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Computational GenomicsComputational Genomics

1010--810/02810/02--710, Spring 2009710, Spring 2009

Gene Finding and HMM (contGene Finding and HMM (cont’’d)d)

Eric XingEric Xing

Lecture 7, February 4, 2009

Reading: Durbin Chap 3, 
class assignment
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The HMM Algorithms
Questions:

Decoding: What is the most likely DNA parsing? Viterbi
Evaluation: What is the probability of the observed 
sequence? Forward
Decoding: What is the probability that the state of the 3rd 
position is Bk or gene, given the observed sequence?
Forward-Backward
Learning: Under what parameterization are the observed 
sequences most probable? Baum-Welch (EM)
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Learning HMM: two scenarios
Supervised learning: estimation when the “right answer” is 
known

Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, 

as he changes dice and produces 10,000 rolls

Unsupervised learning: estimation when the “right answer” is 
unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the 

CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don’t see when he 

changes dice

QUESTION: Update the parameters θ of the model to maximize 
P(x|θ) --- Maximal likelihood (ML) estimation 
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Typical structure of a gene
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Some Facts About Human Genes 
Comprise about 3% of the genome
Average gene length: ~ 8,000 bp
Average of 5-6 exons/gene
Average exon length: ~200 bp
Average intron length: ~2,000 bp
~8% genes have a single exon

Some exons can be as small as 1 or 3 bp.
HUMFMR1S is not atypical: 17 exons 40-60 bp long, comprising 3% of a 67,000 
bp gene
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Supervised ML estimation
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Supervised ML estimation
Given x = x1…xN for which the true state path y = y1…yN is 
known,

Define:
Aij = # times state transition i→j occurs in y
Bik = # times state i in y emits k in x

We can show that the maximum likelihood parameters θ are:

What if y is continuous? We can treat                           as N×T
observations of, e.g., a Gaussian, and apply learning rules for Gaussian …
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Supervised ML estimation, ctd.
Intuition:

When we know the underlying states, the best estimate of θ is the average 
frequency of transitions & emissions that occur in the training data

Drawback:
Given little data, there may be overfitting:

P(x|θ) is maximized, but θ is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 casino rolls, we observe

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
y = F, F, F, F, F, F, F, F, F, F

Then: aFF = 1; aFL = 0
bF1 = bF3 = .2; 
bF2 = .3; bF4 = 0; bF5 = bF6 = .1 
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Pseudocounts
Solution for small training sets:

Add pseudocounts

Aij = # times state transition i→j occurs in y + Rij
Bik = # times state i in y emits k in x + Sik

Rij, Sij are pseudocounts representing our prior belief
Total pseudocounts: Ri = ΣjRij , Si = ΣkSik , 

--- "strength" of prior belief, 
--- total number of imaginary instances in the prior

Larger total pseudocounts ⇒ strong prior belief

Small total pseudocounts: just to avoid 0 probabilities ---
smoothing
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Unsupervised ML estimation
Given x = x1…xN for which the true state path y = y1…yN is 
unknown,

EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters θ:
1. Estimate Aij , Bik in the training data 

How?                             , , 

2. Update θ according to Aij , Bik
Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration
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How to compute expected count?
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The Baum Welch algorithm
The complete log likelihood

The expected complete log likelihood

EM
The E step

The M step ("symbolically" identical to MLE)
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The Baum-Welch algorithm --
comments

Time Complexity:

# iterations × O(K2N)

Guaranteed to increase the log likelihood of the model

Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

Too many parameters / too large model: Overt-fitting
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The Idea Behind a GHMM 
GeneFinder

States represent standard gene 
features: intergenic region, exon, intron, 
perhaps more (promotor, 5’UTR, 
3’UTR, Poly-A,..).  

Observations embody state-dependent 
base composition, dependence, and 
signal features.

In a GHMM, duration must be included 
as well.

Finally, reading frames and both 
strands must be dealt with.  

E0 E1 E2

E

poly-A

3'UTR5'UTR

tEi

Es

I0 I1 I2

intergenic
region

Forward (+) strand
Reverse (-) strand

Forward (+) strand
Reverse (-) strand

promoter
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X Y

1-p

1-q

p q

Modeling the Duration of States
Length distribution of region X:

E[lX] = 1/(1-p)

Geometric distribution, with mean 1/(1-p)
(homework: derive this)

This is a significant disadvantage of HMMs
Several solutions exist for modeling different length distributions
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Observed Duration Time
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Poisson Point Process
A counting process that represents the total number of 
occurrences of discrete events during a temporal/spatial 
interval 

the number of occurrences in any internal of length τ is Poisson 
distributed with parameter λτ:

the number of occurrences in disjoint intervals are independent

the duration of the interval between two consecutive occurrences has 
the following distribution:
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m= λτ

Truncation is needed at both ends!

Poisson point process



10

© Eric Xing @ CMU, 2005-2009 19

A AA Axd3 xd2xd2 xdN

y3 y4y2 yN... 

... Axd1

y1

d1 d2 d3 dNd4

Generalized HMM
Upon entering a state:

1. Choose duration d, according to probability distribution 
2. Generate d letters according to emission probs
3. Take a transition to next state according to transition probs

Disadvantage: Increase in complexity:

Time: O(D2)
Space: O(D)

where D = maximum duration of state
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Higher-order HMMs
The Genetic Code

3 nucleotides make 1 amino acid

Statistical dependencies in triplets

Question:

Recognize protein-coding 
segments with an HMM
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A AA Ax3 x4x2 xN

y3 y4y2 yN... 

... Ax1

y1

y1,...,N = i i e e i

x1,...,N = A C T T G

Higher-order HMMs
Every state of the HMM emits 1 nucleotide

Transition probabilities:

Probability of a state at one 
position, given those of 3 
previous positions (triplets):    

P(yi | yi-1, yi-2, yi-3)

Emission probabilities: 
P(xi | yi)

Algorithms extend with small modifications
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Building 1st-order HMM on "mega" state

Use FB algorithm as usual

P(Q2|R)

P(Y2, Y3, Y4 |X)

P(Y3 |X)=ΣY2,Y4 P(Y2, Y3, Y4 |X)

Inference on Higher-order HMMs

A AA Ax3 x4x2 xN

y3 y4y2 yN... 

... Ax1

y1

x1,...,N = A C T T G

y1,...,N = i i e e i

Y1,Y2,Y3 Y2,Y3,Y4 Y3,Y4,Y5 ...

X1,X2,X3 X2,X3,X4 X3,X4,X5 ...

Q1 Q2 Q3

R1 R2 R3
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E0 E1 E2

E

poly-A

3'UTR5'UTR

tEi

Es

I0 I1 I2

intergenic
region

Forward (+) strand
Reverse (-) strand

Forward (+) strand
Reverse (-) strand

promoter

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC
CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT
GGTCATGCAAACAACGCACAGAACAAATTAATTTTCAAAT
TGTTCAATAAATGTCCCACTTGCTTCTGTTGTTCCCCCCT
TTCCGCTAGCGGAATTTTTTATATTCTTTTGGGGGCGCTC
TTTCGTTGACTTTTCGAGCACTTTTTCGATTTTCGCGCGC
TGTCGAACGGCAGCGTATTTATTTACAATTTTTTTTGTTA
GCGGCCGCCGTTGTTTGTTGCAGATACACAGCGCACACAT
ATAAGCTTGCACACTGATGCACACACACCGACACGTTGTC
ACCGAAATGAACGGGACGGCCATATGACTGGCTGGCGCTC
GGTATGTGGGTGCAAGCGAGATACCGCGATCAAGACTCGA
ACGAGACGGGTCAGCGAGTGATACCGATTCTCTCTCTTTT
GCGATTGGGAATAATGCCCGACTTTTTACACTACATGCGT
TGGATCTGGTTATTTAATTATGCCATTTTTCTCAGTATAT
CGGCAATTGGTTGCATTAATTTTGCCGCAAAGTAAGGAAC
ACAAACCGATAGTTAAGATCCAACGTCCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT
TTTTCAACCCAGCACCGCTCGTCTCTTCCTCTTCTTAACG
TTAGCATTCGTACGAGGAACAGTGCTGTCATTGTGGCCGC
TGTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC
TTTTCGGATATTATTGTCATTTGCCTTTAATCTTGTGTAT
TTATATGGATGAAACGTGCTATAATAACAATGCAGAATGA
AGAACTGAAGAGTTTCAAAACCTAAAAATAATTGGAATAT
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT
GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA
CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA
ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA
TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTAGAAGTCCGGCTGAAAG
CCCCAGCAGCTATAGCCGATATCTATATGATTTAAACTCT
TGTCTGCAACGTTCTAATAAATAAATAAAATGCAAAATAT
AACCTATTGAGACAATACATTTATTTTATTTTTTTATATC
ATCAATCATCTACTGATTTCTTTCGGTGTATCGCCTAATC
CATCTGTGAAATAGAAATGGCGCCACCTAGGTTAAGAAAA
GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT
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GENSCAN (Burge & Karlin)
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Gene Finding
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Generalized HMM Gene finder
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Allowing for inserted exons



14

© Eric Xing @ CMU, 2005-2009 27

Summary
The HMM Algorithm:

Decoding: What is the most likely DNA parsing? Viterbi
Evaluation: What is the probability of the observed 
sequence? Forward
Decoding: What is the probability that the state of the 3rd 
position is Bk or gene, given the observed sequence?
Forward-Backward
Learning: Under what parameterization are the observed 
sequences most probable? Baum-Welch (EM)
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