learning

Computational problems for in 
silico motif detection

Extract a motif model based on (experimentally) identified 
motifs

Search for motif instances based on given motif model(s)

Uncover novel motifs computationally from genomic 
sequences
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Probabilistic

Motif M: {θij}; 1 ≤ i ≤ W
j = A,C,G,T

θij = Prob[ letter j, pos i ]

Find best M, and positions p1,…, 
pN in sequences

Combinatorial

Motif M: substring m1…mW

Some of the mi’s blank

Find M that occurs in all si with 
≤ k differences
Or, Find M with smallest total 
hamming dist

Given a collection of promoter sequences s1,…, sN of 
genes with common expression

Problem definition

© Eric Xing @ CMU, 2005-2009 26

C      T     A    T      A       A     T     C

-38    19    1    12    10    -48

-15   -38   -8   -10    -3    -32

-13   -48   -6    -7    -10   -40

17   -32    8    -9     -6     19

A

C

G

T

-93

+85

-38    19    1    12    10    -48

-15   -38   -8   -10    -3    -32

-13   -48   -6    -7    -10   -40

17   -32    8    -9     -6     19

A

C

G

T

C      T     A    T      A       A     T     C

-95

-38    19    1    12    10    -48

-15   -38   -8   -10    -3    -32

-13   -48   -6    -7    -10   -40

17   -32    8    -9     -6     19

A

C

G

T

C      T     A    T      A       A     T     C

Use of the matrix to find sites
Hypothesis: 

S=site (and independence)
R=random (equiprobable, 
independence)

Move the matrix along the 
sequence and score each
window.

Peaks should occur at the true 
sites.

Of course in general any threshold 
will have some false positive and
false negative rate.
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)|(maxarg Θ=Θ
Θ

ApML

Supervised motif search
Supervised learning

Given biologically identified alinged motifs A, maximal likelihood 
estimation:

Application:
search for known motifs in silico from genomic sequences

Need more more sophisticated search model: HMM?
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Unsupervised learning
Given no training examples, predict locations of all instances of novel 
motifs in given sequences, and learn motif models simultaneously.

Learning algorithms: 
Expectation Maximization: e.g., MEME
Gibbs Sampling: e.g., AlignACE,  BioProspector
Advanced models: Bayesian network, Bayesian Markovian models 

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

?

de novo motif detection
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{ }T}G,C,A,{∈ ,,...,1=  : = , jLi k
k

ji
k θθ

de novo motif detection
Problem setting:

Given UTR sequences: y= {y1, …, yN}

Goal: the background model: θ0={θ0,A, θ0,T, θ0,G, θ0,C}t

and K motif models  θ1, … , θK from y, 

where 

A missing value problem:
The locations of instances of motifs are unknown, thus the aligned motif 
sequences A1, …, AK and the background sequence are not available.

© Eric Xing @ CMU, 2005-2009 30

Expectation-maximization
The EM idea:

For each subsequence of width W
convert subsequence to a matrix
do {

re-estimate motif occurrences from matrix
re-estimate matrix model from motif occurrences

} until (matrix model stops changing)
end
select matrix with highest score

EM
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>ce1cg 
TAATGTTTGTGCTGGTTTTTGTGGCATCGGGCGAGAATA
GCGCGTGGTGTGAAAGACTGTTTTTTTGATCGTTTTCAC
AAAAATGGAAGTCCACAGTCTTGACAG

>ara
GACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAG
AAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTG
CTATGCCATAGCATTTTTATCCATAAG

>bglr1 
ACAAATCCCAATAACTTAATTATTGGGATTTGTTATATA
TAACTTTATAAATTCCTAAAATTACACAAAGTTAATAAC
TGTGAGCATGGTCATATTTTTATCAAT

>crp
CACAAAGCGAAAGCTATGCTAAAACAGTCAGGATGCTAC
AGTAATACATTGATGTACTGCATGTATGCAAAGGACGTC
ACATTACCGTGCAGTACAGTTGATAGC

Sample DNA sequences
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>ce1cg 
taatgtttgtgctggtttttgtggcatcgggcgagaata
gcgcgtggtgtgaaagactgttttTTTGATCGTTTTCAC
aaaaatggaagtccacagtcttgacag

>ara
gacaaaaacgcgtaacaaaagtgtctataatcacggcag
aaaagtccacattgattaTTTGCACGGCGTCACactttg
ctatgccatagcatttttatccataag

>bglr1 
acaaatcccaataacttaattattgggatttgttatata
taactttataaattcctaaaattacacaaagttaataac
TGTGAGCATGGTCATatttttatcaat

>crp
cacaaagcgaaagctatgctaaaacagtcaggatgctac
agtaatacattgatgtactgcatgtaTGCAAAGGACGTC
ACattaccgtgcagtacagttgatagc

Motif occurrences

OneOne--occurrence per sequence (oops) model occurrence per sequence (oops) model 
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Starting point

…gactgttttTTTGATCGTTTTCACaaaaatgg…

T    T    T    G    A    T  C  G  T  T  
A 0.17 0.17 0.17 0.17 0.50 ...
C 0.17 0.17 0.17 0.17 0.17
G 0.17 0.17 0.17 0.50 0.17
T 0.50 0.50 0.50 0.17 0.17

This a special initialization scheme, many others scheme, including random 
starts, are also valid 

Or 
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TAATGTTTGTGCTGGTTTTTGTGGCATCGGGCGAGAATA

T    T    T    G    A    T  C  G  T  T  
A 0.17 0.17 0.17 0.17 0.50 ...
C 0.17 0.17 0.17 0.17 0.17
G 0.17 0.17 0.17 0.50 0.17
T 0.50 0.50 0.50 0.17 0.17

Score = 0.50 + 0.17 + 0.17 + 0.17 + 0.17 + ...

Re-estimating motif occurrences
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Scoring each subsequence
Score from each sequence the subsequence with maximal 
score.

Subsequences     Score
TGTGCTGGTTTTTGT     2.95
GTGCTGGTTTTTGTG    4.62
TGCTGGTTTTTGTGG   2.31
GCTGGTTTTTGTGGC   ...

Sequence: TGTGCTGGTTTTTGTGGCATCGGGCGAGAATA
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Re-estimating motif matrix
Under a one-occurrence per sequence (oops) model 
From each sequence, take the substring that has the maximal 
score
Align all of them and count:

Occurrences
TTTGATCGTTTTCAC
TTTGCACGGCGTCAC
TGTGAGCATGGTCAT
TGCAAAGGACGTCAC

Counts
A 000132011000040
C 001010300200403
G 020301131130000
T 423001002114001
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Adding pseudocounts

Counts
A 000132011000040
C 001010300200403
G 020301131130000
T 423001002114001

Counts + Pseudocounts
A 111243122111151
C 112121411311514
G 131412242241111
T 534112113225112
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Converting to frequencies

Counts + Pseudocounts
A 111243122111151
C 112121411311514
G 131412242241111
T 534112113225112

T    T    T    G    A    T  C  G  T  T  
A 0.13 0.13 0.13 0.25 0.50 ...
C 0.13 0.13 0.25 0.13 0.25
G 0.13 0.38 0.13 0.50 0.13
T 0.63 0.38 0.50 0.13 0.13
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Expectation-maximization
Problem of the previous procedure:

This procedure doesn't allow the motifs to move around very much.  
Taking the max is too brittle.

Solution:
Associate with each start site a probability of motif occurrence.

For each subsequence of width W
convert subsequence to a matrix
do {

re-estimate motif occurrences from matrix
re-estimate matrix model from motif occurrences

} until (matrix model stops changing)
end
select matrix with highest score

EM

© Eric Xing @ CMU, 2005-2009 40

Converting to probabilities

Occurrences      Score   Prob
TGTGCTGGTTTTTGT     2.95  0.023
GTGCTGGTTTTTGTG    4.62  0.037
TGCTGGTTTTTGTGG   2.31  0.018
GCTGGTTTTTGTGGC   ...    ...

Total              128.2  1.000

Sequence: TGTGCTGGTTTTTGTGGCATCGGGCGAGAATA
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Computing weighted counts

Occurrences   Prob
TGTGCTGGTTTTTGT 0.023
GTGCTGGTTTTTGTG 0.037
TGCTGGTTTTTGTGG 0.018
GCTGGTTTTTGTGGC   ...

T

G

C

A

…54321

Include counts from all 
subsequences, weighted by 
the prob to which they match 
the motif model.
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A comparison of supervised and 
de nove motif finding

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

…HIS7

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

1: AAAAGAGTCA
2: AAATGACTCA
. AAGTGAGTCA
. AAAAGAGTCA
. GGATGAGTCA
. AAATGAGTCA
. GAATGAGTCA
M: AAAAGAGTCA⇒⇒
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Q. and A.
Problem: How do we estimate counts accurately when we 
have only a few examples?

Solution: Use Dirichlet mixture priors.

Problem: Too many possible starting points.
Solution: Save time by running only one iteration of EM.

Problem: Too many possible widths.
Solution: Consider widths that vary by √2 and adjust motifs afterwards.

Problem: Algorithm assumes exactly one motif occurrence 
per sequence.

Solution: Normalize motif occurrence probabilities across all 
sequences, using a user-specified parameter.
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Q. and A.
Problem: The EM algorithm finds only one motif.

Solution: Probabilistically erase the motif from the data set, and repeat.

Problem: The motif model is too simplistic.
Solution: Use a two-component mixture model that captures the 
background distribution.  Allow the background model to be more 
complex.

Problem: The EM algorithm does not tell you how many 
motifs there are. 

Solution: Compute statistical significance of motifs and stop when they 
are no longer significant.
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MEME algorithm

do
for (width = min; width *= √2; width < max) 

foreach possible starting point
run 1 iteration of EM

select candidate starting points
foreach candidate

run EM to convergence
select best motif
erase motif occurrences

until (E-value of found motif > threshold)

Is this a true EM algorithm?
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Initialized by choosing random starting positions 

Iterate the following steps many times:

Randomly or systematically choose a 
sequence, say, sequence k,  to exclude.

Carry out  the predictive-updating step 

to update ak

(no need to sample θ (t) at each t, we can compute it in close-form, see next lecture

Notations:

Stop when not much change observed,  or some criterion met.

)0()0(
2

)0(
1 ,......,, Kaaa

The Gibbs Motif Sampler

ak ?

a1
a2

a3

{ } CG,T,A,,,  ,         ,,,, ]-[,,,][ ==⇒≡ +−− jWlcaaaaA kjlKkkk LLL 1111

)(        , kjlk aca ⇒
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z1 z2 zN
…

y1 y2 yN
…

Z∈{0, 1}NLet: 

Yn...n+L-1={yn,yn+1,...,yn+L-1}: an L-long word starting at position n
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(background)

(motif seq.)

What is underlying the EM algorithm?
– the statistical foundation

● A binary indicator model (you will find this model in AlignACE)
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Complete log-likelihood :
suppose all words are concatenated into one big sequence of 
y=y1y2…yN , with appropriate constraints preventing overlapping and 
boundaries limits

z1 z2 zN
…

y1 y2 yN
…

Z ∈{0, 1}N
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A binary indicator model
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Maximize expected likelihood, in iteration of two steps:

Expectation:

Find expected value of complete log likelihood:

Maximization:

Maximize the expected complete likelihood over θ, θ0, ε

)],,|,...([logE εθθ 01 ZYYP n

The Maximal likelihood approach
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Expectation:
Find expected value of log likelihood:

where the expected value of Z can be computed as follows:

recall the weights for each substring in the MEME algorithm
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Expectation Maximization: E-step
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Expectation Maximization: M-step
Maximization:

Maximize expected value over θ and ε independently

For ε, this is easy:
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Expectation Maximization: M-step
For Θ = (θ, θ0), define

cl,j = E[ # times letter j appears in motif position l]
c0,j = E[ # times letter j appears in background]

cl,j values are calculated easily from E[Z] values

It easily follows:

to not allow any 0’s, add pseudocounts
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Initial Parameters Matter!
Consider the following “artificial” example:

x1, …, xN contain:

212 patterns on {A, T}: A…AA, A…AT, ……, T…TT
212 patterns on {C, G}: C…CC, C…CG, ……, G…GG
D << 212 occurrences of 12-mer ACTGACTGACTG

Some local maxima:

ε ≈ ½;   B = ½C, ½G;   Mi = ½A, ½T, i = 1,…, 12

very bad !

ε ≈ D/2L+1;   B = ¼A,¼C,¼G,¼T; 
M1 = 100% A, M2= 100% C, M3 = 100% T, etc.

the correct solution !
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Overview of EM Algorithm
1. Initialize parameters Θ = (θ, θ0), :

Try different values of ε, say, from N-1/2 up to 1/(2L)

2. Repeat:
a. Expectation
b. Maximization

3. Until change in Θ = (θ, θ0), falls below δ

4. Report results for several “good” ε
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Overview of EM Algorithm
One iteration running time: O(NL)

Usually need < N iterations for convergence, and < N starting points.
Overall complexity: unclear

EM is a local optimization method

Initial parameters matter

MEME: Bailey and Elkan, ISMB 1994.
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Overview of Sampling Algorithm
One iteration running time: O(NL)

More flexible in designing complex models (see next lectures)

Gibbs is a asymptotically converging to global optimum

Usually need multiple random restarts, and test of 
convergence

GMS: Lawrence et al. (1993), Science, 262:208-214
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Discussion
Model versus algorithm:

Model: e.g., oops, zoops, HMM,
Algorithms: EM, Gibbs, heuristics …

Different algorithms can be used for solving the same model!
Need to be clear whether improvement/loss is due to model or algorithm 
(many paper/author got confused with these two aspects, and discuss 
results in convolved way!)
Fix one, and analyze the other, one at a time!!


