

Computational Genomics

10-810/02-710, Spring 2009

Gene Finding and HMM (cont'd)

Eric Xing

Lecture 7, February 4, 2009

Reading: Durbin Chap 3,
class assignment

© Eric Xing @ CMU, 2005-2009

1

The HMM Algorithms

Questions:

- **Decoding:** What is the most likely DNA parsing? **Viterbi**
- **Evaluation:** What is the probability of the observed sequence? **Forward**
- **Decoding:** What is the probability that the state of the 3rd position is Bk or gene, given the observed sequence? **Forward-Backward**
- **Learning:** Under what parameterization are the observed sequences most probable? **Baum-Welch (EM)**

© Eric Xing @ CMU, 2005-2009

2

Learning HMM: two scenarios

- Supervised learning: estimation when the “right answer” is known

- Examples:

GIVEN: a genomic region $x = x_1 \dots x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the “right answer” is unknown

- Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition

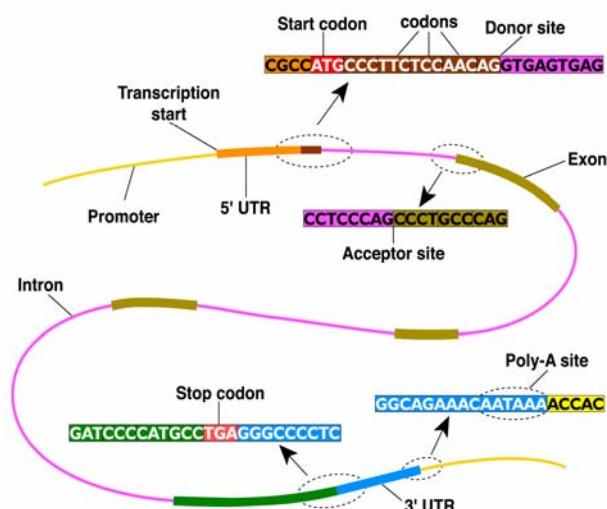
GIVEN: 10,000 rolls of the casino player, but we don't see when he changes dice

- **QUESTION:** Update the parameters θ of the model to maximize $P(x|\theta)$ --- Maximal likelihood (ML) estimation

© Eric Xing @ CMU, 2005-2009

3

Typical structure of a gene



© Eric Xing @ CMU, 2005-2009

4

Some Facts About Human Genes

- Comprise about 3% of the genome
- Average gene length: ~ 8,000 bp
- Average of 5-6 exons/gene
- Average exon length: ~200 bp
- Average intron length: ~2,000 bp
- ~8% genes have a single exon

- **Some exons can be as small as 1 or 3 bp.**
 - HUMFMR1S is not atypical: 17 exons 40-60 bp long, comprising 3% of a 67,000 bp gene

© Eric Xing @ CMU, 2005-2009

5

Supervised ML estimation

© Eric Xing @ CMU, 2005-2009

6

Supervised ML estimation

- Given $x = x_1 \dots x_N$ for which the true state path $y = y_1 \dots y_N$ is known,

- Define:

$$\begin{aligned} A_{ij} &= \# \text{ times state transition } i \rightarrow j \text{ occurs in } y \\ B_{ik} &= \# \text{ times state } i \text{ in } y \text{ emits } k \text{ in } x \end{aligned}$$

- We can show that the **maximum likelihood** parameters θ are:

$$a_{ij}^{ML} = \frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)} = \frac{\sum_n \sum_{t=2}^T y_{n,t-1}^i y_{n,t}^j}{\sum_n \sum_{t=2}^T Y_{n,t-1}^i} = \frac{A_{ij}}{\sum_j A_{ij}}$$

$$b_{ik}^{ML} = \frac{\#(i \rightarrow k)}{\#(i \rightarrow \bullet)} = \frac{\sum_n \sum_{t=1}^T y_{n,t}^i x_{n,t}^k}{\sum_n \sum_{t=1}^T Y_{n,t}^i} = \frac{B_{ik}}{\sum_k B_{ik}}$$

- What if y is continuous? We can treat $((x_{n,t}, y_{n,t}) : t = 1:T, n = 1:N)$ as $N \times T$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

© Eric Xing @ CMU, 2005-2009

7

Supervised ML estimation, ctd.

- Intuition:**

- When we know the underlying states, the best estimate of θ is the average frequency of transitions & emissions that occur in the training data

- Drawback:**

- Given little data, there may be **overfitting**:
 - $P(x|\theta)$ is maximized, but θ is unreasonable
0 probabilities – VERY BAD

- Example:**

- Given 10 casino rolls, we observe

$x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3$
 $y = F, F, F, F, F, F, F, F, F, F$

- Then: $a_{FF} = 1; a_{FL} = 0$
 $b_{F1} = b_{F3} = .2;$
 $b_{F2} = .3; b_{F4} = 0; b_{F5} = b_{F6} = .1$

© Eric Xing @ CMU, 2005-2009

8

Pseudocounts

- Solution for small training sets:
 - Add pseudocounts
$$A_{ij} = \# \text{ times state transition } i \rightarrow j \text{ occurs in } y + R_{ij}$$
$$B_{ik} = \# \text{ times state } i \text{ in } y \text{ emits } k \text{ in } x + S_{ik}$$
 - R_{ij} , S_{ik} are pseudocounts representing our prior belief
 - Total pseudocounts: $R_i = \sum_j R_{ij}$, $S_i = \sum_k S_{ik}$,
 - --- "strength" of prior belief,
 - --- total number of imaginary instances in the prior
- Larger total pseudocounts \Rightarrow strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --- smoothing

© Eric Xing @ CMU, 2005-2009

9

Unsupervised ML estimation

- Given $x = x_1 \dots x_N$ for which the true state path $y = y_1 \dots y_N$ is **unknown**,
- EXPECTATION MAXIMIZATION
 0. Starting with our best guess of a model M , parameters θ .
 1. Estimate A_{ij} , B_{ik} in the training data
 - How? $A_{ij} = \sum_{n,t} \langle y_{n,t-1}^i y_{n,t}^j \rangle$ $B_{ik} = \sum_{n,t} \langle y_{n,t}^i \rangle x_{n,t}^k$,
 2. Update θ according to A_{ij} , B_{ik}
 - Now a "supervised learning" problem
 3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration

© Eric Xing @ CMU, 2005-2009

10

How to compute expected count?

$$B_{ik} = \sum_{n,t} \langle y_{n,t}^i \rangle x_{n,t}^k$$

$$\begin{aligned} \langle y_{n,t}^i \rangle &= P(Y_{n,t}^i = 1 | \mathbf{x}_n) \\ &= \frac{\alpha_{n,t}^i \beta_{n,t}^i}{P(\mathbf{x}_n)} \end{aligned}$$

$$A_{ij} = \sum_{n,t} \langle y_{n,t-1}^i y_{n,t}^j \rangle$$

$$\begin{aligned} \langle y_{n,t-1}^i y_{n,t}^j \rangle &= P(Y_{n,t-1}^i = 1, Y_{n,t}^j = 1 | \mathbf{x}_n) \\ &= \frac{\alpha_{n,t-1}^i a_{i,j} x_{n,t}^j \beta_{n,t}^j}{P(\mathbf{x}_n)} \end{aligned}$$

© Eric Xing @ CMU, 2005-2009

11

The Baum Welch algorithm

- The complete log likelihood

$$\ell_c(\theta; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_n \left(p(y_{n,1}) \prod_{t=2}^T p(y_{n,t} | y_{n,t-1}) \prod_{t=1}^T p(x_{n,t} | x_{n,t}) \right)$$

- The expected complete log likelihood

$$\langle \ell_c(\theta; \mathbf{x}, \mathbf{y}) \rangle = \sum_n \left(\langle y_{n,1}^i \rangle_{p(y_{n,1} | \mathbf{x}_n)} \log \pi_i \right) + \sum_n \sum_{t=2}^T \left(\langle y_{n,t-1}^i y_{n,t}^j \rangle_{p(y_{n,t-1}, y_{n,t} | \mathbf{x}_n)} \log a_{i,j} \right) + \sum_n \sum_{t=1}^T \left(x_{n,t}^k \langle y_{n,t}^i \rangle_{p(y_{n,t} | \mathbf{x}_n)} \log b_{i,k} \right)$$

- EM

- The E step

$$\gamma_{n,t}^i = \langle y_{n,t}^i \rangle = p(y_{n,t}^i = 1 | \mathbf{x}_n)$$

$$\xi_{n,t}^{i,j} = \langle y_{n,t-1}^i y_{n,t}^j \rangle = p(y_{n,t-1}^i = 1, y_{n,t}^j = 1 | \mathbf{x}_n)$$

- The M step ("symbolically" identical to MLE)

$$\pi_i^{ML} = \frac{\sum_n \gamma_{n,1}^i}{N}$$

$$a_{ij}^{ML} = \frac{\sum_n \sum_{t=2}^T \xi_{n,t}^{i,j}}{\sum_n \sum_{t=1}^{T-1} \gamma_{n,t}^i}$$

$$b_k^{ML} = \frac{\sum_n \sum_{t=1}^T \gamma_{n,t}^i x_{n,t}^k}{\sum_n \sum_{t=1}^{T-1} \gamma_{n,t}^i}$$

© Eric Xing @ CMU, 2005-2009

12

The Baum-Welch algorithm -- comments

Time Complexity:

$$\# \text{ iterations} \times O(K^2N)$$

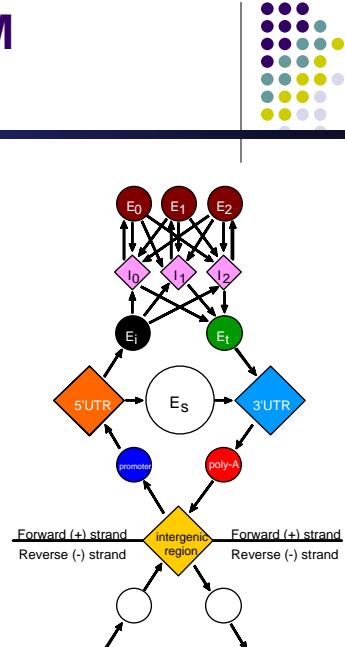
- Guaranteed to increase the log likelihood of the model
- Not guaranteed to find globally best parameters
- Converges to local optimum, depending on initial conditions
- Too many parameters / too large model: Overt-fitting

© Eric Xing @ CMU, 2005-2009

13

The Idea Behind a GHMM GeneFinder

- **States** represent standard gene features: intergenic region, exon, intron, perhaps more (promotor, 5'UTR, 3'UTR, Poly-A,..).
- **Observations** embody state-dependent base composition, dependence, and signal features.
- In a GHMM, **duration** must be included as well.
- Finally, **reading frames** and both **strands** must be dealt with.



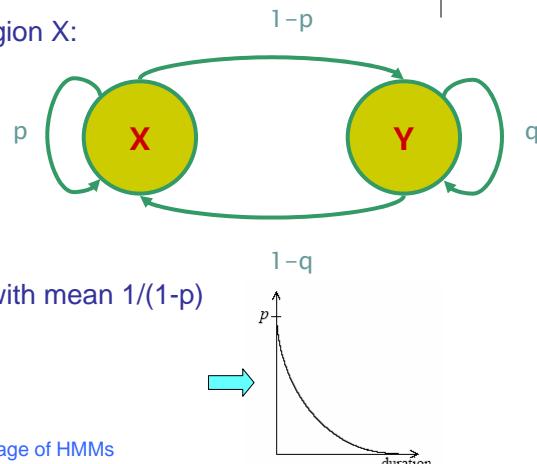
© Eric Xing @ CMU, 2005-2009

14

Modeling the Duration of States

- Length distribution of region X:

$$E[I_X] = 1/(1-p)$$



- Geometric distribution, with mean $1/(1-p)$

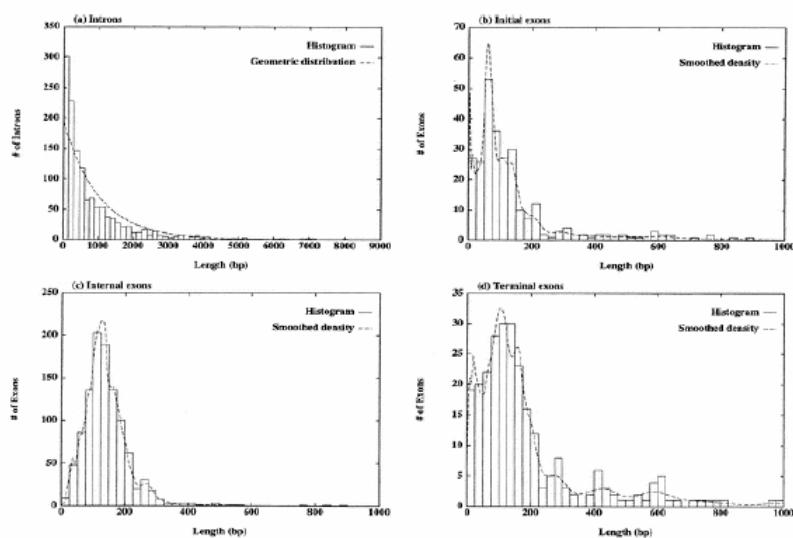
- (homework: derive this)

- This is a significant disadvantage of HMMs
- Several solutions exist for modeling different length distributions

© Eric Xing @ CMU, 2005-2009

15

Observed Duration Time



© Eric Xing @ CMU, 2005-2009

16

Poisson Point Process

- A counting process that represents the total number of occurrences of discrete events during a temporal/spatial interval

- the number of occurrences in any internal of length τ is **Poisson distributed** with parameter $\lambda\tau$:

$$p(A(t + \tau) - A(n) = n) = e^{-\lambda\tau} \frac{(\lambda\tau)^n}{n!}$$

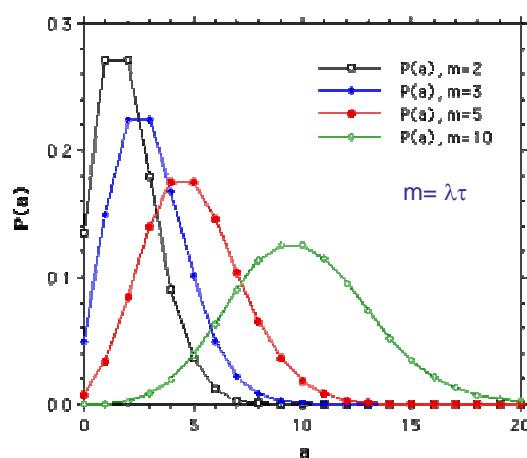
- the number of occurrences in disjoint intervals are independent
- the duration of the interval between two consecutive occurrences has the following distribution:

$$p(\tau < s) = 1 - e^{-\lambda s}$$

© Eric Xing @ CMU, 2005-2009

17

Poisson point process



Truncation is needed at both ends!

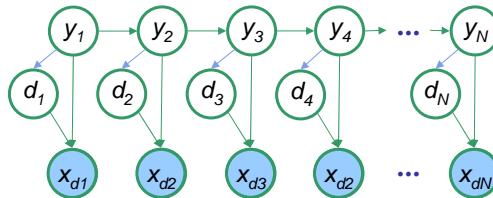
© Eric Xing @ CMU, 2005-2009

18

Generalized HMM

Upon entering a state:

1. Choose duration d , according to probability distribution
2. Generate d letters according to emission probs
3. Take a transition to next state according to transition probs



Disadvantage: Increase in complexity:

Time: $O(D^2)$

Space: $O(D)$

where $D = \text{maximum duration of state}$

© Eric Xing @ CMU, 2005-2009

19

Higher-order HMMs

- **The Genetic Code**

- 3 nucleotides make 1 amino acid
- Statistical dependencies in triplets

- Question:

- Recognize protein-coding segments with an HMM

	U	C	A	G
U	UUU phe UUC UUA leu UUG	UCU UCC UCA ser UCG	UAU tyr UAC UAA Stop UAG Stop	UGU UGC cys UGA Stop UGG Stop
C	CUU CUC CUA leu CUG	CCU CCC CCA pro CCG	CAU his CAC CAA gln CAG	CGU CGC arg CGA CGG
A	AUU AUC ile AUA AUG met	ACU ACC ACA thr ACG	AAU AAC asn AAA AAG lys	AGU ser AGC AGA arg AGG
G	GUU GUC GUA val GUG	GCU GCC GCA ala GCG	GAU GAC asp GAA glu GAG	GGU GGC gly GGA GGG

© Eric Xing @ CMU, 2005-2009

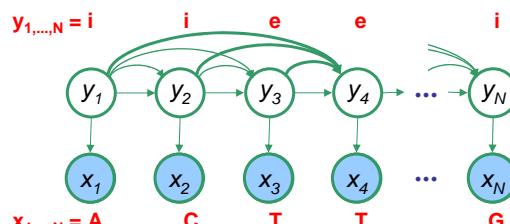
20

Higher-order HMMs

- Every state of the HMM emits 1 nucleotide

- Transition probabilities:

Probability of a state at one position, given those of 3 previous positions (triplets):
 $P(y_i | y_{i-1}, y_{i-2}, y_{i-3})$



- Emission probabilities:

$P(x_i | y_i)$

- Algorithms extend with small modifications

© Eric Xing @ CMU, 2005-2009

21

Inference on Higher-order HMMs

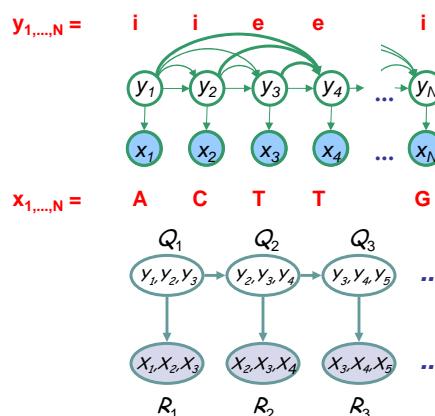
- Building 1st-order HMM on "mega" state

- Use FB algorithm as usual

• $P(Q_2 | R)$

→ $P(Y_2, Y_3, Y_4 | X)$

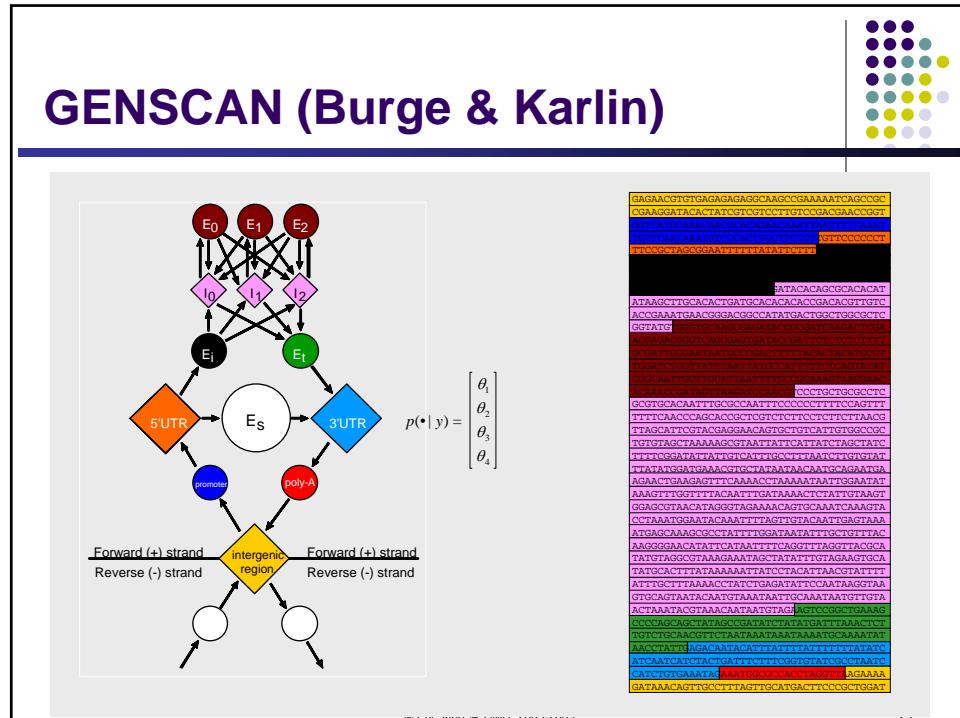
→ $P(Y_3 | X) = \sum_{Y_2, Y_4} P(Y_2, Y_3, Y_4 | X)$



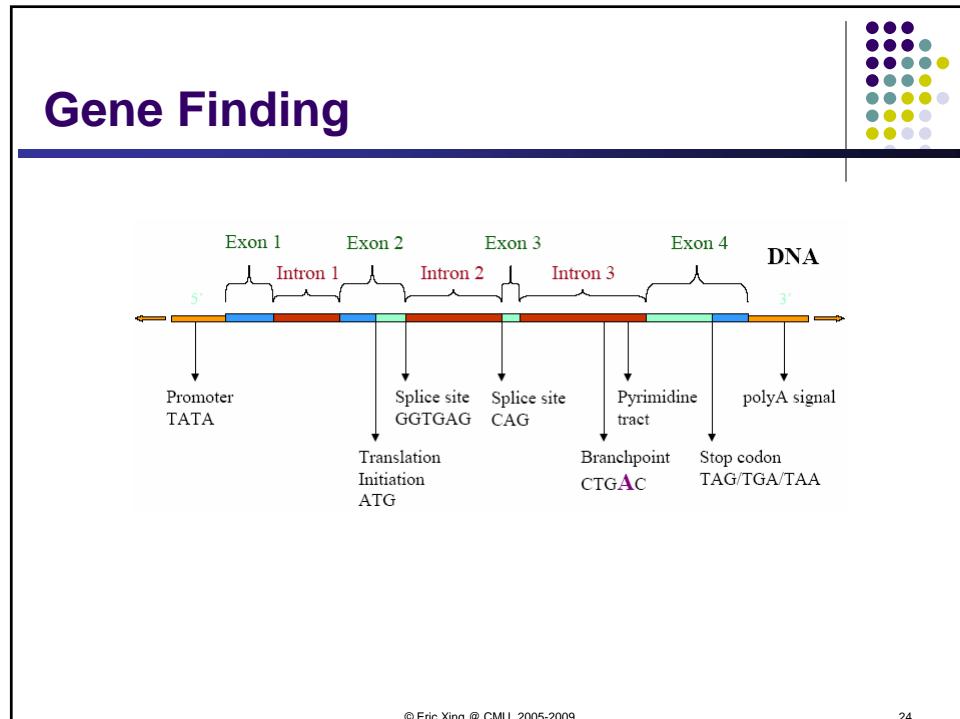
© Eric Xing @ CMU, 2005-2009

22

GENSCAN (Burge & Karlin)

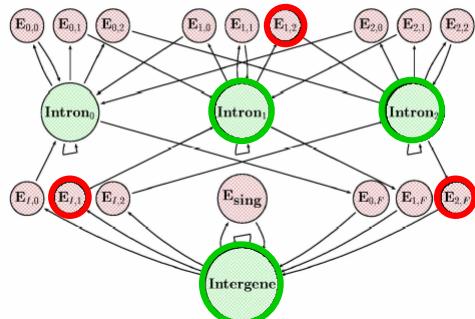


Gene Finding



Generalized HMM Gene finder

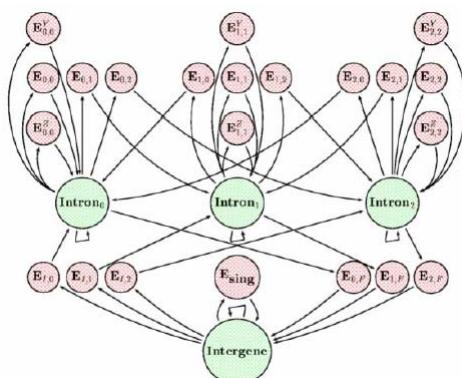
TAAT ATGTCCACGG GTATTGAG CATTGTACACGGG GTATTGAG CATGTAA TGAA



© Eric Xing @ CMU, 2005-2009

25

Allowing for inserted exons



© Eric Xing @ CMU, 2005-2009

26

Summary

The HMM Algorithm:

- **Decoding:** What is the most likely DNA parsing? [Viterbi](#)
- **Evaluation:** What is the probability of the observed sequence? [Forward](#)
- **Decoding:** What is the probability that the state of the 3rd position is Bk or gene, given the observed sequence? [Forward-Backward](#)
- **Learning:** Under what parameterization are the observed sequences most probable? [Baum-Welch \(EM\)](#)

© Eric Xing @ CMU, 2005-2009

27

Acknowledgments

- **Serafim Batzoglou:** for some of the slides adapted or modified from his lecture slides at Stanford University
- **Lior Pachter**: for some of the slides modified from his lectures at UC Berkeley

© Eric Xing @ CMU, 2005-2009

28