

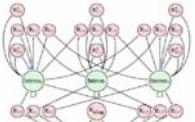
Computational Genomics

10-810/02-710, Spring 2009

Gene Finding and HMM

Eric Xing

Lecture 5, January 28, 2009



Reading: Durbin Chap 3,
class assignment

© Eric Xing @ CMU, 2005-2009

1

The HMM Algorithms

Questions:

- **Decoding:** What is the most likely DNA parsing? **Viterbi**
- **Evaluation:** What is the probability of the observed sequence? **Forward**
- **Decoding:** What is the probability that the state of the 3rd position is Bk or gene, given the observed sequence? **Forward-Backward**
- **Learning:** Under what parameterization are the observed sequences most probable? **Baum-Welch (EM)**

© Eric Xing @ CMU, 2005-2009

2

The likelihood of a sequence

- We want to calculate $P(\mathbf{x})$, the likelihood of \mathbf{x} , given the HMM

- Sum over all possible ways of generating \mathbf{x} :

$$p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_N} \pi_{y_1} \prod_{t=2}^T a_{y_{t-1}, y_t} \prod_{t=1}^T p(x_t | y_t)$$

- Complexity?

- Why useful?

© Eric Xing @ CMU, 2005-2009

3

The Forward Algorithm

- We want to calculate $P(\mathbf{x})$, the likelihood of \mathbf{x} , given the HMM

- Sum over all possible ways of generating \mathbf{x} :

$$p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_N} \pi_{y_1} \prod_{t=2}^T a_{y_{t-1}, y_t} \prod_{t=1}^T p(x_t | y_t)$$

- To avoid summing over an exponential number of paths \mathbf{y} , define

$$\alpha(y_t^k = 1) = \alpha_t^k \stackrel{\text{def}}{=} P(x_1, \dots, x_t, y_t^k = 1) \quad (\text{the forward probability})$$

- The recursion:

$$\alpha_t^k = p(x_t | y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}$$

$$P(\mathbf{x}) = \sum_k \alpha_T^k$$

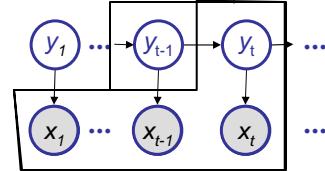
© Eric Xing @ CMU, 2005-2009

4

The Forward Algorithm – derivation

- Compute the forward probability:

$$\begin{aligned}
 \alpha_t^k &= P(x_1, \dots, x_{t-1}, x_t, y_t^k = 1) \\
 &= \sum_{y_{t-1}} P(x_1, \dots, x_{t-1}, x_t, y_{t-1}, y_t^k = 1) \\
 &= \sum_{y_{t-1}} P(x_1, \dots, x_{t-1}, y_{t-1}) P(y_t^k = 1 | y_{t-1}, x_1, \dots, x_{t-1}) P(x_t | y_t^k = 1, x_1, \dots, x_{t-1}, y_{t-1}) \\
 &= \sum_{y_{t-1}} P(x_1, \dots, x_{t-1}, y_{t-1}) P(y_t^k = 1 | y_{t-1}) P(x_t | y_t^k = 1) \\
 &= P(x_t | y_t^k = 1) \sum_i P(x_1, \dots, x_{t-1}, y_{t-1}^i = 1) P(y_t^k = 1 | y_{t-1}^i = 1) \\
 &= P(x_t | y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}
 \end{aligned}$$



Chain rule: $P(A, B, C) = P(A)P(B | C)P(C | A, B)$

© Eric Xing @ CMU, 2005-2009

5

The Forward Algorithm

- We can compute α_t^k for all k, t , using dynamic programming!

Initialization:

$$\begin{aligned}
 \alpha_1^k &= P(x_1, y_1^k = 1) \\
 &= P(x_1 | y_1^k = 1) P(y_1^k = 1) \\
 &= P(x_1 | y_1^k = 1) \pi_k
 \end{aligned}$$

Iteration:

$$\alpha_t^k = P(x_t | y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}$$

Termination:

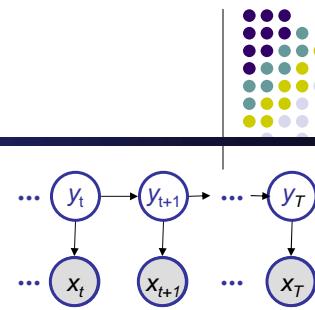
$$P(x) = \sum_k \alpha_t^k$$

© Eric Xing @ CMU, 2005-2009

6

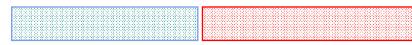
The Backward Algorithm

- We want to compute $P(y_t^k = 1 | \mathbf{x})$,
the posterior probability distribution on the t^{th} position, given \mathbf{x}



- We start by computing

$$\begin{aligned}
 P(y_t^k = 1, \mathbf{x}) &= P(x_1, \dots, x_t, y_t^k = 1, x_{t+1}, \dots, x_T) \\
 &= P(x_1, \dots, x_t, y_t^k = 1) P(x_{t+1}, \dots, x_T | x_1, \dots, x_t, y_t^k = 1) \\
 &= P(x_1, \dots, x_t, y_t^k = 1) P(x_{t+1}, \dots, x_T | y_t^k = 1)
 \end{aligned}$$



Forward, α_t^k

Backward, $\beta_t^k = P(x_{t+1}, \dots, x_T | y_t^k = 1)$

- The recursion:

$$\beta_t^k = \sum_i \alpha_{k,i} p(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i$$

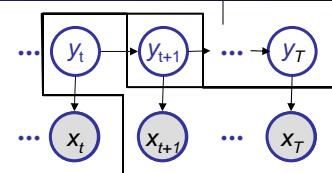
© Eric Xing @ CMU, 2005-2009

7

The Backward Algorithm – derivation

- Define the backward probability:

$$\begin{aligned}
 \beta_t^k &= P(x_{t+1}, \dots, x_T | y_t^k = 1) \\
 &= \sum_{y_{t+1}} P(x_{t+1}, \dots, x_T, y_{t+1} | y_t^k = 1) \\
 &= \sum_i P(y_{t+1}^i = 1 | y_t^k = 1) p(x_{t+1} | y_{t+1}^i = 1, y_t^k = 1) P(x_{t+2}, \dots, x_T | x_{t+1}, y_{t+1}^i = 1, y_t^k = 1) \\
 &= \sum_i P(y_{t+1}^i = 1 | y_t^k = 1) p(x_{t+1} | y_{t+1}^i = 1) P(x_{t+2}, \dots, x_T | y_{t+1}^i = 1) \\
 &= \sum_i \alpha_{k,i} p(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i
 \end{aligned}$$



Chain rule: $P(A, B, C | \alpha) = P(A | \alpha) P(B | C, \alpha) P(C | A, B, \alpha)$

© Eric Xing @ CMU, 2005-2009

8

The Backward Algorithm

- We can compute β_t^k for all k, t , using dynamic programming!

Initialization:

$$\beta_T^k = 1, \forall k$$

Iteration:

$$\beta_t^k = \sum_i a_{k,i} P(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i$$

Termination:

$$P(x) = \sum_k \alpha_1^k \beta_1^k$$

© Eric Xing @ CMU, 2005-2009

9

Example:

© Eric Xing @ CMU, 2005-2009

10

Posterior decoding

- We can now calculate

$$P(y_t^k = 1 | x) = \frac{P(y_t^k = 1, x)}{P(x)} = \frac{\alpha_t^k \beta_t^k}{P(x)}$$

- Then, we can ask

- What is the most likely state at position t of sequence x :

$$k_t^* = \arg \max_k P(y_t^k = 1 | x)$$

- Note that this is an MPA of a **single** hidden state, what if we want to a MPA of a whole hidden state sequence?

- Posterior Decoding: $\{y_t^{k_t^*} = 1 : t = 1 \dots T\}$

- This is different from MPA of a **whole sequence** states

- This can be understood as **bit error rate** vs. **word error rate**

of hidden

x	y	$P(x, y)$
0	0	0.35
0	1	0.05
1	0	0.3
1	1	0.3

Example:
MPA of X ?
MPA of (X, Y) ?

© Eric Xing @ CMU, 2005-2009

11

Computational Complexity and implementation details

- What is the running time, and space required, for Forward, and Backward?

$$\alpha_t^k = p(x_t | y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}$$

$$\beta_t^k = \sum_i a_{k,i} p(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i$$

$$V_t^k = p(x_t | y_t^k = 1) \max_i a_{i,k} V_{t-1}^i$$

Time: $O(K^2 N)$; Space: $O(KN)$.

- Useful implementation technique to avoid underflows

- Viterbi: sum of logs
- Forward/Backward: rescaling at each position by multiplying by a constant

© Eric Xing @ CMU, 2005-2009

12

Learning HMM: two scenarios

- **Supervised learning:** estimation when the “right answer” is known

- **Examples:**

GIVEN: a genomic region $x = x_1 \dots x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- **Unsupervised learning:** estimation when the “right answer” is unknown

- **Examples:**

GIVEN: the porcupine genome; we don’t know how frequent are the CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he changes dice

- **QUESTION:** Update the parameters θ of the model to maximize $P(x|\theta)$ --- Maximal likelihood (ML) estimation

© Eric Xing @ CMU, 2005-2009

13

Supervised ML estimation

- Given $x = x_1 \dots x_N$ for which the true state path $y = y_1 \dots y_N$ is known,

- **Define:**

A_{ij} = # times state transition $i \rightarrow j$ occurs in y

B_{ik} = # times state i in y emits k in x

- We can show that the **maximum likelihood** parameters θ are:

$$a_{ij}^{ML} = \frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)} = \frac{\sum_n \sum_{t=2}^T Y_{n,t-1}^i Y_{n,t}^j}{\sum_n \sum_{t=2}^T Y_{n,t-1}^i} = \frac{A_{ij}}{\sum_j A_{ij}}$$

$$b_{ik}^{ML} = \frac{\#(i \rightarrow k)}{\#(i \rightarrow \bullet)} = \frac{\sum_n \sum_{t=1}^T Y_{n,t}^i X_{n,t}^k}{\sum_n \sum_{t=1}^T Y_{n,t}^i} = \frac{B_{ik}}{\sum_k B_{ik}}$$

- **What if y is continuous? We can treat $\{(x_{n,t}, y_{n,t}): t=1:T, n=1:N\}$ as $N \times T$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...**

© Eric Xing @ CMU, 2005-2009

14

Supervised ML estimation, ctd.

- **Intuition:**

- When we know the underlying states, the best estimate of θ is the average frequency of transitions & emissions that occur in the training data

- **Drawback:**

- Given little data, there may be **overfitting**:
 - $P(x|\theta)$ is maximized, but 0 is unreasonable
0 probabilities – VERY BAD

- **Example:**

- Given 10 casino rolls, we observe

$x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3$
 $y = F, F, F, F, F, F, F, F, F, F$

- Then:
 - $a_{FF} = 1; a_{FL} = 0$
 - $b_{F1} = b_{F3} = .2;$
 - $b_{F2} = .3; b_{F4} = 0; b_{F5} = b_{F6} = .1$

© Eric Xing @ CMU, 2005-2009

15

Pseudocounts

- Solution for small training sets:

- Add pseudocounts

$$\begin{aligned} A_{ij} &= \# \text{ times state transition } i \rightarrow j \text{ occurs in } y + R_{ij} \\ B_{ik} &= \# \text{ times state } i \text{ in } y \text{ emits } k \text{ in } x + S_{ik} \end{aligned}$$

- R_{ij} , S_{ik} are pseudocounts representing our prior belief
- Total pseudocounts: $R_i = \sum_j R_{ij}$, $S_i = \sum_k S_{ik}$,
 - --- "strength" of prior belief,
 - --- total number of imaginary instances in the prior

- Larger total pseudocounts \Rightarrow **strong prior belief**

- Small total pseudocounts: just to avoid 0 probabilities --- **smoothing**

© Eric Xing @ CMU, 2005-2009

16

Unsupervised ML estimation

- Given $x = x_1 \dots x_N$ for which the true state path $y = y_1 \dots y_N$ is **unknown**,

- **EXPECTATION MAXIMIZATION**

0. Starting with our best guess of a model M , parameters θ .
1. Estimate A_{ij} , B_{ik} in the training data
 - How? $A_{ij} = \sum_{n,t} \langle y_{n,t-1}^i y_{n,t}^j \rangle$ $B_{ik} = \sum_{n,t} \langle y_{n,t}^i \rangle x_{n,t}^k$,
2. Update θ according to A_{ij} , B_{ik}
 - Now a "supervised learning" problem
3. Repeat 1 & 2, until convergence

This is called the **Baum-Welch Algorithm**

We can get to a provably more (or equally) likely parameter set θ each iteration

© Eric Xing @ CMU, 2005-2009

17

How to compute expected count?

$$B_{ik} = \sum_{n,t} \langle y_{n,t}^i \rangle x_{n,t}^k$$

$$\begin{aligned} \langle y_{n,t}^i \rangle &= P(Y_{n,t}^i = 1 | \mathbf{x}_n) \\ &= \frac{\alpha_{n,t}^i \beta_{n,t}^i}{P(\mathbf{x}_n)} \end{aligned}$$

$$A_{ij} = \sum_{n,t} \langle y_{n,t-1}^i y_{n,t}^j \rangle$$

$$\begin{aligned} \langle y_{n,t-1}^i y_{n,t}^j \rangle &= P(Y_{n,t-1}^i = 1, Y_{n,t}^j = 1 | \mathbf{x}_n) \\ &= \frac{\alpha_{n,t-1}^i a_{i,j} x_{n,t}^j \beta_{n,t}^j}{P(\mathbf{x}_n)} \end{aligned}$$

© Eric Xing @ CMU, 2005-2009

18

The Baum Welch algorithm

- The complete log likelihood

$$\ell_c(\theta; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_n \left(p(y_{n,1}) \prod_{t=2}^T p(y_{n,t} | y_{n,t-1}) \prod_{t=1}^T p(x_{n,t} | x_{n,t}) \right)$$

- The expected complete log likelihood

$$\langle \ell_c(\theta; \mathbf{x}, \mathbf{y}) \rangle = \sum_n \left(\langle y'_{n,1} \rangle_{p(y_{n,1} | \mathbf{x}_n)} \log \pi_i \right) + \sum_n \sum_{t=2}^T \left(\langle y'_{n,t-1} y'_{n,t} \rangle_{p(y_{n,t-1}, y_{n,t} | \mathbf{x}_n)} \log a_{i,j} \right) + \sum_n \sum_{t=1}^T \left(x'_{n,t} \langle y'_{n,t} \rangle_{p(y_{n,t} | \mathbf{x}_n)} \log b_{i,k} \right)$$

- EM

- The E step

$$\gamma'_{n,t} = \langle y'_{n,t} \rangle = p(y'_{n,t} = 1 | \mathbf{x}_n)$$

$$\xi'_{n,t} = \langle y'_{n,t-1} y'_{n,t} \rangle = p(y'_{n,t-1} = 1, y'_{n,t} = 1 | \mathbf{x}_n)$$

- The M step ("symbolically" identical to MLE)

$$\pi_i^{ML} = \frac{\sum_n \gamma'_{n,1}}{N}$$

$$a_{ij}^{ML} = \frac{\sum_n \sum_{t=2}^T \xi'_{n,t}}{\sum_n \sum_{t=1}^{T-1} \gamma'_{n,t}}$$

$$b_{ik}^{ML} = \frac{\sum_n \sum_{t=1}^T \gamma'_{n,t} x'_{n,t}^k}{\sum_n \sum_{t=1}^{T-1} \gamma'_{n,t}}$$

© Eric Xing @ CMU, 2005-2009

19

The Baum-Welch algorithm -- comments

Time Complexity:

$$\# \text{ iterations} \times O(K^2N)$$

- Guaranteed to increase the log likelihood of the model
- Not guaranteed to find globally best parameters
- Converges to local optimum, depending on initial conditions
- Too many parameters / too large model: Overt-fitting

© Eric Xing @ CMU, 2005-2009

20

Higher-order HMMs

- **The Genetic Code**

- 3 nucleotides make 1 amino acid
- Statistical dependencies in triplets

- **Question:**

- Recognize protein-coding segments with an HMM

	U	C	A	G
U	UUU phe UUC UUA leu UUG	UCU UCC UCA ser UCG	UAU tyr UAC UAA Stop UAG Stop	UGU cys UGC UGA Stop UGG Stop
C	CUU CUC CUA leu CUG	CCC CCA pro CCG	CAU his CAC CAA gln CAG	CGU CGC arg CGA CGG
A	AUU AUC ile AUA AUG met	ACU ACC ACA thr ACG	AAU asn AAC AAA lys AAG	AGU ser AGC AGA arg AGG
G	GUU GUC GUA val GUG	GCU GCC GCA ala GCG	GAU asp GAC GAA glu GAG	GGU GGC gly GGA GGG

© Eric Xing @ CMU, 2005-2009

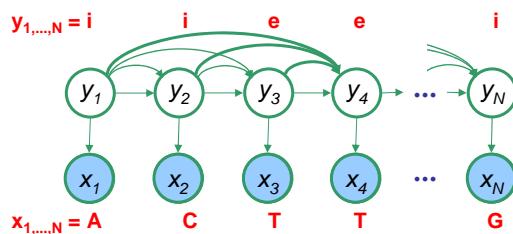
21

Higher-order HMMs

- Every state of the HMM emits 1 nucleotide

- Transition probabilities:

Probability of a state at one position, given those of 3 previous positions (triplets):
 $P(y_i | y_{i-1}, y_{i-2}, y_{i-3})$



- Emission probabilities:

$P(x_i | y_i)$

- Algorithms extend with small modifications

© Eric Xing @ CMU, 2005-2009

22

Inference on Higher-order HMMs

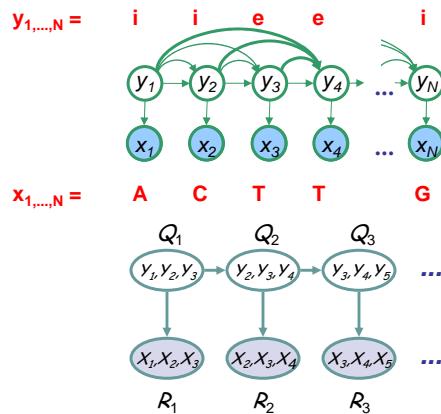
- Building 1st-order HMM on "mega" state

- Use FB algorithm as usual

$$\bullet P(Q_2|R)$$

$$\rightarrow P(Y_2, Y_3, Y_4 | X)$$

$$\rightarrow P(Y_3 | X) = \sum_{Y_2, Y_4} P(Y_2, Y_3, Y_4 | X)$$



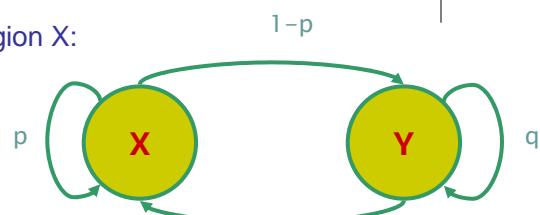
© Eric Xing @ CMU, 2005-2009

23

Modeling the Duration of States

- Length distribution of region X:

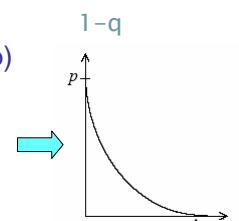
$$E[l_X] = 1/(1-p)$$



- Geometric distribution, with mean $1/(1-p)$

- (homework: derive this)

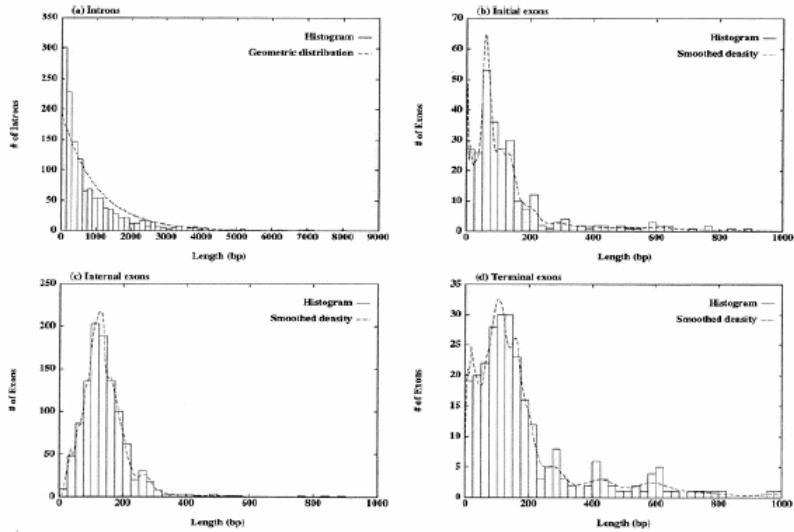
- This is a significant disadvantage of HMMs
- Several solutions exist for modeling different length distributions



© Eric Xing @ CMU, 2005-2009

24

Observed Duration Time



25

Poisson Point Process

- A counting process that represents the total number of occurrences of discrete events during a temporal/spatial interval

- the number of occurrences in any interval of length τ is **Poisson distributed** with parameter $\lambda\tau$:

$$p(A(t + \tau) - A(n) = n) = e^{-\lambda\tau} \frac{(\lambda\tau)^n}{n!}$$

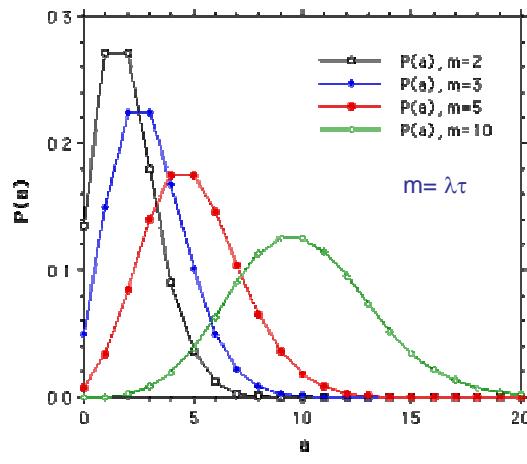
- the number of occurrences in disjoint intervals are independent
- the duration of the interval between two consecutive occurrences has the following distribution:

$$p(\tau < s) = 1 - e^{-\lambda s}$$

© Eric Xing @ CMU, 2005-2009

26

Poisson point process



Truncation is needed at both ends!

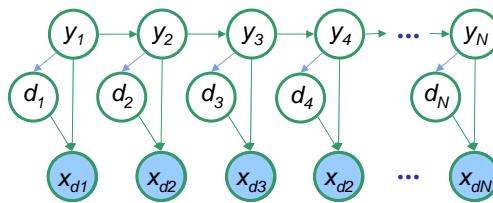
© Eric Xing @ CMU, 2005-2009

27

Generalized HMM

Upon entering a state:

1. Choose duration d , according to probability distribution
2. Generate d letters according to emission probs
3. Take a transition to next state according to transition probs



Disadvantage: Increase in complexity:

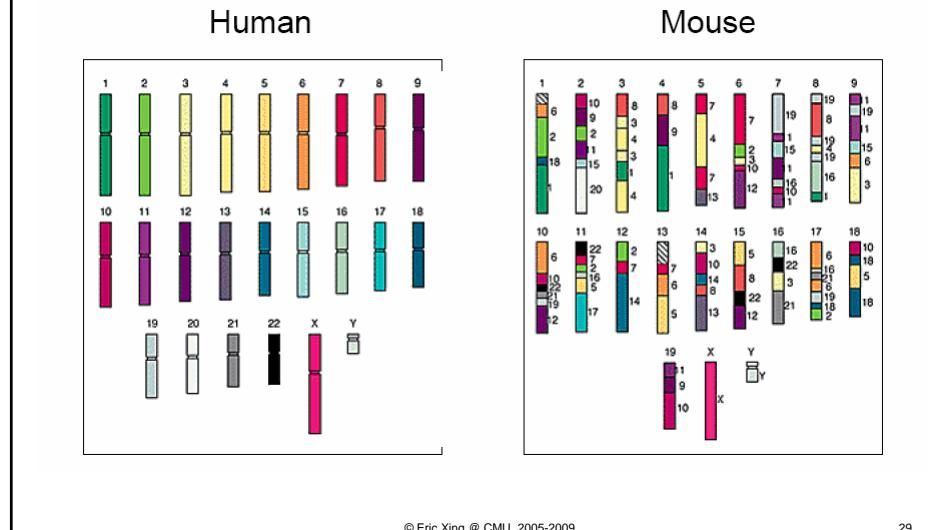
Time: $O(D^2)$
Space: $O(D)$

where D = maximum duration of state

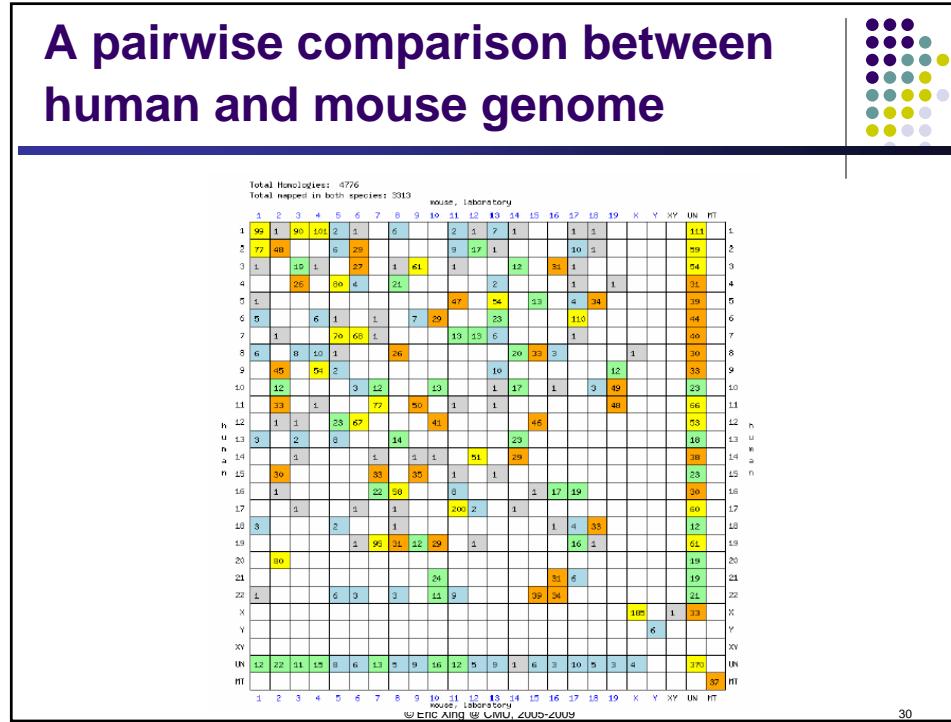
© Eric Xing @ CMU, 2005-2009

28

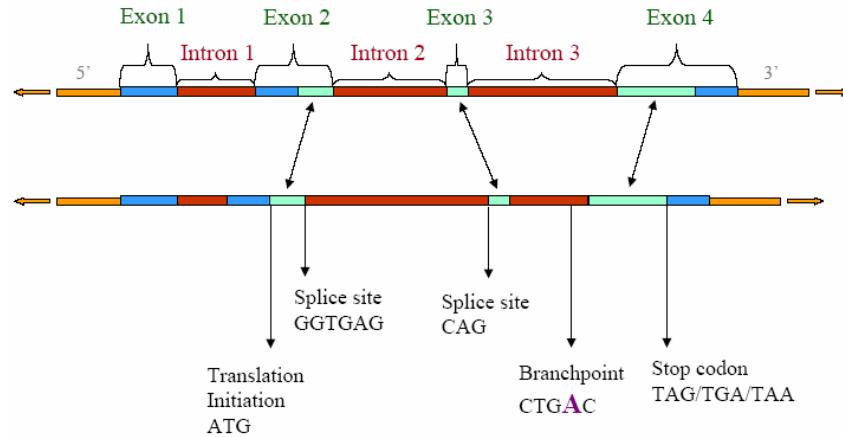
Comparative Genomics



A pairwise comparison between human and mouse genome



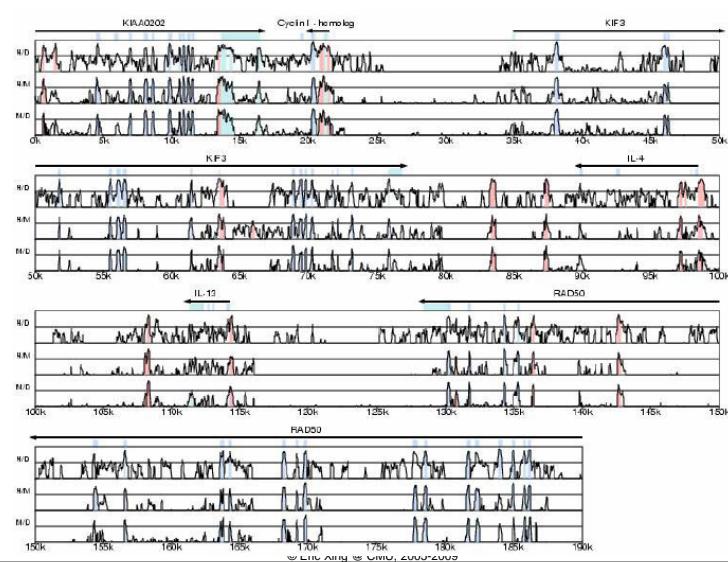
Aligning One Locus



© Eric Xing @ CMU, 2005-2009

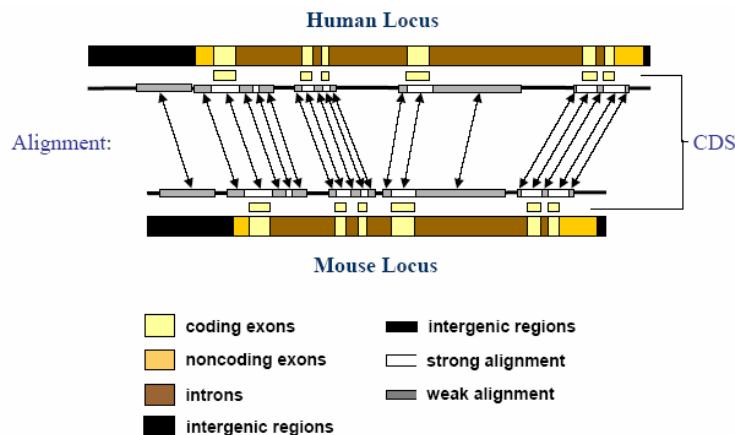
31

Three Pairwise Alignments



32

Example: a human/mouse ortholog

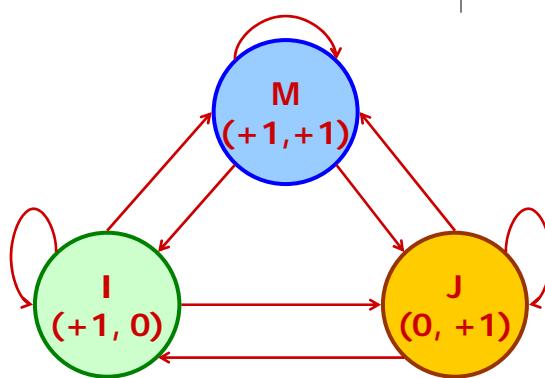


© Eric Xing @ CMU, 2005-2009

33

Paired HMM

Alignments correspond 1-to-1 with sequences of states M, I, J



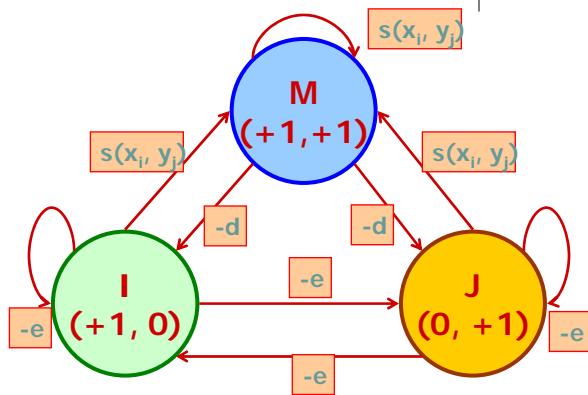
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC-GGTCGATTGCCGACC
IMMJMMMMMMJUJMMMMMMJMMMMMMMMIIMMMMMIII

© Eric Xing @ CMU, 2005-2009

34

Let's score the transitions

Alignments correspond 1-to-1 with sequences of states M, I, J

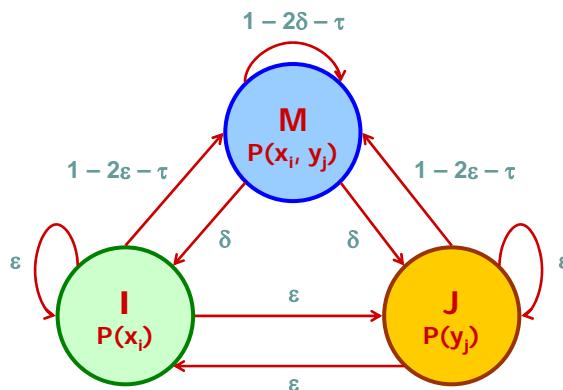
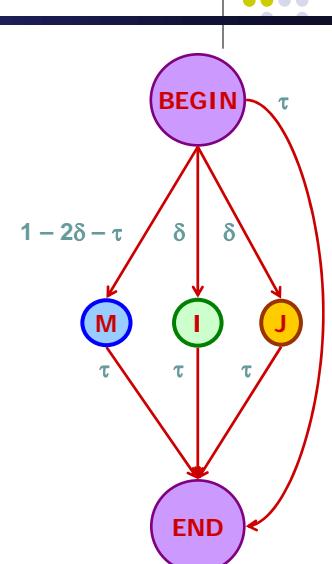


-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
 TAG-CTATCAC--GACCGC-GGTCGATTTGCCGACC
IMMJMMMMMMJJMMMMMMJMMMMMMIIMMMMMIII

© Eric Xing @ CMU, 2005-2009

35

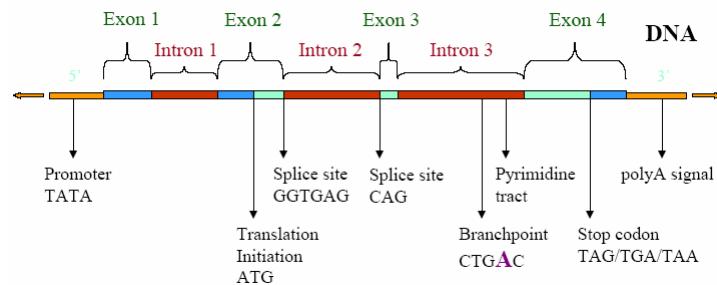
A Pair HMM for alignments



© Eric Xing @ CMU, 2005-2009

36

Gene Finding

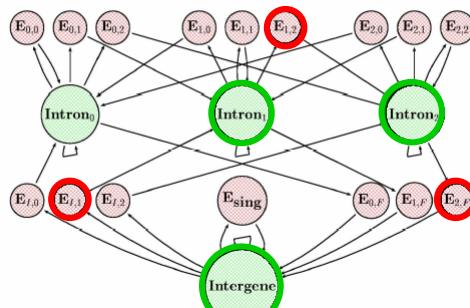


© Eric Xing @ CMU, 2005-2009

37

Generalized HMM Gene finder

TAAT ATGTCCACGG GTATTGAG CATTGTACACGGG GTATTGAG CATGTAA TGAA

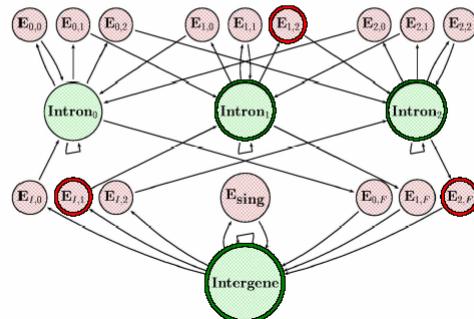


© Eric Xing @ CMU, 2005-2009

38

Generalized Pair-HMM gene finder

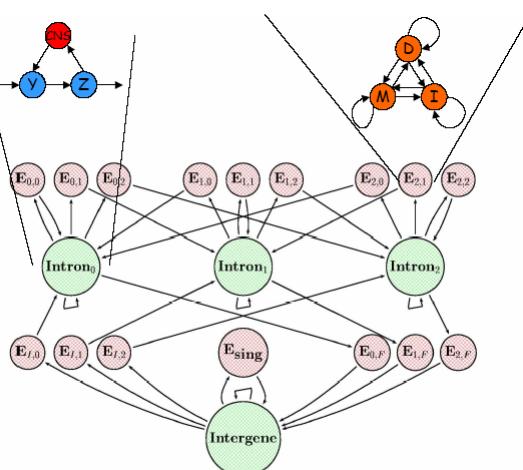
TAAT ATGTCCACGG GTATTGAG CATTGTACACGGG GTATTGAG CATGTAA TGAA
 CTG ATGTACACTG GTTGGTCCTCAG CTTTGTACGGG GTG CATGTAA T6TC



© Eric Xing @ CMU, 2005-2009

39

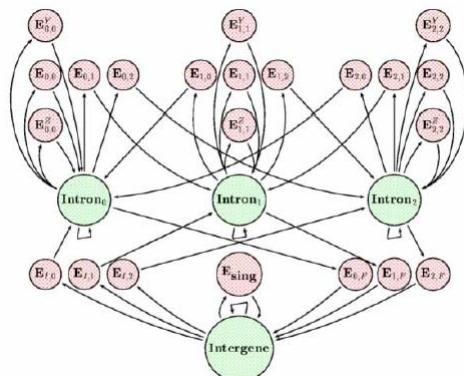
Hierarchical state transition in pHMM



© Eric Xing @ CMU, 2005-2009

40

Allowing for inserted exons



© Eric Xing @ CMU, 2005-2009

41

Acknowledgments

- **Serafim Batzoglou**: for some of the slides adapted or modified from his lecture slides at Stanford University
- **Lior Pachter**: for some of the slides modified from his lectures at UC Berkeley

© Eric Xing @ CMU, 2005-2009

42