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Computational GenomicsComputational Genomics

1010--810/02810/02--710, Spring 2009710, Spring 2009

Gene Finding and HMMGene Finding and HMM

Eric XingEric Xing

Lecture 5, January 28, 2009

Reading: Durbin Chap 3, 
class assignment
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Probability of a Parse
What is a parse?
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How to score a parse?



2

© Eric Xing @ CMU, 2005-2009 3

Probability of a Parse
Given a sequence x = x1……xT

and a parse y = y1, ……, yT,
To find how likely is the parse:
(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

=

Marginal probability:

Posterior probability:
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FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

The Dishonest Casino Model
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Example: the Dishonest Casino
Let the sequence of rolls be:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Then, what is the likelihood of
y = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs a0Fair = ½, aoLoaded = ½)

½ × P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) =

½ × (1/6)10 × (0.95)9 = .00000000521158647211 = 5.21 × 10-9
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Example: the Dishonest Casino
So, the likelihood the die is fair in all this run
is just 5.21 × 10-9

OK, but what is the likelihood of
π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, 

Loaded, Loaded, Loaded?

½ × P(1 | Loaded) P(Loaded | Loaded) … P(4 | Loaded) =

½ × (1/10)8 × (1/2)2 (0.95)9 = .00000000078781176215 = 0.79 × 10-9

Therefore, it is after all 6.59 times more likely that the die is fair 
all the way, than that it is loaded all the way
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Example: the Dishonest Casino
Let the sequence of rolls be:

x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

Now, what is the likelihood π = F, F, …, F?
½ × (1/6)10 × (0.95)9 = 0.5 × 10-9, same as before

What is the likelihood y = L, L, …, L?

½ × (1/10)4 × (1/2)6 (0.95)9 = .00000049238235134735 = 5 × 10-7

So, it is 100 times more likely the die is loaded
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Applications of HMMs
Some early applications of HMMs

finance, but we never saw them  
speech recognition  
modelling ion channels 

In the mid-late 1980s HMMs entered genetics and molecular 
biology, and they are now firmly entrenched.

Some current applications of HMMs to biology
mapping chromosomes
aligning biological sequences
predicting sequence structure
inferring evolutionary relationships
finding genes in DNA sequence
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The HMM Algorithms
Questions:

Decoding: What is the most likely DNA parsing? Viterbi
Evaluation: What is the probability of the observed 
sequence? Forward
Decoding: What is the probability that the state of the 3rd 
position is Bk or gene, given the observed sequence?
Forward-Backward
Learning: Under what parameterization are the observed 
sequences most probable? Baum-Welch (EM)
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Decoding
GIVEN x = x1, …, xT, we want to find y = y1, …, yT, such that 
P(y|x) is maximized:

y* = argmaxy P(y|x) = argmaxπ P(y,x) 
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Viterbi decoding
GIVEN x = x1, …, xT, we want to find y = y1, …, yT, such that 
P(y|x) is maximized:

y* = argmaxy P(y|x) = argmaxπ P(y,x) 
Let

= Probability of most likely sequence of states ending at state yt = k
The recursion:

Underflows are a significant problem

These numbers become extremely small – underflow
Solution: Take the logs of all values:
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The Viterbi Algorithm – derivation
Define the viterbi probability:
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The Viterbi Algorithm 
Input: x = x1, …, xT, 

Initialization:

Iteration:

Termination:

TraceBack:
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The HMM Algorithms
Questions:

Decoding: What is the most likely DNA parsing? Viterbi
Evaluation: What is the probability of the observed 
sequence? Forward
Decoding: What is the probability that the state of the 3rd 
position is Bk or gene, given the observed sequence?
Forward-Backward
Learning: Under what parameterization are the observed 
sequences most probable? Baum-Welch (EM)
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The likelihood of a sequence
We want to calculate P(x), the likelihood of x, given the HMM

Sum over all possible ways of generating x:

Complexity?

Why useful?
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The Forward Algorithm
We want to calculate P(x), the likelihood of x, given the HMM

Sum over all possible ways of generating x:

To avoid summing over an exponential number of paths y, define

(the forward probability)

The recursion:
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The Forward Algorithm –
derivation

Compute the forward probability:
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The Forward Algorithm
We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:
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The Backward Algorithm
We want to compute                      ,

the posterior probability distribution on the                   
t th position, given x

We start by computing

The recursion:
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The Backward Algorithm –
derivation

Define the backward probability:
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The Backward Algorithm
We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:
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Example:

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2
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x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4
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Alpha (actual)
0.0833    0.0500
0.0136    0.0052
0.0022    0.0006
0.0004    0.0001
0.0001    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000

Beta (actual)
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0000    0.0000
0.0001    0.0001
0.0007    0.0006
0.0045    0.0055
0.0264    0.0112
0.1633    0.1033
1.0000    1.0000

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4
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Alpha (logs)
-2.4849   -2.9957
-4.2969   -5.2655
-6.1201   -7.4896
-7.9499   -9.6553
-9.7834  -10.1454

-11.5905  -12.4264
-13.4110  -14.6657
-15.2391  -15.2407
-17.0310  -17.5432
-18.8430  -19.8129

Beta (logs)
-16.2439  -17.2014
-14.4185  -14.9922
-12.6028  -12.7337
-10.8042  -10.4389
-9.0373   -9.7289
-7.2181   -7.4833
-5.4135   -5.1977
-3.6352   -4.4938
-1.8120   -2.2698

0         0

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4
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What is the probability of a 
hidden state prediction?

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4
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Posterior decoding
We can now calculate

Then, we can ask
What is the most likely state at position t of sequence x:

Note that this is an MPA of a single hidden state, 
what if we want to a MPA of a whole hidden state sequence?

Posterior Decoding: 

This is different from MPA of a whole sequence of hidden 
states

This can be understood as bit error rate
vs. word error rate
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Example:
MPA of X ?
MPA of (X, Y) ?

x y P(x,y)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3
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Computational Complexity and 
implementation details

What is the running time, and space required, for Forward, 
and Backward?

Time:   O(K2N); Space: O(KN).

Useful implementation technique to avoid underflows
Viterbi: sum of logs
Forward/Backward:   rescaling at each position by multiplying by a constant
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