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Probability of a Parse o
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Probability of a Parse

!
e Given a sequence X = xj...... Xt
andaparsey =y, ...... Vi @ @ @ G
e To find how likely is the parse:

(given our HMM and the sequence) @ @ @ @

PGY) =P X Vi s ) 2] (Joint probability)
= py) P |y Pya | ya) PO | yo) - POy | s POk | ys)
=) POu | i) - pyvr | ) X plx [ ) PO | o) - Pl | )
=PV s Yo PXp X e ¥

&

def M i def M via def MK Y1 X
Let Ty = H[”/'] v Ay, T H[a//]y . and bYr‘Xr - Hﬂ[bf"]
/=] 7,J=1 /= =

- 7[)’1 a}’l v a}’rfx YT b)ﬂ x b)/r XT

r T
’ Marglnal prObabI“ty: p(X) - zyp(x’ y) - Z}’x Z,Vz .“ZYN 7[)/1 Haﬁx% Hp(Xf | Yf)
e Posterior probability: pY1X) = px.y)/ p(x) =2 £
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The Dishonest Casino Model -

0.05
0.95 0.95
'e. LOADED
P(L|F) = 1/6 P(1|L) = 1/10
P2|F) = 1/6 P(2|L) = 1/10
P(3|F) = 1/6 0.05 P(3|L) = 1/10
P(4|F) =1/6 P(4]L) = 1/10
P(5|F) = 1/6 P(5]L) = 1/10
P(6|F) = 1/6 P(6|L) = 1/2
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Example: the Dishonest Casino

e Let the sequence of rolls be:
e x=1,2,1,56,2,1,6,2,4

e

e Then, what is the likelihood of
e y=Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs agg,i; = Y2, @g1 paded = 2)

PUx.) =P IP04s) POR N ) PO h) -

% x P(1 LFair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =
' val’

Y5 x (1/6)*° x (0.95)° = .00000000521158647211 = 5.21 x 10°°
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Example: the Dishonest Casino 4

e S0, the likelihood the die is fair in all this run
is just 5.21 x 10°

=

e OK, but what is the likelihood of

e 7 =Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

% x P(1 | Loaded) P(Loaded | Loaded) ... P(4 | Loaded) =

12 % (1/10)8 x (1/2)2 (0.95)° = .00000000078781176215 = 0.79 x 10°°

e Therefore, it is after all 6.59 times more likely that the die is fair
all the way, than that it is loaded all the way
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Example: the Dishonest Casino

e Let the sequence of rolls be:
e x=1,6,6,56,26,63,6

e

e Now, what is the likelihood n = F, F, ..., F?
o 5 x (1/6)10 x (0.95)° = 0.5 x 10, same as before

e What is the likelihood y=1L, L, ..., L?
Vs x (1/10)* x (1/2)6 (0.95)° = .00000049238235134735 = 5 x 107

e S0, itis 100 times more likely the die is loaded
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Applications of HMMs -

e Some early applications of HMMs

° finance, but we never saw them
° speech recognition
° modelling ion channels

e In the mid-late 1980s HMMs entered genetics and molecular
biology, and they are now firmly entrenched.

e Some current applications of HMMs to biology

° mapping chromosomes

° aligning biological sequences

° predicting sequence structure

° inferring evolutionary relationships
° finding genes in DNA sequence
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The HMM Algorithms

Questions:

e Decoding: What is the most likely DNA parsing? Viterbi

e Evaluation: What is the probability of the observed
sequence? Forward

e Decoding: What is the probability that the state of the 3rd
position is Bk or gene, given the observed sequence?
Forward-Backward

e Learning: Under what parameterization are the observed
sequences most probable? Baum-Welch (EM)
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Decoding :

e GIVENX =X, .., xpwewantto findy =y, ..., y4, such that
Ay|x) is maximized:
y" = argmax, Ay|x) = argmax, Ay X)

HYIx) = rx 1)
pex)
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Viterbi decoding

|
e GIVENX = x;, .., x5 we wantto findy = y,, ..., y4, such that

Ay|x) is maximized:

* = argmax X) = argmax X k
L y" = argmax, Ay|x) = argmax, Ay X) AR
Ve =maxg, o P(Xpes Xpgs Y Yean X Y =1)

= Probability of most likely sequence of states ending at state y; = &
e The recursion:

k k ) Xp Xo Xgeovovminiiiininn Xy
! —T!
V¥ = plx, Lyt =Dmax,a ', =R T
e Underflows are a significant problem ] %K *7"*% ]
KL= Y

PKiss X Vv ¥3) = 7,0, 0y By By

These numbers become extremely small — underflow
ion: . k k /
Solution: Take the logs of all values: V% =log p(x, | y) =1) + max, (|0g(a/.k)+ [/H>
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The Viterbi Algorithm — derivation |z
S
e Define the viterbi probability: 0-0U—0
[ ] ),
k WV U Pa
an max{yi,...y,}/p(’\’l """ Xf'yi """ 71)

:max{yl,,,,yr}’D(Xf+1‘yf+l =1 x,..., Xer Yiveen }’f)P(Xl ----- Xy Vi Vi)

:max{yl,...y,}P(Xm,Yr/:i =1 Y )P(X s X s Yiveons Yot Xe0 V3)

= max; P(Xf+1,)’r/:1 :1|Yfi =1 max{yl_..y,,l}'D(’\/ll"'er—I’yll""yf—ﬂxf’y; =1)

=max, P(x,,, | yi =Da. W'

. a
=P(X,.1, |yt =1y max; a/‘,kk/
P(xf-n 1?1‘.[( ,_ W‘()
:[7( Xﬂ((”ﬁ )P (V‘M {‘41)

=
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The Viterbi Algorithm H
|
e Input: X = Xy, ..., Xp, V= plx; |y =Dmax, a, W,

Initialization:
k k
W =Py =D,
Iteration:

vk = P(x, | yi =lmax, a W n

Ptr(k ) =argmax; g, V',

Termination:

P(x,y") = max, K
TraceBack:

y; = argmax, 15"

Vi =Ptr(y; 1)

The HMM Algorithms e

Questions:

e Decoding: What is the most likely DNA parsing? Viterbi

e Evaluation: What is the probability of the observed
sequence? Forward

e Decoding: What is the probability that the state of the 3rd
position is Bk or gene, given the observed sequence?
Forward-Backward

e Learning: Under what parameterization are the observed
sequences most probable? Baum-Welch (EM)
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The likelihood of a sequence

|
e We want to calculate Ax), the likelihood of x, given the HMM

e Sum over all possible ways of generating x:

T T
’D(X):Zyp(x’y):ZyIZyZ.HZyN”hHaYr1vY1Hp(Xf |y7')

OCk")

e Complexity?

e Why useful?

- P X
P( W&l)( ) PL)()
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The Forward Algorithm

e We want to calculate Ax), the likelihood of x, given the HMM

e Sum over all possible ways of generating x:

PO =2, PN =2, 2, 2, A1, 0 T TP 1)

e To avoid summing over an exponential number of paths y, define

(the forward probability)
o Kk
4
=PV X7, Ym)

X = b
af =p0x |yt =0 el g, 1077 FXTY
P(x) = 205;(

k

def
a(yfk=1)=05fk:'o(/\ﬁ ----- Xf’yfk:]‘)

e The recursion:
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The Forward Algorithm —
derivation

e Compute the forward probability:

af =P(Xp,es Xr—erriyrk:]-) \@ @ °

=2, P X Xy =)
_ Zm@(q VE =11 Ysg X Xy PO =1 X X1, Vi)
= PO X e DB =11y, )P Ly =)

=P Y =D P(Xp Xyl =DP(E =1yl =1)

!
()

Chainrule: P(A,8,C) =P(A)P(B|C)P(C| A, B)
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The Forward Algorithm it =rwymyape | 2

e We can compute af for all 4, #, using dynamic programming!
Initialization: alk :’D(le}’lk =1)

=P(x |Y1k :l)p()/1k =1)
I:P(X1 |y1k =Yz,

lteration: ) “\
ark = P(x, |)/fk :1)2/0[7{*161’7/‘ < \.:

o 7)™ «
Termination: olT V-

P(x) = Zaﬁ

alk =P(x |Y1k =)z,
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The Backward Algorithm

o)

L

e We want to compute P (y/ =1|x) , @ ‘... @

the posterior probability distribution on the

#t position, given x @ G

e We start by computing
Py =1X)=P(X; X V=1, X, 100 X7 )
=P(Xpyor X, Y = DP(Xy s X | Xeoo X,y =1)
= P(xp.. X Y = DP (X oy |y =1)

e |

Forward, e/ Backward, Af =P(X,. Xy |yl =1)
e The recursion:
k _ i /
ﬂf - Zak,/p(xfﬂ |}’r+1 - 1)ﬂf+l
;
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The Backward Algorithm — §§:
derivation HH

E

e Define the backward probability: @.@
ﬂrk :'D(Xm ----- Xr |/Vrk =1) @ @

~

- ZYM P(Xf‘rl """ Xri Vi | yrk =1)

= 2P0 =Ly =Dp =Ly =DPOG v X | X g =Ly =)
=2 YL =y =D P01 = DP (Ko X | =1)

=2, G P X | Y =1 B

Chainrule: P(A4,B8,C |a)=P(A,a)P(B|C,a)P(C| A B, )
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P 1Y) i
. = [5('94"--)() EE:.
The Backward Algorithm =& :
p e T
e We can compute g/ for all 4, #, using dynamiépfogramming!

Initialization:

BE=1Vk

Iteration: (c

ﬂrk = Z/ ak,/’D(Xm |y;:;1 :l)ﬂ;;l

Termination:
Ay _ h
P(X)=Yal s PO 4L,
* PO =g —
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Example: o

0.95 0.95
x=1)2,1,56,2,1,6,2,4 @ @.

ole TP e 191g= bt =00t

" v palF)=1/6 0.05 p@L) =1/10
0&31\‘,“70{;]['@'“) :Uv&’)‘AV P(2IF) = 1/6 P(2IL) = 1/10
Y v bR = 176 PGl = 1/20
U:,*‘-"Cy&*‘y RS Xﬂ“l P(5|F) = 1/6 P(5IL) = 1/10
=JGX U\UH'D)‘“‘W + buEXuIs) P(6|F) = 1/6 P(6IL) = 1/2
= -- k k /
a;f =PX |y = 1)2,0‘;‘710/,/«
—1 7 s
k / /
g B =2 P X | Y =1 B
~
b=t

br .

P;"l @
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x=1,2,1,5

Alpha (actual)

0.0833 0.0500
0.0136 0.0052
0.0022 0.0006
0.0004 0.0001
0.0001 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000

.6,2,1,6,2,4

Beta (actual)
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0001 0.0001
0.0007 0.0006
0.0045 0.0055
0.0264 0.0112
0.1633 0.1033
1.0000 1.0000

R

P(LIF) =1/6
P2IF) =1/6
PBIF) =1/6
P(4|F) =1/6
P(5|F) = 1/6
P(6|F) = 1/6

af =P(x,

@’. 0.95

0.05 p@L) =1/10
P(2JL) = 1/10
P(3IL) = 1/10
P(4]L) = 1/10
P(5]L) = 1/10
P(6IL) = 1/2

| )’rk = I)Z, a;{—la/,/(

B =2, a,Pal yia =Dp
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x=1,21, 5,@2, 1,6,2,4 b{)}

Alpha (logs)
-2.4849 -2.9957
-4.2969 -5.2655
-6.1201 -7.4896
-7.9499 -9.6553
-9.7834-410.1454
-11.5905 -12.4264
-13.4110 -14.6657
-15.2391 -15.2407
-17.0310 -17.5432
-18.8430 -19.8129

Beta (logs)
-16.2439 -17.2014
-14.4185 -14.9922
-12.6028 -12.7337
-10.8042 -10.4389
(—9.0373 29,7289

-7.2181 -7.4833
-5.4135 -5.1977
-3.6352 -4.4938
-1.8120 -2.2698
0 0

P(edy)

+ T ) =

0.95 .@

P(1|F) = 1/6
P2IF) = 1/6
P3|F) =1/6
P(4|F) =1/6
P(5|F) =1/6
P(6|F) = 1/6

@.’ 0.95

0.05 p@yL)=1/10
P(2|L) = 1710
P(3IL) = 1/10
P(4IL) = 1/10
P(5IL) = 1/10
P(6IL) = 1/2

af =P |y =D a} a4

ﬂfk = Z,‘ ak,/'P(X/'+

/+1 = I)ﬂ;

P )X) = S ef loot

Px)

RS
Pix)

= e«o’ (=98¢ — .0570)
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What is the probability of a sels
hidden state prediction? s

x=12,1,5,6,2,1,6,2,4
U (-[62%)
pLYe = AL > _
v - URALSY]
pnln = -
—_— P L){)
() = sl
y (1= te()H %)
= ng[-(&.n) o e
a?l—um) +tw =) — —
t
P ) = v b67
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Posterior decoding :
e We can now calculate . .
P =1
P(yfk:1|X): ()/r ):afﬂf
P(X) P(X)
e Then, we can ask
e What is the most likely state at position t of sequence x:
k' =argmax, Py} =1|x)
e Note that this is an MPA of a single hidden state,
what if we want to a MPA of a whole hidden state sequence?
e Posterior Decoding: {yrkf* =1:¥=1...T }
e This is different from MPA of a whole sequence of hidden
states x|y PCxy)
e This can be understood as bit error rate 9| 9 o=
vs. word error rate Example: E— S
MPA of X ? Z O o3
MPA of (X, Y) ? 7 7 0.3
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Computational Complexity and
implementation details

\
e What is the running time, and space required, for Forward,

and Backward? _
af = p(x, |y = 1)2 10

ﬁrk = Zak,/'p(xfd |}’r/<1 :l)ﬂr/d
[/fk - p(Xf | yfk = 1) maxi a/,/(Vfil
Time: O(KN); Space: O(KN).

e Useful implementation technique to avoid underflows
e Viterbi: sum of logs
e Forward/Backward: rescaling at each position by multiplying by a constant
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