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Motifs - Sites - Signals - Domains | 3¢

e For this lecture, I'll use these terms interchangeably to
describe recurring elements of interest to us.

e In PROTEINS we have: transmembrane domains, coiled-coil
domains, EGF-like domains, signal peptides, phosphorylation
sites, antigenic determinants, ...

e In DNA / RNA we have: enhancers, promoters, terminators,
splicing signals, translation initiation sites, centromeres, ...
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Motif

e Set of similar substrings, = & o
e within a single long sequence s e
"
[ od -\ 1 -1
i_\..'f' ;\4_4( | JIIKHI = a
e o s |- -bbageee|

g SR PEC TR e
e or a family of diverged sequences

Motif

\ \
£ ) flﬂ ﬁ

Protein Motif: Activity Sites e

JYKFSTYATWWIRQAITR..

VW33 34

——a—aa—
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Example: Globin Motifs

JXXKXXKKKKK . XXXKKXKKK - XXXXK -
HAHU  V.LSPADKTN. .VKAAWGKVG . AHAGE. .
HAOR M.LTDAEKKE. . VTALWGKAA . GHGEE.. .
HADK ~ V.LSAADKTN. .VKGVFSKIG.GHAEE
HBHU  VHLTPEEKSA. .VTALWGKVN.VDEVG
HBOR 'VHLSGGEKSA. . VTNLWGKVN . INELG
HBDK VHWTAEEKQL . . ITGLWGKVNVAD.CG
MYHU G.LSDGEWQL . . VLNVWGKVE . ADIPG HGQEVL . IRLFKGH. . PETLEKFDK. FKHL .KSED
MYOR G.LSDGEWQL . . VLKVWGKVE . GDLPG HGQEVL . IRLFKTH. . PETLEKFDK. FKGL .KTED
IGLOB  M.KFFAVLALCiVGAIASPLT . ADEASIvgsswkavsHNEVE I IAAVFAAY . PDIQNKFSQFaGKDLAS IKD
GPUGNI  A.LTEKQEAL . .LKQSWEVLK.QNIPA. HS.LRL.FALIIEA.APESKYVFSF.LKDSNEIPE
GPYL GVLTDVQVAL . .VKSSFEEFN.ANIPK N.THR.FFTLVLEiAPGAKDLFSF . LKGSSEVPQ
GGZLB  M.L.DQQTIN. . HIKATVPVLKEHGVT. . ITTTF.YKNLFAK .HPEVRPLFDM.GRQ. .ESLE

2 XXXKKK - XXXKKKK - KXXKKKXKKX - XXKXKKKXK
YGAEAL . ERMFLSF . . PTTKTYFPH.FDLS . HGSA
YGAEAL . ERLFQAF . . PTTKTYFSH. FDLS . HGSA
YGAETL.ERMFIAY . . PQTKTYFPH.FDLS . HGSA
G.EAL.GRLLVVY . .PATQRFFES.FGDL.STPD
G.EAL.GRLLVVY. .PWTQRFFEA.FGDL .SSAG
A.EAL.ARLLIVY. . PWTQRFFAS.FGNL.SSPT

. T — Hemoglobin alpha subunit

HAHU <GH.CKKVADA.LTN -AVA _HVDDMPNA . - LHAHKL . RVDPVNF .KLLSHC
HAOR .Gl - LHAHKL . RVDPVNF . KLLAHC
HADK RVDPVNF .KFLGHC
HBHU HVDPENF .RL .LGNV/
HBOR HVDPENFNRL . .GNV/
HBDK -E. HVDPENF.RL.LGDI
MYHU .TALGGILKKKGHH . . HKIPVKYLEFISEC
MYOR . TALGNILKKKGQH. HKISIKFLEY ISEA
1GLOB R.GVSAA.QF..GEFR
GPUGNI N.KITDP.HF .EVMKG
GPYL K.GVVDA.HF .PVVKE
GGZLB K

x
HAHU AA_H. . LPAEFTPA. .VHASLDKFLASV.STVLTS. .KY..R
HAOR AR_.H..CPGEFTPS. . AHAANMDKFLSKV.ATVLTS. .KY..R
HADK Al _H. _HPAALTPE. .VHASL.DKFMCAV.GAVLTA. .KY..R
HBHU AH.H. .FGKEFTPP. .VQAAYQKVVAGV.ANALAH. .KY. .H
HBOR AR.H. .FSKDFSPE. .VQAAWQKLVSGV.AHALGH. .KY. .H
HBDK AA_H. _FTKDFTPE. .CQAAWQKLVRVV.AHALAR. .KY. .H
MYHU QSKHPgDFGADAQGA . MNKALELFRKDM. ASNYKELGFQ. .G
MYOR QSKHSaDFGADAQAA . MGKALELFRNDM. AAKYKEFGFQ. .G
1GLOB TA. QANVSWGDNVAAAINNKA . LDN. TFAIVV. .PR. .L
GPUGNI A KEA. IKENWSDE . .MGQAWTEAYNQLVAT IKAE. .MK. .E
GPYL A KEV.VGDKWSEE. .LNTAWT IAYDELAI I IKKE. .MKdaA
GGZLB EVLGDAAT . .DDILDAWGK . AYGVIADVFIQVEADLYAQ. .AV. .E
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DNA Motif

e RNA polymerase-promotor interactions

e Transcription Initiation in E. coli

I A+ T rich | FTGACA]=14 bp ==TGMTATAAT]

up -35 -10 start
ext. -10

e In E. coli transcription is initiated at the promotor , whose
sequence is recognised by the Sigma factor of RNA

polymerase.
© Eric Xing @ CMU, 2005-2009 6




Example: Gen4

Regulatory Signals

a o a a

a o o

>- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAG GACATCGAAACATACAT
- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCG—bACG
>~ CACATCCAACGAATCACCTCACCGTTATCG TCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT
7= TGCGAAC4> TTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC
>~ ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATA CGAACATGAAA
>— ATTGAT TCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA
>~ GGCGCCACAGTCCGCGTTTGGTTATCCGGC TGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

Given a collection of genes with common expression,
Can we find the TF-binding site in common?

© Eric Xing @ CMU, 2005-2009

~

Motif discovery problem

e Given sequences

e Find motif seq. 1
_ seq. 2
° the number of motifs seq. 3

° the width of each motif
° the locations of motif occurrences
° and a “model” for evaluating a motif candidate ...

IGRGGFGEVY at position 515
LGEGCFGQVV at position 430
VGSGGFGQVY at position 682 —

N
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o000
o000
e000
o000
. . . oo
Why finding motifs? 5
e In proteins—may be a critical component
e Find similarities to known proteins
e Find important areas of new protein family
e Prediction of protein function
e In DNA—may be a binding site
e Discover how the gene expression is regulated
e Prediction of temporal/spatial gene activity
e Inference of regulatory network
% 8 v
Ay 4
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Why is this hard? o
e Input sequences are long (thousands or millions of
residues) I I
e Motif may be subtle mem mmm
e Instances are short. -
e Instances may be only slightly similar.
?
I
?
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Characteristics of Regulatory
Motifs

ATATAAA Txr =x

CTG-Ara A_. oCAG e Tiny

Glea_. ~~ x<aCA__»

AA . oAA_xA_<AA e Highly Variable
ITxasaT al_aa

G.AACG. . TTcCo .

Aa TTAA. T.A e ~Constant Size
TTT-A 1. oA T __A.A e Because a constant-size
_GGGACG - transcription factor binds
AaAALATT T

a .GA a aAaA  aA
T axchAe__ IT. &
aAA_ aA oAAAA
TITea A AA oA e Low-complexity-ish
2. T.T x xA AaAA

=ATaAT. .. ATxA

ATxaAAaaTT

e Often repeated
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Motif Representation
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Measuring similarity

e What counts as a similarity?
e How can such a pattern be searched for?

e Need a concrete measure of how good a motif is,
and how well-matched an instance is.

?
?
?
© Eric Xing @ CMU, 2005-2009 13
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Determinism 1. secs
Consensus Sequences .o

e o Factor Promotor consensus sequence

-35 -10
o0 TTGACA TATAAT
o28 CTAAA CCGATAT

Similarly for 632, c38and c%4.

e Consensus sequences have the obvious limitation: there
is usually some deviation from them.

© Eric Xing @ CMU, 2005-2009 14




Determinism 2:
Regular Expressions

e The characteristic motif of a Cys-Cys-His-His zinc finger DNA
binding domain has regular expression

C-X(2,4)-C-X(3)-[LIVMFYWC]-X(8)-H-X(3,5)-H

e Here, as in algebra, X is unknown. The 29 a.a. sequence of an
example domain 1SP1 is as follows, clearly fitting the model.

1SP1:
KKFACPECPKRFMRSDHLSKHIKTHQNKK

© Eric Xing @ CMU, 2005-2009 15

Regular Expressions Can Be
Limiting -

e The regular expression syntax is still too rigid to represent
many highly divergent protein motifs.

e Also, short patterns are sometimes insufficient with today’s
large databases. Even requiring perfect matches you might
find many false positives. On the other hand some real sites
might not be perfect matches.

e We need to go beyond apparently equally likely alternatives,
and ranges for gaps. We deal with the former first, having a
distribution at each position.

© Eric Xing @ CMU, 2005-2009 16




Weight Matrix Model (WMM)

e Weight matrix model (WMM) = Stochastic consensus

sequence
A| 9 24|63 |142|118| 8 A | 04| 88| 26|59 49|03
C|l22| 7 |2 |31 |5 |13 C |09 |.03|.11|.13]|.21]|.05
G 18 2 29 | 38 | 29 5 G o7 |.01|.12] .6 .12 .02A
T |193| 19 | 124 | 31 | 43 | 216 T 80 | .08 | .51 | .13 | .18 .8/
Counts from 242 known ¢°sites Relative frequencies: 6,

) ) less interesting
e Weight matrices are also known as

e Position-specific scoring matrices more interesting
e Position-specific probability matrices
e Position-specific weight matrices

o A motif is interesting if it is very different from the background

distribution
Weight Matrix Model (WMM) e

Weight matrix model (WMM) = Stochastic consensus sequence

Al 9 21463 |142|118] 8 A |04 88| 26| 59 | 49| 03
Cl22| 7|2 |31]5|13 C |o9o|.03]|.11|.a3]|.21]|.05
Glw| 2|2 |3]|2]|5 G |o7|.01].12|.16] .12 .02
T |193| 19 [124 | 31 | 43 | 216 T |8 |.08|51|.13][.18][ .89
Counts from 242 known ¢’ sites Relative frequencies: f,

2
A|38|19| 1 |12 10]-48
C|a5|-3|-8|-10]| 3 |-32 !
G |13 |-48]| -6 -7 |-10]-40 0
T |17 |32|8 | 96|19 : L : —

1 2 3 4 5 6
10 109,/ 6;; Informativeness: 2-%,6; 09,8/,

© Eric Xing @ CMU, 2005-2009 18




Relative entropy

\
e A motif is interesting if it is very different from the background

distribution
e Use relative entropy:

0, A o
> | 3 oton, = =
position / \_letter / HO/ . 5‘
6, = probability of i in matrix position | A
6, = background frequency (in non-motif sequence) : :
e Relative entropy is sometimes called s

information content

Al os | 88| 26| 59| 40| 03
Cloo | 03| 12| 13| 21| 05 —
Glor| o] 2] as| 2] 02
T] s 08 51 13 18 89 T N N '
Informativeness: 2-Z,6; 10g,8/6; ]
© Eric Xing @ CMU, 2005-2009 19
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0000
0000
[ X0
(X J
equence Logo g
--------- D
9876543210123456789
1 —
2 BITS : .
3
4 T h o !
s " =
[ Y
7 iy |/
a .
9 . .
10 L . !
11 1 E P ‘
(Wil &g} §
A
- e A S
24 = [la+g * e L i R
- TN NE~RO SO NN T NORDO0 N
R R R R e L L
B O T e Do w0 Aligned Globin Sequences
e Information at pos'n / H(/) = — Zyeyer iy 6109, 0
e Height of x at pos’n / L(//) = 6,(2 — H(A)
e Examples:
0,=1; H)=0; L(,A)=2
A: Ve, C:Va; G:Vay H(I)=1.5;L(I, A)="%; L(I,notT)="%
© Eric Xing @ CMU, 2005-2009 20
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The Product Multinomial (PM)

Model [Lawrence et al. Science 1993]

!
e Positional specific multinomial distribution: § = [G,, ..., ]

91 92 ‘93 e 9L

I |

006

AAAAGAGTCA
AAATGACTCA
AGTGAGTCA
AMAAGAGTCA
ATGCGTCA
AATGAGTCA
AATGAGTCA
HAAAGAGTCA

e Position weight matrix (PWM): 6

e The nucleotide distributions at different positions are independent

© Eric Xing @ CMU, 2005-2009 21
000
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[ X X )

More on PM Model oe

e The PM parameter, § = [§,, ..., §c]", corresponds exactly to the
PWM of a motif

2 3 5 8 9 10

A ““ @ - Ol s, 0, 0,

c o [Q*® *®
G @ Q
IS IO R M M M

The nucleotide distributions at different sites are independent !

e The score (likelihood-ratio) of a candidate substring: AAAAGAGTCA
_ p(x={AAAAGAGTCA}| PWM) H p(y, [PWM)  _ 5 Gy

p(x ={AAAAGAGTCA}| bk) i p(y, | bk) i Gy,

9/
e Log Likelihood-Ratio: LR= 2 (Z log, 9“’]
position / \ letter / 0,y
© Eric Xing @CMU 2005-2009 22
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. - [ X X ]
Computational problems for in sels
silico motif detection '

\
e Extract a motif model based on (experimentally) identified
motifs
= aaaxGAsTCA
e Search for motif instances based on given motif model(s)
: =
+  anaxGASTCA
e Uncover novel motifs computationally from genomic
sequences . ,
+  anaxGASTCA
de novp.matifdetection 2

. - [ X X ]
Computational problems for in sels
silico motif detection o

e Extract a motif model based on (experimentally) identified
motifs

Supervised learning

e Search for motif instances based on given motif model(s)

Prediction
e Uncover novel motifs computationally from genomic
sequences

Unsupervised learning

© Eric Xing @ CMU, 2005-2009 24




Problem definition

Given a collection of promoter sequences s;,..., sy, of

genes with common expression

Combinatorial

Motif M: substring m,...m,,
Some of the m;/s blank

< kdifferences

hamming dist

e Find M that occurs in all s; with

e Or, Find M with smallest total

Probabilistic

Motif M: {g}; 1 < /< W
J=ACGT
6?,.J.= Prob] letter /, pos /]

Find best M, and positions p,...,
Pnin sequences

© Eric Xing @ CMU, 2005-2009
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Use of the matrix to find sites

e Hypothesis:

e Ss=site (and independence)
e R=random (equiprobable,

cC T A

T

A

A T C

-38 19(1

- o 0 >

2

-7
-9

10

-10
-6

48

@38 8 -10 -3 -32

-40
19

ind d -13 -48 -6
independence) - @8
e Move the matrix along the cC T A

sequence and score each

window.

e Peaks should occur at the true

sites.

e Of course in general any threshold
will have some false positive and

false negative rate.

T

A

A T C

-13 -4

- o 0 >

7

-38@ 1 (12 Yo
15 38 -8 -10
8 -6

-3
-10

48
-32
-40

cC T A

T

A

A T C

- o 0 >

@19 1
15 -38 -8 -10
13 48 -6
17 @ 8

2

-7
-9

0
-3
-10
-6

-48

-40

19
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Supervised motif search

e Supervised learning

e Given biologically identified alinged motifs A, maximal likelihood
estimation:
0,, =argmax p(A|0)
. . <)
e Application:

e search for known motifs in silico from genomic sequences

ML m”ﬁ]l.j

e Need more more sophisticated search model: HMM?

© Eric Xing @ CMU, 2005-2009 27

de novo motif detection

e Unsupervised learning

e Given no training examples, predict locations of all instances of novel
motifs in given sequences, and learn motif models simultaneously.

57— TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT H‘E’
57~ ATGGCAGAATCACTTTAAAACGTGGCCCCA TGTACGTTACTGCGAAATGACTCAACG A‘R’C_‘4>
57~ CACATCCAACGAATCACCTCACCGTTATCCZ: AA 9TCAGCCGAAGTGCCATAAAAAATATTTTTT IW
57—~ TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC TW
57~ ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA AW
57— ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA HT;’
57—~ GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA p@’

e Learning algorithms:
e Expectation Maximization: e.g., MEME
e Gibbs Sampling: e.g., AlignACE, BioProspector
e Advanced models: Bayesian network, Bayesian Markovian models

© Eric Xing @ CMU, 2005-2009 28




de novo motif detection

e Problem setting:
e Given UTR sequences: y={y;, ..., i}
o Goal: the background model: §={€, », &1, th > Ot
and K'motif models &', ..., & fromy,

where 0% ={6F 1 i=1..,L,, j {A.C,G, T}

e A missing value problem:
e The locations of instances of motifs are unknown, thus the aligned motif

sequences A, ..., A, and the background sequence are not available.
© Eric Xing @ CMU, 2005-2009 29
[ X X ]
0000
o000
: L : eoe
Expectation-maximization g
e The EM idea:
For each subsequence of width W
convert subsequence to a matrix
do{
re-estimate motif occurrences from matrix
EM re-estimate matrix model from motif occurrences
} until (matrix model stops changing)
end
select matrix with highest score
© Eric Xing @ CMU, 2005-2009 30
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Sample DNA sequences

>celcg
TAATGTTTGTGCTGGTTTTTGTGGCATCGGGCGAGAATA
GCGCGTGGTGTGAAAGACTGTTTTTTTGATCGTTTTCAC
AAAAATGGAAGTCCACAGTCTTGACAG

>ara
GACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAG
AAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTG
CTATGCCATAGCATTTTTATCCATAAG

>pglrl
ACAAATCCCAATAACTTAATTATTGGGATTTGTTATATA
TAACTTTATAAATTCCTAAAATTACACAAAGTTAATAAC
TGTGAGCATGGTCATATTTTTATCAAT

>crp
CACAAAGCGAAAGCTATGCTAAAACAGTCAGGATGCTAC
AGTAATACATTGATGTACTGCATGTATGCAAAGGACGTC
ACATTACCGTGCAGTACAGTTGATAGC

© Eric Xing @ CMU, 2005-2009
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Motif occurrences

>celcg
taatgtttgtgctggtttttgtggcatcgggcgagaata
gcgcgtggtgtgaaagactgttttTTTGATCGTTTTCAC
aaaaatggaagtccacagtcttgacag

>ara
gacaaaaacgcgtaacaaaagtgtctataatcacggcag
aaaagtccacattgattaTTTGCACGGCGTCACactttg
ctatgccatagcatttttatccataag

>pglrl
acaaatcccaataacttaattattgggatttgttatata
taactttataaattcctaaaattacacaaagttaataac
TGTGAGCATGGTCATatttttatcaat

>crp
cacaaagcgaaagctatgctaaaacagtcaggatgctac
agtaatacattgatgtactgcatgtaTGCAAAGGACGTC
ACattaccgtgcagtacagttgatagc

One-occurrence per sequence (oops) mode

© Eric Xing @ CMU, 2005-2009
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Starting point

gactgttttTTTGATCGTTTTCACaaaaatgg..

T T T G A T C G T T
A 0.17 0.17 0.17 0.17 0.50 ...
Cc 0.17 0.17 0.17 O0.17 0.17
G 0.17 0.17 0.17 0.50 0.17
T 0.50 0.50 0.50 0.17 0.17

This a special initialization scheme, many others scheme, including random
starts, are also valid

© Eric Xing @ CMU, 2005-2009 33

Re-estimating motif occurrences

TAATGTTTGTGCTGGTTTTTGTGGCATCGGGCGAGAATA

T T G A T C G T T
0.17 0.17 0.17 0.50 ...

0.17 0.17 0.17 0.17

0.17 0.17 0.50 0.17

0.50 0.50 0.17 0.17

0.50 + 0.17 + 0.17 + 0.17 + 0.17 + ...

© Eric Xing @ CMU, 2005-2009 34
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Scoring each subsequence

\
e Score from each sequence the subsequence with maximal

score.

Sequence: TGTGCTGGTTTTTGTGGCATCGGGCGAGAATA

Subsequences Score
TGTGCTGGTTTTTGT 2.95
GTGCTGGTTTTTGTG 4.62
TGCTGGTTTTTGTGG  2.31
GCTGGTTTTTGTGGC I

© Eric Xing @ CMU, 2005-2009 35

Re-estimating motif matrix

e Under a one-occurrence per sequence (oops) model

e From each sequence, take the substring that has the maximal
score

e Align all of them and count:

Occurrences Counts
TTTGATCGTTTTCAC A 000132011000040
TTTGCACGGCGTCAC C 001010300200403
TGTGAGCATGGTCAT G 020301131130000
TGCAAAGGACGTCAC T 423001002114001

© Eric Xing @ CMU, 2005-2009 36
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Adding pseudocounts

Counts
A 000132011000040
C 001010300200403
G 020301131130000
T 423001002114001

Counts + Pseudocounts
A 111243122111151
C 112121411311514
G 131412242241111
T 534112113225112

© Eric Xing @ CMU, 2005-2009

37

Converting to frequencies

Counts + Pseudocounts

A 111243122111151
C 112121411311514
G 131412242241111
T 534112113225112

© Eric Xing @ CMU, 2005-2009 38
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[ X X ]
0000
0000
Expectation-maximization s
\
e Problem of the previous procedure:
e This procedure doesn't allow the motifs to move around very much.
Taking the max is too brittle.
For each subsequence of width W
convert subsequence to a matrix
do {
re-estimate motif occurrences from matrix
EM re-estimate matrix model from motif occurrences
} until (matrix model stops changing)
end
select matrix with highest score
e Solution:
e Associate with each start site a probability of motif occurrence.
© Eric Xing @ CMU, 2005-2009 39
[ X X ]
0000
0000
Converting to probabilities &
Sequence: TGTGCTGGTTTTTGTGGCATCGGGCGAGAATA
Occurrences Score Prob
TGTGCTGGTTTTTGT 2.95 0.023
GTGCTGGTTTTTGTG 4.62 0.037
TGCTGGTTTTTGTGG 2.31 0.018
GCTGGTTTTTGTGGC .- .-
Total 128.2 1.000
p(L — mer|0)
© Eric Xing @ CMU, 2005-2009 40
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(X X J
0000
( X XX
[ XN
1 H [ X J
omputing weighted counts :
Occurrences  Prob
TGTGCTGGTTTTTGT 0.023
GTGCTGGTTTTTGTG 0.037
TGCTGGTTTTTGTGG 0.018 1 3 |4 |5
GCTGGTTTTTGTGGC I >\
Include counts from all C S
subsequences, weighted by
the prob to which they match G N\ N
the motif model. R N
© Eric Xing @ CMU, 2005-2009 41
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A comparison of supervised and | 832:
[ X XX
[
. ; . b
e nove motit fin INg o
—
57~ TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT HIST7
57~ ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG ARO4
57~ CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT . ILV6E
57— TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC . THR4
57— ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA ARO1L
57— ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA - HOMZ
57~ GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA  pPRO3
aaaxGA=TCA
© Eric Xing @ CMU, 2005-2009 42
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Q. and A.

\
e Problem: How do we estimate counts accurately when we

have only a few examples?
e Solution: Use Dirichlet mixture priors.

e Problem: Too many possible starting points.
e Solution: Save time by running only one iteration of EM.

e Problem: Too many possible widths.
e Solution: Consider widths that vary by V2 and adjust motifs afterwards.

e Problem: Algorithm assumes exactly one motif occurrence
per sequence.

e Solution: Normalize motif occurrence probabilities across all
sequences, using a user-specified parameter.

© Eric Xing @ CMU, 2005-2009 43

000

0000

0000

[ LN
dA o
.and A. g

e Problem: The EM algorithm finds only one motif.
e Solution: Probabilistically erase the motif from the data set, and repeat.

e Problem: The motif model is too simplistic.

e Solution: Use a two-component mixture model that captures the
background distribution. Allow the background model to be more
complex.

e Problem: The EM algorithm does not tell you how many
motifs there are.

e Solution: Compute statistical significance of motifs and stop when they
are no longer significant.

© Eric Xing @ CMU, 2005-2009 44
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[ X X ]
0000
0000
- 82
MEME algorithm :
|
do
for (width = min; width *= V2; width < max)
foreach possible starting point
run 1 iteration of EM
select candidate starting points
foreach candidate
run EM to convergence
select best motif
erase motif occurrences
until (E-value of found motif > threshold)
Is this a true EM algorithm?
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The Gibbs Motif Sampler o

¢ Initialized by choosing random starting positions

al” al”,...,aY%

e lterate the following steps many times:

e Randomly or systematically choose a

sequence, say, sequence k, to exclude. a,

e Carry out the predictive-updating step a9
to update a, “

(no need to sample @1 at each t, we can compute it in close-form, see next lecture
Notations:
An=ta - aauaf = Gypuy 1 =1 W, j=ATGC
a = ¢,a)
e Stop when not much change observed, or some criterion met.
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What is underlying the EM algorithm? secs
— the statistical foundation .
e A binary indicator model (you will find this model in AIignACE)‘
Let: Ze{0, 1Y
Y itV Y net- Y nu -2 @ L-long word starting at position 7
pz,=)=¢, p(z,=0)=1-¢
Py 1112,=0)=6,,6,, by, = ﬁeo = ﬁf{eg%w (background)
/=0 /<1 j=1
PV, alz,=1)= 0y, Oy Oy = ﬁé’,‘ym = ﬁﬁ&,‘y""'l‘” (motif seq.)
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A binary indicator model &

D@ ~ @
D <)
Z {0, 1)V

e Complete log-likelihood :

e suppose all words are concatenated into one big sequence of
Y=Y1¥»---Yn» With appropriate constraints preventing overlapping and
boundaries limits

P 2,) = Py, | 2)P(2,) = Py, 165)7 ply, |6)7 x(1-&) " &”

N L 4 N 4
/(@)= Zzn ZZ(‘)‘(YNJJ*I’J.) log g//j+ Z(lln)[Zfs(muJ') log &y
n=1 n=1

= = =l
+|2|log s + (N ~|z|)log(1 - &)
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The Maximal likelihood approach | :¢
\
e Maximize expected likelihood, in iteration of two steps:
Expectation:
Find expected value of complete log likelihood:
EllogP(¥..Y,,Z 0,6,,¢)]
Maximization:
Maximize the expected complete likelihood over 6, 6, ¢
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Expectation Maximization: E-step | :¢

e Expectation:
Find expected value of log likelihood:

(.(@) = NE@[(Z T )} - - <zn>)[(:215(yﬂ-/ L J)log %)J

-1 j=1

+g<zn>logg+[N- Ai‘(zn>jlog(1-g)

n=1

e where the expected value of Zcan be computed as follows:

.: 11— ep(y; 160)
=P =N = a0 100)

e recall the weights for each substring in the MEME algorithm

© Eric Xing @ CMU, 2005-2009 50

25



Expectation Maximization: M-step

e Maximization:
Maximize expected value over #and ¢independently

For ¢, this is easy:

€NEW:argmaxNZ< I _N _ ) :N<zﬂ>
< zn)loge+ (N Z<Z’>)|Og(1 g)= Yninl
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Expectation Maximization: M-step | s¢

e For ©= (6, 6,), define

c; = E[ # times letter j appears in motif position I]
Co,; = E[ # times letter j appears in background]

¢,; values are calculated easily from E[Z] values

It easily follows:

GNEW _ €. QNEW €o.j
SO, o > ¢
161, €0
to not allow any 0’s, add pseudocounts
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Initial Parameters Matter! .
e Consider the following “artificial” example:
x1, ..., xN contain:
e 2'2patternson {A, T}: A.AA, A.AT, ..., T.TT
e 2'2patterns on {C, G}:C..CC, C..CG, ..., G.GG
e D << 2'2occurrences of 12-mer ACTGACTGACTG
e Some local maxima:
ex Vs B=%C, 2G; M, =%A, YT, i=1,..,12
e verybad!
e~ D/2M1, B = V4A,Y4C,VaG,VaT;
M, =100% A, M,= 100% C, M, = 100% T, etc.
e the correct solution !
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Overview of EM Algorithm .

1. Initialize parameters @ = (6, 6,),
e Try different values of ¢, say, from N-"2up to 1/(2L)

2. Repeat:
a. Expectation
b. Maximization

3. Until change in @ = (6, 6,), falls below o

4. Report results for several “good” ¢
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Overview of EM Algorithm

e One iteration running time: O(NL)
e Usually need < N iterations for convergence, and < N starting points.
e Overall complexity: unclear

e EMis a local optimization method
e |[nitial parameters matter

e MEME: Bailey and Elkan, ISMB 1994.
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Overview of Sampling Algorithm | ¢

e One iteration running time: O(NL)

e More flexible in designing complex models (see next lectures)
e Gibbs is a asymptotically converging to global optimum

e Usually need multiple random restarts, and test of
convergence

e GMS: Lawrence et al. (1993), Science, 262:208-214
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Discussion

e Model versus algorithm:

e Model: e.g., oops, zoops, HMM,
e Algorithms: EM, Gibbs, heuristics ...

¢ Different algorithms can be used for solving the same model!

e Need to be clear whether improvement/loss is due to model or algorithm
(many paper/author got confused with these two aspects, and discuss
results in convolved way!)

e Fix one, and analyze the other, one at a time!!

© Eric Xing @ CMU, 2005-2009 57

29



