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DNA sequencing and genome assemblyDNA sequencing and genome assembly

Eric XingEric Xing

Lecture 3, January 21, 2009

Reading: class assignment
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DECODING the Genome
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What & Why?
“Sequencing” means finding the order of nucleotides on a piece  of 
DNA
Nucleotide order determines 

amino acid composition, and by extension, protein structure and function (proteomics)
Transcription factor binding sites and their organizations, and thereby, gene expression 
regulation
…

An alteration in a DNA sequence can lead to 
altered regulatory program, 
altered protein structure/function, 
and therefore, phenotypes or harmful effects in a plant or animal

Understanding a particular DNA sequence can 
shed light on a genetic condition and offer hope for the eventual development of treatment of 
diseases
environmental, agricultural applications
forensic applications
…
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DNA Sequencing – Overview

Chain-termination methods (a.k.a. Dideoxy
termination method)

Predominant method based on Sanger’s original idea (1975)
(Nobel price in Chemistry, 1980, his second Noble price! 
Do you know how he got his first NP?)
Key ideas:

Terminate elongation via dideoxynucleotides
Size separation via Gel electrophoresis 
(now Capillary electrophoresis)

Whole genome strategies
Physical mapping
Walking

1975

2015
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Dideoxy termination method
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Dideoxy termination method 
(con’d)
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DNA Sequencing
Goal:
Find the complete sequence of A, C, G, T’s in DNA, at a Genome 
scale

Challenge:
There is no machine that takes long DNA as an input, and gives the 
complete sequence as output

Can only sequence ~500 letters at a time
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DNA Sequencing – vectors

+ =

DNA

Shake

DNA fragments

Vector
Circular genome
(bacterium, plasmid)

Known
location

(restriction
site)
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Different types of vectors

> 300,000
Not used much 

recently
YAC (Yeast Artificial Chromosome)

70,000-300,000BAC (Bacterial Artificial 
Chromosome)

40,000Cosmid

2,000-10,000
Can control the size

Plasmid

Size of insertVECTOR

Different vector can be used to carry DNA pieces of different lengths 
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Method to sequence longer 
genome regions
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Method to sequence longer 
genome regions

cut many times 
at random 
(Shotgun)

genomic segment

Get one or two reads 
from each segment

~500 bp ~500 bp
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Cover region with ~7-fold redundancy (7X)

Overlap reads and extend to reconstruct the original 
genomic region

reads

Reconstructing the Sequence 
(Fragment Assembly)
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Definition of Coverage

Length of genomic segment: L
Number of reads: n
Length of each read: l

Definition: Coverage C = n l / L

How much coverage is enough?

Lander-Waterman model:
Assuming uniform distribution of reads, C=10 results in 1 gapped
region /1,000,000 nucleotides

C
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Are we done?
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Difficulties
How to fragment?
How to efficiently find overlaps?
What if there are repeats in the genome?
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Repeats
Low-Complexity DNA (e.g. ATATATATACATA…)

Microsatellite repeats (a1…ak)N where k ~ 3-6
(e.g. CAGCAGTAGCAGCACCAG)

Transposons
SINE (Short Interspersed Nuclear Elements),  e.g., ALU: ~300-long, 106 copies
LINE (Long Interspersed Nuclear Elements), ~4000-long, 200,000 copies
LTR retroposons (Long Terminal Repeats (~700 bp) at each end), cousins of HIV

Gene Families genes duplicate & then diverge (paralogs)

Recent duplications ~100,000-long, very similar copies

Bacterial genomes: 5%
Mammals: 50%
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What can we do about repeats?
Two main approaches:

Cluster the reads

Link the reads
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Sequencing and Fragment Assembly
AGTAGCACAGA
CTACGACGAGA
CGATCGTGCGA
GCGACGGCGTA
GTGTGCTGTAC
TGTCGTGTGTG
TGTACTCTCCT 3x109 nucleotides

C R D

ARB, CRD

or

ARD, CRB ?

A R B
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1. Hierarchical – Clone-by-clone
i. Break genome into many long pieces
ii. Map each long piece onto the genome
iii. Sequence each piece with shotgun

Example: Yeast, Worm, Human, Rat

2. Online version of (1) – Walking
i. Break genome into many long pieces
ii. Start sequencing each piece with shotgun
iii. Construct map as you go

Example: Rice genome

3. Whole genome shotgun
One large shotgun pass on the whole genome

Example: Drosophila, Human (Celera), 
Neurospora, Mouse, Rat, Dog

Strategies for whole-genome 
sequencing
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Whole Genome Shotgun

Break up the entire genome 
into pieces
Sequence ends, and 
assemble using a computer
LW statistics & Repeats 
argue against the success 
of such an approach
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cut many times at 
random

genome

forward-reverse paired 
reads

plasmids (2 – 10 Kbp)

cosmids (40 Kbp) known dist

~500 bp~500 bp

Whole Genome Shotgun 
Sequencing
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Steps to Assemble a Genome

1.  Find overlapping reads

4.  Derive consensus sequence ..ACGATTACAATAGGTT..

2.  Merge some “good” pairs of reads 
into longer contigs

3.  Link contigs to form supercontigs

Some Terminology

read a 500-900 long word that comes 
out of sequencer

mate pair a pair of reads from two ends
of the same insert fragment

contig a contiguous sequence formed 
by several overlapping reads
with no gaps

supercontig an ordered and oriented set
(scaffold) of contigs, usually by mate

pairs

consensus sequence derived from the
sequene multiple alignment of reads

in a contig
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Given a pair of fragments 
s1 and s2, do they belong 
together?

Yes, if a prefix of s2
matches a suffix of s1

How would you compute 
such a match?

1. Find Overlapping Reads
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1. Find Overlapping Reads 
(cont’d)

S[i,j] = optimum score of 
an alignment of s1[1..i] 
against a suffix of s2[1..j]

i

j

The best prefix-suffix 
alignment is given by:

Maxi {S[i,n] }
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1. Find Overlapping Reads 
(cont’d)

Compute the best prefix-
suffix alignments 
between each pair of 
fragments.
Keep the “high-scoring”
ones as evidence of true 
overlap.
What is the problem?
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1. Find Overlapping Reads 
(cont’d)

Consider the number of fragments. The LW statistics say 
that we need good coverage (c=8, 10) to get most of the 
base-pairs. 

G = 3000Mb, L=500
Coverage LN/G = 10
N = 10*3*109/500 = 6*107

Number of comparisons needed = 3.6 * 1015

Not good! (Only a small fraction are true overlaps)
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1. Find Overlapping Reads 
(cont’d)

k-mer based overlap

Consider a k-bp sequence (k ~ 
24)

Expected number of occurrences 
in the genome
3*109*4-24 = 8*10-6

A 24-bp sequence appears is 
unique to the genome!
Two overlapping sequences 
should share a 24-mer
Two non-overlapping 

24bp
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1. Find Overlapping Reads 
(cont’d)

K-mer S.id
Pos.

Sorting k-mers
Build a list of k-mers that appear 
in the sequences and their reverse 
complements
Create a record with 4 entries:

K-mer
Sequence number
Position in the sequence
Reverse complementation flag

Sort a vector of these according to 
k-mer
How many records per k-mer are 
expected?
If number of records exceeds 
threshold, discard (why?)
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1. Find Overlapping Reads 
(cont’d)

Alignment
Find pairs of reads sharing a k-mer, k ~ 24
Extend to full alignment – throw away if not >98% similar

Coalesce k-mer hits into longer, gap-free partial alignments.
These extended k-mer hits are saved.
For each pair of sequences, form a directed graph. 
For each maximal path in the graph, construct an alignment.
Refine alignment via banded DP

TAGATTACACAGATTAC

TAGATTACACAGATTAC
|||||||||||||||||

T GA

TAGA
| ||

TACA

TAGT
||  
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1. Find Overlapping Reads 
(cont’d)

Alignment
Find pairs of reads sharing a k-mer, k ~ 24
Extend to full alignment – throw away if not >98% similar

Caveat: repeats
A k-mer that occurs N times, causes O(N2) read/read comparisons
ALU k-mers could cause up to 1,000,0002 comparisons

Solution:
Discard all k-mers that occur “too often”
Set cutoff to balance sensitivity/speed tradeoff, according to genome at hand and computing 
resources available

TAGATTACACAGATTAC

TAGATTACACAGATTAC
|||||||||||||||||

T GA

TAGA
| ||

TACA

TAGT
||  
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1. Find Overlapping Reads 
(cont’d)

Create local multiple alignments from the overlapping reads

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG TTACACAGATTATTGA
TAGATTACACAGATTACTGA

© Eric Xing @ CMU, 2005-2009 32

1. Find Overlapping Reads 
(cont’d)

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAGATTACACAGATTATTGA
TAGATTACACAGATTACTGA
TAG-TTACACAGATTACTGA

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA
TAG-TTACACAGATTATTGA
TAGATTACACAGATTACTGA
TAG-TTACACAGATTATTGA

insert A

replace T with C
correlated errors—
probably caused by repeats
⇒ disentangle overlaps

TAGATTACACAGATTACTGA
TAGATTACACAGATTACTGA

TAG-TTACACAGATTATTGA

TAGATTACACAGATTACTGA

TAG-TTACACAGATTATTGA
In practice, error correction removes 
up to 98% of the errors

Correct errors using multiple alignment
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We want to merge reads up to potential repeat boundaries

repeat region

Unique Contig

Overcollapsed Contig

2. Merge Reads into Contigs
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2. Merge Reads into Contigs

Note:
of course, we don’t
know the “color” of
these nodes

Reads that come
from two regions of
the genome (blue
and red) that contain
the same repeat

Overlap graph:
Nodes: reads r1…..rn

Edges: overlaps (ri, rj, shift, orientation, score)
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2. Merge Reads into Contigs

Remove transitively inferable overlaps
If read r overlaps to the right reads r1, r2, and r1 overlaps 
r2, then (r, r2) can be inferred by (r, r1) and (r1, r2)

r r1 r2 r3
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2. Merge Reads into Contigs
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Repeats, errors, and contig 
lengths

Repeats shorter than read length are easily resolved
Read that spans across a repeat disambiguates order of flanking regions

Repeats with more base pair diffs than sequencing error rate are OK
We throw overlaps between two reads in different copies of the repeat

To make  the genome appear less repetitive, try to:
Increase read length
Decrease sequencing error rate

Role of error correction:
Discards up to 98% of single-letter sequencing errors

decreases error rate 
⇒ decreases effective repeat content 
⇒ increases contig length
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Ignore non-maximal reads
Merge only maximal reads into contigs

repeat region

2. Merge Reads into Contigs
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2. Merge Reads into Contigs

Insert non-maximal reads whenever unambiguous
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2. Merge Reads into Contigs

sequencing 
error

repeat boundary???

b
a

a

b

…

Ignore “hanging” reads, when detecting repeat boundaries



21

© Eric Xing @ CMU, 2005-2009 41

Overlap graph after forming 
contigs

Unitigs:
Gene Myers, 95
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Too dense
⇒ Overcollapsed

Inconsistent links 
⇒ Overcollapsed?

Normal density

3. Link Contigs into Supercontigs
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Find all links between unique contigs

Connect contigs incrementally, if ≥ 2 links

supercontig
(aka scaffold)

3. Link Contigs into Supercontigs
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Fill gaps in supercontigs with paths of repeat contigs

3. Link Contigs into Supercontigs
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Fill gaps in supercontigs with paths of repeat contigs

3. Link Contigs into Supercontigs
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Define G = ( V, E )
V :=  contigs
E := ( A, B ) such that d( A, B ) < C 

Reason to do so: Efficiency; full shortest paths cannot be computed

d ( A, B )
Contig A

Contig B

3. Link Contigs into Supercontigs
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Define T: contigs linked to either A or B

Fill gap between A and B if there is a path in G passing only from 
contigs in T

Contig A Contig B

3. Link Contigs into Supercontigs
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4. Derive Consensus Sequence

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting

(Alternative: take maximum-quality letter)
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Simulated Whole Genome 
Shotgun

Known genomes
Flu, yeast, fly, Human chromosomes 21, 22

Make “realistic” shotgun reads 

Run  assembly program

Align output with genome and compare
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Making a Simulated Read

Simulated reads have error patterns taken from random real reads

ERRORIZER

Simulated read

artificial 
shotgun read

real read
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Assembly Progression
(Macro View)
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Some Assemblers

PHRAP
Early assembler, widely used, good model of read errors
Overlap O(n2) → layout (no mate pairs) → consensus 

Celera
First assembler to handle large genomes (fly, human, mouse)
Overlap → layout → consensus

Arachne
Public assembler (mouse, several fungi)
Overlap → layout → consensus

Phusion
Overlap → clustering → PHRAP → assemblage → consensus

Euler
Indexing → Euler graph → layout by picking paths → consensus
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History of WGA

1982: λ-virus, 48,502 bp 

1995: h-influenzae, 1 Mbp  

2000: fly, 100 Mbp

2001 – present
human (3Gbp), mouse (2.5Gbp), rat*, chicken, dog, chimpanzee, several fungal genomes

Gene Myers

Let’s sequence 
the human 

genome with the 
shotgun strategy

That is 
impossible, and a 
bad idea anyway Phil Green

1997
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Sequencing by MALDI-TOF Mass Spectrometry
Sequencing by Hybridization
Pyrosequencing
Atomic-Force Microscopy
Single-Molecule Fluorescence Microscopy
Nanopore Sequencing

New Sequencing Methods
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Some future directions for 
sequencing

1. Personalized genome sequencing
• Find your ~1,000,000 single nucleotide polymorphisms (SNPs)
• Find your rearrangements

• Goals:
Link genome with phenotype
Provide personalized diet and medicine
(???) designer babies, big-brother insurance companies

• Timeline:
Inexpensive sequencing: 2010-2015
Genotype–phenotype association: 2010-???
Personalized drugs: 2015-???
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Some future directions for 
sequencing

2. Environmental sequencing
• Find your flora: organisms living in your body

External organs: skin, mucous membranes
Gut, mouth, etc.

• Normal flora: >200 species, >trillions of individuals
• Flora–disease, flora–non-optimal health associations
• Timeline:

Inexpensive research sequencing: today
Research & associations within next 10 years
Personalized sequencing 2015+

• Find diversity of organisms living in different environments
Hard to isolate
Assembly of all organisms at once
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Some future directions for 
sequencing

3. Organism sequencing
• Sequence a large fraction of all organisms
• Deduce ancestors

Reconstruct ancestral genomes
Synthesize ancestral genomes
Clone—Jurassic park!

• Study evolution of function
Find functional elements within a genome
How those evolved in different organisms
Find how modules/machines composed of many genes evolved
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