Computational Genomics
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Questions:

e Decoding: What is the most likely DNA parsing? Viterbi

e Evaluation: What is the probability of the observed
sequence? Forward

e Decoding: What is the probability that the state of the 3rd
position is Bk or gene, given the observed sequence?
Forward-Backward

e Learning: Under what parameterization are the observed
sequences most probable? Baum-Welch (EM)

© Eric Xing @ CMU, 2005-2009 2




The likelihood of a sequence

|
e We want to calculate Ax), the likelihood of x, given the HMM

e Sum over all possible ways of generating x:
T T
ID(X) = ZyP(X:Y) = ZYI Zyz .“Zy,\, ”h:!jz[ah 1vY1HP(Xf |y7')

e Complexity?

e Why useful?
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The Forward Algorithm HH

e We want to calculate Ax), the likelihood of x, given the HMM

e Sum over all possible ways of generating x:

p(x) :Zyp(x'y) :zyl zyz"'zm ”ylllamyyfl:[p(xf 1y:)

e To avoid summing over an exponential number of paths y, define
def (the forward probability)
k k k

a(y;y =) =a, =P(x,..x,,y, =1)

e The recursion:
k _ k _ /
a; =px; |y, = I)Z Ay 14 4
z
P(x) = z aﬁ
k
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The Forward Algorithm —
derivation

e Compute the forward probability:

af =P(Xp,es Xr—erriyrk:]-) \@ @ °

:Zm P(Xyoos Xo 1y X Ve 1o v =1)
:ZYHP()Q ----- X1 Y P =1 Y X X )P Y =1, X1 Y1)

!
()

Chainrule: P(A,8,C) =P(A)P(B|C)P(C| A, B)
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The Forward Algorithm HH

e We can compute af for all 4, #, using dynamic programming!

Initialization: Ollk :P(leylk =1)
=P(x |Y1k :1)'0()/1k =1)

af =P(x |y =D, —P(x, |k =)z,

Iteration:

af =P, |yt =D a} 10,

Termination:

P(x) = Zaﬁ
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The Backward Algorithm

e We want to compute P(y/ =1|x) , @ ‘... @

the posterior probability distribution on the

#t position, given x @ @ G

e We start by computing
Pyl =1x)=P(X;, X0 v =1, X, 100 X7 )
=P(Xpyor X, Y = DP(Xy s X | Xeoo X,y =1)
= P(xp.. X Y = DP (X oy |y =1)

e |

Forward, e/ Backward, Af =P(X,. Xy |yl =1)
e The recursion:
k _ i /
ﬂf - Zak,/p(xfﬂ |}’r+1 - 1)ﬂf+l
;
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The Backward Algorithm — §§:
derivation HH

E

e Define the backward probability: @.@
ﬂrk :'D(Xm ----- Xr |/Vrk =1) @ @

~

- ZYM P(Xf‘rl """ Xri Vi | yrk =1)

= 2P0 =Ly =Dp =Ly =DPOG v X | X g =Ly =)
=2 YL =y =D P01 = DP (Ko X | =1)

=2, G P X | Y =1 B

Chainrule: P(A4,B8,C |a)=P(A,a)P(B|C,a)P(C| A B, )
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The Backward Algorithm

\
e We can compute ﬂrk for all &, #, using dynamic programming!

Initialization:

BE=1Vk

Iteration:

ﬂfk = Z/ a/(,,'/D(an |yr/+1 = l)ﬂ;ﬂ

Termination:

Px)=D o B
k
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Posterior decoding :
e We can now calculate
k P(yszl,x) Offkﬂrk
Pyl =1|x)= =
P(x) P(x)
e Then, we can ask
e What is the most likely state at position t of sequence x:
k' =argmax, Py} =1|x)
e Note that this is an MPA of a single hidden state,
what if we want to a MPA of a whole hidden state sequence?
e Posterior Decoding: {}’,«k; =1:+=1.-.T }
e This is different from MPA of a whole sequence of hidden
states x|y Pl y)
e This can be understood as bit error rate o) o .35
vs. word error rate Example: o| 7 Q.95
MPA of X ? zZ O o3
MPA of (X, Y) ? 7 7 0.3
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iImplementation details &

e What is the running time, and space required, for Forward,
and Backward?

af = p(x, |y =D ay.a,,

B = 2ap(x. ¥l =02,

V= plx, | yf =Dmax, a0/,
Time: O(KEN); Space: O(KN).

e Useful implementation technique to avoid underflows
e Viterbi: sum of logs
e Forward/Backward: rescaling at each position by multiplying by a constant
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Learning HMM: two scenarios

e Supervised learning: estimation when the “right answer” is

known
e Examples:
GIVEN: a genomic region X = X,...X, gy,000 Where we have good
(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening,

as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is

unknown
e Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don’t see when he

changes dice

e QUESTION: Update the parameters 6 of the model to maximize
A X6 --- Maximal likelihood (ML) estimation
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Supervised ML estimation H

e Given x= x;...xy for which the true state path y = y;...yis

known,

o Define:
A = # times state transition /—j occurs in'y
B, = # times state /7in y emits Ain x

e We can show that the maximum likelihood parameters fare:

. . T ; i
att — #(— f) _ Z,,Zfzz)’n‘rfl)’n{r _ A;

: #(/ - .) Zﬂ Z::Z y/’r‘,ffl Z/ /4’J
e _HG oK) T, Vo By
' #(/ - .) Zn Z::1 y/;f Z/(v B/k

e What if y is continuous? We can treat {(X,,v,,y,,‘,): t=1:T,n =1:N}as NxT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...
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Supervised ML estimation, ctd. :
. \
e Intuition:
e When we know the underlying states, the best estimate of dis the average
frequency of transitions & emissions that occur in the training data
e Drawback:
e Given little data, there may be overfitting:
P(x]0) is maximized, but 6 is unreasonable
0 probabilities — VERY BAD
e Example:
e Given 10 casino rolls, we observe
x=2,1,5,6,1,2,3,6, 2,3
y=F, F,F, F, F, F, F, F, F, F
e Then: a=1; a, =0
bFl = bF3 =.2
b, = .3, by = 0; by = by = .1
© Eric Xing @CMU 2005-2009 15
(XX
o000
o000
00
o0
Pseudocounts o
e Solution for small training sets:
e Add pseudocounts
A = # times state transition /> joccursiny + R;
By = # times state /in y emits Ainx+ S,

° R,—J—, 5,;are pseudocounts representing our prior belief
o Total pseudocounts: R;=X R, 5= 2,5,
--- "strength" of prior belief,

--- total number of imaginary instances in the prior

e Larger total pseudocounts = strong prior belief

e Small total pseudocounts: just to avoid O probabilities ---
smoothing
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Unsupervised ML estimation

e Given x= x;...xy for which the true state path y= y,...y,/is
unknown,

o EXPECTATION MAXIMIZATION

o. Starting with our best guess of a model M, parameters .
1. Estimate A;, B, in the training data

How? #4; = Zn‘7<y;‘7 1Ynjn> B, = Zn7<\y/;“f;7xlf7v
2. Update ¢according to A, By

Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set 8 each iteration
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How to compute expected count? | ::

By = ZM <y;,f>xn/fr
(yi.r) = P(Y;jx = 1]x,)

i i
- ('Err,r[)):r,f

P(xn)

A = Zn‘f <y/;',f71y/;j,'f>

(yj:.f—lyi.f> = P(Kf.r—l = 1-.Y;j

N 1|Xra)
"-‘-':a,t—1‘?’5-}33'3:‘:/7)}1,:‘

P(x,)
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The Baum Welch algorithm

e The complete log likelihood

T T
4(91 X, y) = |Og P(Xa y) = |09H[P(Yn1)HP(}’nr | yn,f—l)HP(Xn,f | Xn,f)J
n =2 t=1
e The expected complete log likelihood

<4(0;x,y)>:;(<yn’g>p(wn)logﬂ/]+;é[<yn’myf.¢>mM Jloga, ]+22[ n*¢<yn’}>p(ym‘xn)logb,‘kj
e EM
e The E step
Var =(Vas)=plyss =1]x,)
&l =(yar i) = Pyara =Lyl =11x,)
e The M step ("symbolically" identical to MLE)

o Zn}/,’;l a’t = Z Zfrzlénf ;ML_Z H;—y;” "f
. = / : /
N DI 2, 2alns
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The Baum-Welch algorithm -- §§:
comments o

Time Complexity:

# iterations x O(K2N)

e Guaranteed to increase the log likelihood of the model

e Not guaranteed to find globally best parameters

e Converges to local optimum, depending on initial conditions

e Too many parameters / too large model: Overt-fitting
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e The Genetic Code
i G
UAL e
) ) ) LA UGE
e 3 nucleotides make 1 amino acid Uid Sico | UGh Siep
UAG Step | UGG Stop
e Statistical dependencies in triplets i ccu CAl o | COU
cuc e CaC CGEC
Sloua ™ | cca P Tak | oo
Cus CCE CaG G5
Al ACL aal Acll
. AT ile | ACC wal =" | acc
e Question: all P ach | R AGh .
SUG met | ACG was 45| ags M0
R ) tein-codi GUU GCU GAU | BOU
e Recognize protein-codin
onizep : R e
segments with an HMM gt o gas M | Gag
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e Every state of the HMM emits 1 nucleotide

e Transition probabilities:
Probability of a state at one
position, given those of 3
previous positions (triplets):

RYil Yivr Vio Via)

e Emission probabilities:
Ax;1y)

e Algorithms extend with small modifications

© Eric Xing @ CMU, 2005-2009
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Inference on Higher-order HMMs

e Building 1s-order HMM on "mega" state

Yi,..N7T
e Use FB algorithm as usual
o ARIR
> AYy Ya YilX)
X1,.N7T
> AY3IX=2p0 0 AYor Yar Yol X)
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Modeling the Duration of States 4
e Length distribution of region X: 1-p
Elly] = 1/(1-p) 5 q
v
1-q

e Geometric distribution, with mean 1/(1-p)
e (homework: derive this)

=

e This is a significant disadvantage of HMMs
durafion

e Several solutions exist for modeling different length distributions
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Observed Duration Time
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Poisson Point Process °

e A counting process that represents the total number of
occurrences of discrete events during a temporal/spatial
interval

e the number of occurrences in any internal of length t is Poisson
distributed with parameter Axt:

e (A7)

p(A(t+7)-A(n)=n)=e o

e the number of occurrences in disjoint intervals are independent

e the duration of the interval between two consecutive occurrences has
the following distribution:

p(r<s)=1-e”
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Poisson point process s
U 3 A 1 L
Piay m=2
Pla), m=3
Piad, m=5
Pla}, m=10
- m= At
T
L]
Truncation is needed at both ends!
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Generalized HMM :
Upon entering a state:
1. Choose duration d, according to probability distribution
2. Generate d letters according to emission probs
3. Take a transition to next state according to transition probs
Disadvantage: Increase in complexity:
Time: O(D?)
Space: O(D)
where D = maximum duration of state
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Comparative Genomics
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A pairwise comparison between
human and mouse genome
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Aligning One Locus

Exon 1 Exon 2 Exon 3 Exon 4

Intron 1 Intron 2 Intron 3

Splice site Splice site
GGTGAG CAG
Translation Branchpoint Stop codon
Initiation CTGAC TAG/TGATAA
ATG
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Example: a human/mouse sels
ortholog H
Human Locus
e —ce = S —
Alignment: \ \\\\\\\\ / / / //// CDS
Mouse Locus
|:| coding exons HEE intergenic regions
[] noncoding exons [ strong alignment
- introns == weak alignment
Il intergenic regions
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Paired HMM .

Alignments correspond
1-to-1 with sequences
of states M, I, J

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
IMMIMMMMMMM I IMMMMMM I MMMMMMM I EMMMMME T ]
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Let’'s score the transitions

Alignments correspond
1-to-1 with sequences
of states M, 1, J

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--~-
TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
IMMIMMMMMMMJ IJMMMMMMIMMMMMMM I EMMMMM T ]
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A Pair HMM for alignments
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ene Finding :
Exon 1 Exon 2 Exon 3 Exon 4 ~
- DNA
Intron 1 Intron 2 Intron 3
Promoter Splice site  Splice site Pyrimidine polyA signal
TATA GGTGAG CAG tract
A

Translation Branchpoint  Stop codon

Initiation CTGAC TAG/TGA/TAA

ATG
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TAAT ATETCCACGE GTATTGAG CATTGTACACGG6 GTATTGAG CATGTAA TGAA
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Generalized Pair-HMM gene
finder

TAAT ATGTCCACGG GTATTGAG CATTGTACACGG6 GTATTGAG CATGTAA TGAA
[ITTTITTI [TTITITT] [ENRN

(1Tl T
CT6 ATGTACACTG GTTEGTCCTCAG CTTTGACGEE 6T6 CATGTAA TGTC

Hierarchical state transition in
pHMM e




Allowing for inserted exons
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