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Computational GenomicsComputational Genomics

1010--810/02810/02--710, Spring 2009710, Spring 2009

Gene Finding and HMMGene Finding and HMM

Eric XingEric Xing

Lecture 5, January 28, 2009

Reading: Durbin Chap 3, 
class assignment
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The HMM Algorithms
Questions:

Decoding: What is the most likely DNA parsing? Viterbi
Evaluation: What is the probability of the observed 
sequence? Forward
Decoding: What is the probability that the state of the 3rd 
position is Bk or gene, given the observed sequence?
Forward-Backward
Learning: Under what parameterization are the observed 
sequences most probable? Baum-Welch (EM)
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The likelihood of a sequence
We want to calculate P(x), the likelihood of x, given the HMM

Sum over all possible ways of generating x:

Complexity?

Why useful?
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The Forward Algorithm
We want to calculate P(x), the likelihood of x, given the HMM

Sum over all possible ways of generating x:

To avoid summing over an exponential number of paths y, define

(the forward probability)

The recursion:
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The Forward Algorithm –
derivation

Compute the forward probability:
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The Forward Algorithm
We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:

k
tα

k
kk yxP πα )|( 1111 ==

k
k

kk

kk

yxP
yPyxP

yxP

π

α

)|(

)()|(

),(

1
11

1

11

111

111

==

===

==

kii
i
t

k
tt

k
t ayxP ,)|( ∑ −== 11 αα

∑=
k

k
TP α)(x



4

© Eric Xing @ CMU, 2005-2009 7

The Backward Algorithm
We want to compute                      ,

the posterior probability distribution on the                   
t th position, given x

We start by computing

The recursion:
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The Backward Algorithm –
derivation

Define the backward probability:
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The Backward Algorithm
We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:
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Example:
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Posterior decoding
We can now calculate

Then, we can ask
What is the most likely state at position t of sequence x:

Note that this is an MPA of a single hidden state, 
what if we want to a MPA of a whole hidden state sequence?

Posterior Decoding: 

This is different from MPA of a whole sequence of hidden 
states

This can be understood as bit error rate
vs. word error rate
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Example:
MPA of X ?
MPA of (X, Y) ?

x y P(x,y)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3
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Computational Complexity and 
implementation details

What is the running time, and space required, for Forward, 
and Backward?

Time:   O(K2N); Space: O(KN).

Useful implementation technique to avoid underflows
Viterbi: sum of logs
Forward/Backward:   rescaling at each position by multiplying by a constant
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Learning HMM: two scenarios
Supervised learning: estimation when the “right answer” is 
known

Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, 

as he changes dice and produces 10,000 rolls

Unsupervised learning: estimation when the “right answer” is 
unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the 

CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don’t see when he 

changes dice

QUESTION: Update the parameters θ of the model to maximize 
P(x|θ) --- Maximal likelihood (ML) estimation 
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Supervised ML estimation
Given x = x1…xN for which the true state path y = y1…yN is 
known,

Define:
Aij = # times state transition i→j occurs in y
Bik = # times state i in y emits k in x

We can show that the maximum likelihood parameters θ are:

What if y is continuous? We can treat                           as N×T
observations of, e.g., a Gaussian, and apply learning rules for Gaussian …
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Supervised ML estimation, ctd.
Intuition:

When we know the underlying states, the best estimate of θ is the average 
frequency of transitions & emissions that occur in the training data

Drawback:
Given little data, there may be overfitting:

P(x|θ) is maximized, but θ is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 casino rolls, we observe

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
y = F, F, F, F, F, F, F, F, F, F

Then: aFF = 1; aFL = 0
bF1 = bF3 = .2; 
bF2 = .3; bF4 = 0; bF5 = bF6 = .1 
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Pseudocounts
Solution for small training sets:

Add pseudocounts

Aij = # times state transition i→j occurs in y + Rij
Bik = # times state i in y emits k in x + Sik

Rij, Sij are pseudocounts representing our prior belief
Total pseudocounts: Ri = ΣjRij , Si = ΣkSik , 

--- "strength" of prior belief, 
--- total number of imaginary instances in the prior

Larger total pseudocounts ⇒ strong prior belief

Small total pseudocounts: just to avoid 0 probabilities ---
smoothing
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Unsupervised ML estimation
Given x = x1…xN for which the true state path y = y1…yN is 
unknown,

EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters θ:
1. Estimate Aij , Bik in the training data 

How?                             , , 

2. Update θ according to Aij , Bik
Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration
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How to compute expected count?
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The Baum Welch algorithm
The complete log likelihood

The expected complete log likelihood

EM
The E step

The M step ("symbolically" identical to MLE)
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The Baum-Welch algorithm --
comments

Time Complexity:

# iterations × O(K2N)

Guaranteed to increase the log likelihood of the model

Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

Too many parameters / too large model: Overt-fitting
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Higher-order HMMs
The Genetic Code

3 nucleotides make 1 amino acid

Statistical dependencies in triplets

Question:

Recognize protein-coding 
segments with an HMM
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A AA Ax3 x4x2 xN

y3 y4y2 yN... 

... Ax1

y1

y1,...,N = i i e e i

x1,...,N = A C T T G

Higher-order HMMs
Every state of the HMM emits 1 nucleotide

Transition probabilities:

Probability of a state at one 
position, given those of 3 
previous positions (triplets):    

P(yi | yi-1, yi-2, yi-3)

Emission probabilities: 
P(xi | yi)

Algorithms extend with small modifications
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Building 1st-order HMM on "mega" state

Use FB algorithm as usual

P(Q2|R)

P(Y2, Y3, Y4 |X)

P(Y3 |X)=ΣY2,Y4 P(Y2, Y3, Y4 |X)

Inference on Higher-order HMMs

A AA Ax3 x4x2 xN

y3 y4y2 yN... 

... Ax1

y1

x1,...,N = A C T T G

y1,...,N = i i e e i

Y1,Y2,Y3 Y2,Y3,Y4 Y3,Y4,Y5 ...

X1,X2,X3 X2,X3,X4 X3,X4,X5 ...

Q1 Q2 Q3

R1 R2 R3
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X Y

1-p

1-q

p q

Modeling the Duration of States
Length distribution of region X:

E[lX] = 1/(1-p)

Geometric distribution, with mean 1/(1-p)
(homework: derive this)

This is a significant disadvantage of HMMs
Several solutions exist for modeling different length distributions
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Observed Duration Time
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Poisson Point Process
A counting process that represents the total number of 
occurrences of discrete events during a temporal/spatial 
interval 

the number of occurrences in any internal of length τ is Poisson 
distributed with parameter λτ:

the number of occurrences in disjoint intervals are independent

the duration of the interval between two consecutive occurrences has 
the following distribution:
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m= λτ

Truncation is needed at both ends!

Poisson point process
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A AA Axd3 xd2xd2 xdN

y3 y4y2 yN... 

... Axd1

y1

d1 d2 d3 dNd4

Generalized HMM
Upon entering a state:

1. Choose duration d, according to probability distribution 
2. Generate d letters according to emission probs
3. Take a transition to next state according to transition probs

Disadvantage: Increase in complexity:

Time: O(D2)
Space: O(D)

where D = maximum duration of state
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Comparative Genomics 
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A pairwise comparison between 
human and mouse genome
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Aligning One Locus
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Three Pairwise Alignments
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Example: a human/mouse 
ortholog
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-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
IMMJMMMMMMMJJMMMMMMJMMMMMMMIIMMMMMIII

M
(+1,+1)

I
(+1, 0)

J
(0, +1)

Alignments correspond 
1-to-1 with sequences 
of states M, I, J

Paired HMM
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-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
IMMJMMMMMMMJJMMMMMMJMMMMMMMIIMMMMMIII

M
(+1,+1)

I
(+1, 0)

J
(0, +1)

Alignments correspond 
1-to-1 with sequences 
of states M, I, J

s(xi, yj)

s(xi, yj) s(xi, yj)

-d -d

-e -e

-e

-e

Let’s score the transitions
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M
P(xi, yj)

I
P(xi)

J
P(yj)

1 – 2δ – τ

1 – 2ε – τ

δ

ε

δ

ε

εε

1 – 2ε – τ

BEGIN

END

M JI

τ τ τ

τ

δδ1 – 2δ – τ

A Pair HMM for alignments
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Gene Finding
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Generalized HMM Gene finder
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Generalized Pair-HMM gene 
finder

© Eric Xing @ CMU, 2005-2009 40

Hierarchical state transition in 
pHMM
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Allowing for inserted exons
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