Computational Genomics
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The HMM Algorithms 5

Questions:

e Decoding: What is the most likely DNA parsing? Viterbi

e Evaluation: What is the probability of the observed
sequence? Forward

e Decoding: What is the probability that the state of the 3rd
position is Bk or gene, given the observed sequence?
Forward-Backward

e Learning: Under what parameterization are the observed
sequences most probable? Baum-Welch (EM)
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Learning HMM: two scenarios

e Supervised learning: estimation when the “right answer” is

known
e Examples:
GIVEN: a genomic region X = X,...X, gy,000 Where we have good
(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening,

as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is

unknown
e Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don’t see when he

changes dice

e QUESTION: Update the parameters 6 of the model to maximize
A X6 --- Maximal likelihood (ML) estimation

© Eric Xing @ CMU, 2005-2009 3
[ X X ]
esce
. [
Typical structure of a gene '

Startcodon  codons  ponor site

Transcription
start

Promoter

Acceptor site

Stop codon

GATCCCCATGCCTGAGGGCCCCTC




Some Facts About Human Genes

e Comprise about 3% of the genome
e Average gene length: ~ 8,000 bp

e Average of 5-6 exons/gene

e Average exon length: ~200 bp

e Average intron length: ~2,000 bp

e ~8% genes have a single exon

e Some exons can be as small as 1 or 3 bp.

¢ HUMFMRI1S is not atypical: 17 exons 40-60 bp long, comprising 3% of a 67,000
bp gene
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Supervised ML estimation H
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Supervised ML estimation

|
e Given x= x;...x), for which the true state path y = y,...yyis

known,

e Define:
A = # times state transition /—j occurs in'y
B, = # times state /in y emits Ain x

e We can show that the maximum likelihood parameters fare:
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e Whatif y is continuous? We can treat {(X

i Yor) P =1:T . n=1: Njas AT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...
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Supervised ML estimation, ctd. o

e Intuition:

e When we know the underlying states, the best estimate of ¢is the average
frequency of transitions & emissions that occur in the training data

e Drawback:
e Given little data, there may be overfitting:
P(x]0) is maximized, but 6 is unreasonable
0 probabilities — VERY BAD

e Example:
e Given 10 casino rolls, we observe
x=2,1,5,6, 1,

2,3,6,2,3
F, F, F, F, F

y=F, F, F, F, F,
e Then: a=1; a, =0
bp; =bgy = .25
b, =.3; b, = 0; by = by = .1
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Pseudocounts &
e Solution for small training sets:
e Add pseudocounts
A = # times state transition /—»joccursiny + R;;
B, = # times state /in y emits Ainx+ 5,
° R,j, S;are pseudocounts representing our prior belief
e Total pseudocounts: R;=% R, 5;= %5,
--- "strength" of prior belief,
--- total number of imaginary instances in the prior
e Larger total pseudocounts = strong prior belief
e Small total pseudocounts: just to avoid O probabilities ---
smoothing
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Unsupervised ML estimation :

e Given x= x;...xy for which the true state path y= y,...yy/is
unknown,

o EXPECTATION MAXIMIZATION

o. Starting with our best guess of a model M, parameters 6
1. Estimate A;;, B, in the training data

How? 4 :Z,,‘,<y/;‘rfl)/n/h> B, :zm<yn/f>xnkm
2. Update ¢according to A, B,

Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set 8 each iteration

© Eric Xing @ CMU, 2005-2009 10




[ X X ]
0000
s
How to compute expected count? | 3¢
|
By = Zﬂj <}/fj,7‘>Xﬂk7‘
(yi.r> = P(Y;:: = 1]x,)
B ol Bl
T P(x,)
A/J' = Zﬂ,, <y/;"r71}’,{r>
(yj:.f—lyi.f> = P(Ynt =1 th,r = 1]x,)
_ a:r,t—1”’5.‘;"'1:-;31[));1,)‘
P(x,)
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e The complete log likelihood

4.(8;x,y) =log p(x,y) = logH[p(yn,l)H P, yn,H)H p(x,, | Xn,r)J

e The expected complete log likelihood

. T . . T .
<4(9:x,y)>:;(<y;1>mlmlogﬁ/-j+En‘,;(<yn,f4y/,f>P(MW loga, j+;;[X:,<ym>mm)Iogb,v,k)
e EM

e The E step
7/1;‘ </Vn r> P(y/:f =1x,)
flj :<ynf IYnf> p(y/{,f—l :Lynj:f =1|x,)
e The M step ("symbolically" identical to MLE)
IR a 2 Zr 260t bzﬂiz ZH}/MXM
Tt ==" / 1 1
TN DI YRS DID IS
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The Baum-Welch algorithm --
comments

Time Complexity:

# iterations x O(K2N)

Guaranteed to increase the log likelihood of the model

Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

Too many parameters / too large model: Overt-fitting
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The Idea Behind a GHMM
GeneFinder o

e States represent standard gene

features: intergenic region, exon, intron,

perhaps more (promotor, 5’'UTR, ]1 |

3'UTR, Poly-A,..). ? }{‘@
}

° embody state-dependent /e
base composition, dependence, and
signal features. g

e In a GHMM, duration must be included

as well.
ward (+ a intergeni ward (+ a
Reverse (-) strand ’eggi° Reverse (-) strand
e Finally, and both d O
strands must be dealt with. / \
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Modeling the Duration of States s
e Length distribution of region X: 1-p
E[ly] = 1/(1-
(] = 1/(1-p) 0 q
1-q
e Geometric distribution, with mean 1/(1-p)
e (homework: derive this)
=
e This is a significant disadvantage of HMMs —
e Several solutions exist for modeling different length distributions
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Poisson Point Process

. \
e A counting process that represents the total number of

occurrences of discrete events during a temporal/spatial
interval

e the number of occurrences in any internal of length < is Poisson
distributed with parameter At:

At (A7)"

p(A(t+7)-A(n)=n)=e o

e the number of occurrences in disjoint intervals are independent

e the duration of the interval between two consecutive occurrences has
the following distribution:

p(r<s)=1-e*
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Poisson point process oo

03 A L L
—o— Pi{ad m=37
—+— Pla), m=3
——  Paj, =5
0z ——— P{ad, m=10
m= At

F{a)

Truncation is needed at both ends!
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Generalized HMM

Upon entering a state:

1. Choose duration d, according to probability distribution
2. Generate d letters according to emission probs
3. Take a transition to next state according to transition probs

Disadvantage: Increase in complexity:
Time: O(D?)
Space: O(D)
where D = maximum duration of state
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Higher-order HMMs

e The Genetic Code

C .f-. G
ucu Ll tur 1L s
) . . uco (I UiGE
e 3 nucleotides make 1 amino acid a2 Laa Stop | UG Siap
ucG UAG Séop | UGG Stop
e Statistical dependencies in triplets Cuu Cou ChU oo | CGU
cuc Coo CAC oo
Elcua "™ | cca P | Can gn | CBA =rd
CuG Coo CAG o5
Al iU mAL | AGU
. . AIC ile | ACC AT AGE
e Question: o aua ach Thr T AGA oo
AUG met | ACG whG 5| aBG
" . e di G GCU GAl s2p GiEU
° ecognize PFO ein-coding & gﬂi wal ggi ala gii ggi aly
segments with an HMM G oG gas ™ | cos
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Higher-order HMMs

e Every state of the HMM emits 1 nucleotide

e Transition probabilities:

Probability of a state at one /
position, given those of 3 @ @

@ e =
previous positions (triplets):

@
'L"(Y/ |.)’f11 Vi Via) N @ @ @ @
=A

e Emission probabilities: X, x c T
Alyy

®
®

e Algorithms extend with small modifications
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Inference on Higher-order HMMs | ¢

e Building 1st-order HMM on "mega" state

Yi,.N 7
e Use FB algorithm as usual
o ARIR
> AY. Y YilX
X1,.N=
> AY3IX=E s AYy, Yoo YalX)
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GENSCAN (Burge & Karlin)

R

*<:>* pely) =
\ /

Reverse (-) strand

S ANy W iy 2uussuug

CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT

PATACACAGCGCACACAT

CCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT
TTTCAACCCAGCACCGCTCGTCTCTTCCTCTTCTTAACG
AGCATTCGTACGAGGAACAGTGCTGTCATTGTGGCCGC
STGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC |
TTTCGGATATTATTGTCATTTGCCTTTAATCTTGTGTAT |
[ATATGGATGAAACGTGCTATAATAACAATGCAGAATGA

\CCTAAAAA" M.ITEEAA A
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT

GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA

|CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA |
ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
| TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA |
| TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTA(

e
C
C

EEEEE

GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT

Gene Finding

Exon 1 Exon 2 Exon 3

Intron 1 Intron 2 Intron 3

==

Exon 4

Promoter Splice site  Splice site
TATA GGTGAG CAG

Translation

Initiation

ATG
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Pyrimidine polyA signal
tract

v

Branchpoint  Stop codon
CTIGAC TAGTGA/TAA
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Generalized HMM Gene finder

TAAT ATGTCCACGG GTATTGAG CATTGTACACGE6 GTATTGAG CATGTAA TGAA

Allowing for inserted exons

/= =
“E
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Summary

The HMM Algorithm:

e Decoding: What is the most likely DNA parsing? Viterbi

e Evaluation: What is the probability of the observed
sequence? Forward

e Decoding: What is the probability that the state of the 3rd
position is Bk or gene, given the observed sequence?
Forward-Backward

e Learning: Under what parameterization are the observed
sequences most probable? Baum-Welch (EM)
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