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Please correct
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10-810-09s-announce@cs should be 10810-09s-
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TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

Hierarchical structure of the 
genome
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The DNA strand has a chemical 
polarity
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Writing DNA sequence
One strand is written by listing its bases in 5' to 3' order

5' ACCGTTACT 3'

Each strand uniquely determines the complementary strand, 
which runs in the opposite direction:

5' ACCGTTACT 3'
3' TGGCAATGA 5'

So the reverse complement of ACCGTTACT is written 
TGGCAATGA
In general people write one strand and in 5' to 3' order 

This is the ordering that a polymerase or a ribosome scan the sequence
Establishes a common standard for genome nomenclatures 
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Gene structure in prokaryotes
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Gene structure in prokaryotes
A protein-coding gene consists of the following, in 5’ to 3’
order

An upstream regulatory region, generally < 50 bp, which turns transcription on 
and off.
A transcription start site where RNA polymerase incorporates 1st nucleotide 
into nascent mRNA.
A 5’ untranslated region, generally < 30bp, that is transcribed into mRNA but not 
translated.
The translation start site marking the start of the coding region. Consists of a 
start codon, which causes the start of translation
The coding region of the gene (typically=1000bp), consisting of a sequence of 
codons.
The translation stop site marking the end of coding region. Consists of a stop 
codon, which causes the release of the polypeptide at conclusion of translation. 
A 3’ untranslated region, transcribed into RNA but not translated.
The transcription stop site marking where the RNA polymerase concludes 
transcription.
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The E. coli chromosome

The bacterial genome
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Gene structure in eukaryotes
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Gene structure in eukaryotes
A typical gene consist of the following, in 5’ to 3’ order

An upstream regulatory region, often larger and more complex than in 
prokaryotes, parts of which may be several thousand bases or more upstream of 
transcription start site.
A transcription start site.
A 5’ untranslated region, often larger than in prokaryotes, and which may 
include sequences playing a role in translation regulation.
The coding sequence, which unlike the case with prokaryotes, may be 
interrupted by non—coding regions called introns. These are spliced out of the 
transcript to form the mature mRNA (and sometimes the splicing can occur in 
more than one way).
The translation stop site.
A 3’ untranslated region, which may contain sequences involved in translational 
regulation.
A polyadenylation (playA) signal, which indicates to the cell’s RNA processing 
machinery that the RNA transcript is to be cleaved and a poly-adenine sequence 
(AAAAAA…) tail appended to it

The transcription stop site.
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Alternative splicing
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Eukaryotic genome structure
Genes may be transcribed in either direction, and can overlap
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Probabilities on Sequences
Let S be the space of DNA or protein sequences of a given 
length n. Here are some simple assumptions for assigning 
probabilities to sequences:

Equal frequency assumption: All residues are equally probable at any position; 
i.e., P(Xi,r)=P(Xi,q) for any two residues r and q, for all i. 

this implies that P(Xi,r)=θr=1/|A|, where A is the residue alphabet (1/20 for proteins, 1/4 for 
DNA)

Independence assumption: whether or not a residue occurs at a position is 
independent of what residues are present at other positions. 

probability of a sequence

P(X1, X2, ..., XN) = θr ·θr· , ..., · θr= θr
N

© Eric Xing @ CMU, 2005-2009 14

Failure of Equal Frequency 
Assumption for (real) DNA

For most organisms, the nucleotides composition is significantly
different from 0.25 for each nucleotide, e.g., 

H, influenza .31 A, .19 C, .19 G, .31 T
P. aeruginosa .17 A, .33 C, .33 G, .17 T
M. janaschii .34 A, .16 C, .16 G, .34 T
S. cerevisiae .31 A, .19 C, .19 G, .31 T
C. elegans .32 A, .18 C, .18 G, .32 T
H. sapiens .30 A, .20 C, .20 G, .30 T

Note symmetry: A≅T, C≅G, even thought we are counting 
nucleotides on just one strand. Explanation:

although individual biological features may have non-symmetric composition, usually features 
are distributed ~ randomly w.r.t. strand, so get symmetry. 
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General Hypothesis Regarding 
Unequal Frequency

Neutralist hypothesis: mutation bias (e.g., due to 
nucleotide pool composition)

Selectionist hypothesis: natural selection bias
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Probabilistic segmentation 
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Models for Homogeneous 
Sequence Entities

Probabilities models for long "homogeneous" sequence 
entities, such as:

exons (ORFs)
introns
inter-genetic background
protein coiled-coil  (other other structural) regions

Assumptions:
no consensus, no recurring string patterns 
have distinct but uniform residue-composition (i.e., same for all sites)
every site in the entity are iid samples from the same model

The model: 
a single multinomial: X ~ Mul(1,θ)
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The Multinomial Model for 
Sequence

For a site i, define its residue identity to be a multinomial random 
vector:

The probability of an observation si=A (i.e, xi,A=1) at site i:  

The probability of a sequence (x1, x2,..., xN):
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Maximum likelihood estimation: 
multinomial parameters:

Bayesian estimation:
Dirichlet distribution:  

Posterior distribution of θ under the Dirichlet prior:

Posterior mean estimation:
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Parameter Estimation
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Limitations
non-uniform residue composition (e.g., CG rich regions) 
non-coding structural regions (MAR, centromere, telomere)
di- or tri- nucleotide couplings
estimation bias
evolutionary constrains 

Models for Homogeneous 
Sequence Entities, ctd
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Site Models
Probabilities models for short sequences, such as:

splice sites
translation start sites
promoter elements
protein "motifs"

Assumptions:
different examples of sites can be aligned without indels (insertions/deletions) 
such that tend to have similar residues in same positions
drop equal frequency assumption; instead have position-specific frequencies
retain independence assumption (for now)   
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Site Models ctd.
Applies to short segments (<30 residues) where precise 
residue spacing is structurally or functionally important, and 
certain positions are highly conserved

DNA/RNA sequence binding sites for a single protein or RNA molecule
Protein internal regions structurally constrained due to folding requirements; or 
surface regions functionally constrained because bind certain ligands

Example: C. elegans splice sites

5' ss



12

© Eric Xing @ CMU, 2005-2009 23

Nucleotide Counts for 8192 C. 
elegans 3' Splice Sites
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3' Splice Site - C. elegans



13

© Eric Xing @ CMU, 2005-2009 25

5' Splice Sites - C. elegans

© Eric Xing @ CMU, 2005-2009 26

Limitation of Homogeneous Site 
Models

Failure to allow indels means variably spaced subelements
are "smeared", e.g.:

branch site, for 3' splice sites;
coding sequences, for both 3' and 5' sites

Independence assumption
usually OK for protein sequences (after correcting for evolutionary relatedness) 
often fails for nucleotide sequences; examples:

5' sites (Burge-Karlin observation);
background (dinucleotide correlation, e.g., GC repeats).
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Why Correlation?
Splicing involves pairing of a small RNA with the transcription 
at the 5' splice site.
The RNA is complementary to the 5' srRNA consensus 
sequence.
A mismatch at position -1 tends to destabilize the pairing, and 
makes it more important for other positions to be correctly 
paired.
Analogy can be easily drew for other DNA and protein motifs.   
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Comparing Alternative 
Probability Models

We will want to consider more than one model at a time, in 
the following situations:

To differentiate between two or more hypothesis about a sequence
To generate increasingly refined probability models that are progressively more 
accurate

First situation arises in testing biological assertion, e.g., "is 
this a coding sequence?" Would compare two models:

1. one associated with a hypothesis Hcoding which attaches to a sequence the 
probability of observing it under experiment of drawing a random coding 
sequence from the genome

2. one associate with a hypothesis Hnoncoding which attaches to a sequence the 
probability of observing it under experiment of drawing a random non-coding 
sequence from the genome.  
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Likelihood Ratio Test
The posterior probability of a model given data is:

P(M|D) = P(D|M)P(M)/P(D)

Given that all models are equally probable a priori, the 
posterior probability ratio of two models given the same data 
reduce to a likelihood ratio:

the numerator and the denominator may both be very small! 

The log likelihood ratio (LLR) is the logarithm of the likelihood 
ratio:
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The Hidden Markov Models The Hidden Markov Models 
for sequence parsingfor sequence parsing
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Given un-annotated sequences, 
delineate:

transcription initiation site,
exon-intron boundaries,
transcription termination site,
a variety of other motifs: promoters, polyA
sites, branching sites, etc.

The hidden Markov model (HMM)

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC
CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT
GGTCATGCAAACAACGCACAGAACAAATTAATTTTCAAAT
TGTTCAATAAATGTCCCACTTGCTTCTGTTGTTCCCCCCT
TTCCGCTAGCGGAATTTTTTATATTCTTTTGGGGGCGCTC
TTTCGTTGACTTTTCGAGCACTTTTTCGATTTTCGCGCGC
TGTCGAACGGCAGCGTATTTATTTACAATTTTTTTTGTTA
GCGGCCGCCGTTGTTTGTTGCAGATACACAGCGCACACAT
ATAAGCTTGCACACTGATGCACACACACCGACACGTTGTC
ACCGAAATGAACGGGACGGCCATATGACTGGCTGGCGCTC
GGTATGTGGGTGCAAGCGAGATACCGCGATCAAGACTCGA
ACGAGACGGGTCAGCGAGTGATACCGATTCTCTCTCTTTT
GCGATTGGGAATAATGCCCGACTTTTTACACTACATGCGT
TGGATCTGGTTATTTAATTATGCCATTTTTCTCAGTATAT
CGGCAATTGGTTGCATTAATTTTGCCGCAAAGTAAGGAAC
ACAAACCGATAGTTAAGATCCAACGTCCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT
TTTTCAACCCAGCACCGCTCGTCTCTTCCTCTTCTTAACG
TTAGCATTCGTACGAGGAACAGTGCTGTCATTGTGGCCGC
TGTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC
TTTTCGGATATTATTGTCATTTGCCTTTAATCTTGTGTAT
TTATATGGATGAAACGTGCTATAATAACAATGCAGAATGA
AGAACTGAAGAGTTTCAAAACCTAAAAATAATTGGAATAT
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT
GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA
CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA
ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA
TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTAGAAGTCCGGCTGAAAG
CCCCAGCAGCTATAGCCGATATCTATATGATTTAAACTCT
TGTCTGCAACGTTCTAATAAATAAATAAAATGCAAAATAT
AACCTATTGAGACAATACATTTATTTTATTTTTTTATATC
ATCAATCATCTACTGATTTCTTTCGGTGTATCGCCTAATC
CATCTGTGAAATAGAAATGGCGCCACCTAGGTTAAGAAAA
GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT

Gene Finding
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A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... The sequence:

The underlying source:

Ploy NT, 

genomic entities, 

sequence of rolls, 

dice,

Hidden Markov Models
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Example: The Dishonest Casino

A casino has two dice:
Fair die
P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
Loaded die
P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-&-forth 
between fair and loaded die once every 
20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, 

maybe with loaded die)
4. Highest number wins $2

© Eric Xing @ CMU, 2005-2009 34

Puzzles Regarding the Dishonest 
Casino 

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION
How likely is this sequence, given our model of how the casino 
works?

This is the EVALUATION problem in HMMs

What portion of the sequence was generated with the fair die, and 
what portion with the loaded die?

This is the DECODING question in HMMs

How “loaded” is the loaded die? How “fair” is the fair die? How often 
does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs
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A Stochastic Generative Model
Observed sequence:

Hidden sequence (a parse or segmentation):

A

B

1 4 3 6 6 4

BA A ABB

© Eric Xing @ CMU, 2005-2009 36

Definition (of HMM)
Observation spaceObservation space

Alphabetic set:
Euclidean space:

Index set of hidden statesIndex set of hidden states

Transition probabilitiesTransition probabilities between any two statesbetween any two states

or

Start probabilitiesStart probabilities

Emission probabilitiesEmission probabilities associated with each stateassociated with each state

or in general:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 
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Probability of a Parse
What is a parse?

1245526462146146136136661664661636616366163616515615115146123562344

How to score a parse?
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Probability of a Parse
Given a sequence x = x1……xT

and a parse y = y1, ……, yT,
To find how likely is the parse:
(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

=

Marginal probability:

Posterior probability:
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FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

The Dishonest Casino Model
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Example: the Dishonest Casino
Let the sequence of rolls be:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Then, what is the likelihood of
y = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs a0Fair = ½, aoLoaded = ½)

½ × P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) =

½ × (1/6)10 × (0.95)9 = .00000000521158647211 = 5.21 × 10-9
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Example: the Dishonest Casino
So, the likelihood the die is fair in all this run
is just 5.21 × 10-9

OK, but what is the likelihood of
π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, 

Loaded, Loaded, Loaded?

½ × P(1 | Loaded) P(Loaded | Loaded) … P(4 | Loaded) =

½ × (1/10)8 × (1/2)2 (0.95)9 = .00000000078781176215 = 0.79 × 10-9

Therefore, it is after all 6.59 times more likely that the die is fair 
all the way, than that it is loaded all the way
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Example: the Dishonest Casino
Let the sequence of rolls be:

x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

Now, what is the likelihood π = F, F, …, F?
½ × (1/6)10 × (0.95)9 = 0.5 × 10-9, same as before

What is the likelihood y = L, L, …, L?

½ × (1/10)4 × (1/2)6 (0.95)9 = .00000049238235134735 = 5 × 10-7

So, it is 100 times more likely the die is loaded
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Applications of HMMs
Some early applications of HMMs

finance, but we never saw them  
speech recognition  
modelling ion channels 

In the mid-late 1980s HMMs entered genetics and molecular 
biology, and they are now firmly entrenched.

Some current applications of HMMs to biology
mapping chromosomes
aligning biological sequences
predicting sequence structure
inferring evolutionary relationships
finding genes in DNA sequence
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Typical structure of a gene
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E0 E1 E2

E

poly-A

3'UTR5'UTR

tEi

Es

I0 I1 I2

intergenic
region

Forward (+) strand
Reverse (-) strand

Forward (+) strand
Reverse (-) strand

promoter

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC
CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT
GGTCATGCAAACAACGCACAGAACAAATTAATTTTCAAAT
TGTTCAATAAATGTCCCACTTGCTTCTGTTGTTCCCCCCT
TTCCGCTAGCGGAATTTTTTATATTCTTTTGGGGGCGCTC
TTTCGTTGACTTTTCGAGCACTTTTTCGATTTTCGCGCGC
TGTCGAACGGCAGCGTATTTATTTACAATTTTTTTTGTTA
GCGGCCGCCGTTGTTTGTTGCAGATACACAGCGCACACAT
ATAAGCTTGCACACTGATGCACACACACCGACACGTTGTC
ACCGAAATGAACGGGACGGCCATATGACTGGCTGGCGCTC
GGTATGTGGGTGCAAGCGAGATACCGCGATCAAGACTCGA
ACGAGACGGGTCAGCGAGTGATACCGATTCTCTCTCTTTT
GCGATTGGGAATAATGCCCGACTTTTTACACTACATGCGT
TGGATCTGGTTATTTAATTATGCCATTTTTCTCAGTATAT
CGGCAATTGGTTGCATTAATTTTGCCGCAAAGTAAGGAAC
ACAAACCGATAGTTAAGATCCAACGTCCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT
TTTTCAACCCAGCACCGCTCGTCTCTTCCTCTTCTTAACG
TTAGCATTCGTACGAGGAACAGTGCTGTCATTGTGGCCGC
TGTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC
TTTTCGGATATTATTGTCATTTGCCTTTAATCTTGTGTAT
TTATATGGATGAAACGTGCTATAATAACAATGCAGAATGA
AGAACTGAAGAGTTTCAAAACCTAAAAATAATTGGAATAT
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT
GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA
CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA
ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA
TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTAGAAGTCCGGCTGAAAG
CCCCAGCAGCTATAGCCGATATCTATATGATTTAAACTCT
TGTCTGCAACGTTCTAATAAATAAATAAAATGCAAAATAT
AACCTATTGAGACAATACATTTATTTTATTTTTTTATATC
ATCAATCATCTACTGATTTCTTTCGGTGTATCGCCTAATC
CATCTGTGAAATAGAAATGGCGCCACCTAGGTTAAGAAAA
GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT

4
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GENSCAN (Burge & Karlin)
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Some Facts About Human Genes 
Comprise about 3% of the genome
Average gene length: ~ 8,000 bp
Average of 5-6 exons/gene
Average exon length: ~200 bp
Average intron length: ~2,000 bp
~8% genes have a single exon

Some exons can be as small as 1 or 3 bp.
HUMFMR1S is not atypical: 17 exons 40-60 bp long, comprising 3% of a 67,000 
bp gene
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The Idea Behind a GHMM 
GeneFinder

States represent standard gene 
features: intergenic region, exon, intron, 
perhaps more (promotor, 5’UTR, 
3’UTR, Poly-A,..).  

Observations embody state-dependent 
base composition, dependence, and 
signal features.

In a GHMM, duration must be included 
as well.

Finally, reading frames and both 
strands must be dealt with.  

E0 E1 E2

E

poly-A

3'UTR5'UTR

tEi

Es

I0 I1 I2

intergenic
region

Forward (+) strand
Reverse (-) strand

Forward (+) strand
Reverse (-) strand

promoter
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The HMM Algorithms
Questions:

Decoding: What is the most likely DNA parsing? Viterbi
Evaluation: What is the probability of the observed 
sequence? Forward
Decoding: What is the probability that the state of the 3rd 
position is Bk or gene, given the observed sequence?
Forward-Backward
Learning: Under what parameterization are the observed 
sequences most probable? Baum-Welch (EM)
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Decoding
GIVEN x = x1, …, xT, we want to find y = y1, …, yT, such that 
P(y|x) is maximized:

y* = argmaxy P(y|x) = argmaxπ P(y,x) 
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Viterbi decoding
GIVEN x = x1, …, xT, we want to find y = y1, …, yT, such that 
P(y|x) is maximized:

y* = argmaxy P(y|x) = argmaxπ P(y,x) 
Let

= Probability of most likely sequence of states ending at state yt = k
The recursion:

Underflows are a significant problem

These numbers become extremely small – underflow
Solution: Take the logs of all values:

),,...,,,...,(max ,--},...{ -
1111111

== k
ttttyy

k
t yxyyxxPV

t

i
tkii

k
tt

k
t VayxpV 11 −== ,max)|(

x1 x2 x3 ……………………...……..xN

State 1

2

K

x1 x2 x3 ……………………...……..xN

State 1

2

K

x1 x2 x3 ……………………...……..xN

State 1

2

K

x1 x2 x3 ……………………...……..xN

State 1

2

K

Vi(t)
k

tV

tttt xyxyyyyyytt bbaayyxxp ,,,,),,,,,( LLKK
11121111 −

= π

( )( )i
tkii

k
tt

k
t VayxpV 11 −++== ,logmax)|(log



26

© Eric Xing @ CMU, 2005-2009 51

The Viterbi Algorithm – derivation
Define the viterbi probability:
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The Viterbi Algorithm 
Input: x = x1, …, xT, 

Initialization:

Iteration:

Termination:

TraceBack:
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Time complexity of Viterbi


