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Reading: handouts
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Molecular Networks 
Inferred molecular networks:

Gene correlation networks (lecture 26)
Module networks (lecture 27)
…

Physical molecular networks:
Protein-protein interaction (PPI) networks
Protein-DNA interaction (PPI) networks --- transcription regulation networks
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Protein-Protein Interactions (PPI) 
Protein-protein interactions involve the association of protein 
molecules

Eg. signals from the exterior of a cell are mediated to the 
inside of that cell by protein-protein interactions

Eg. form protein complex, such as nuclear pore, that carries 
another protein from cytoplasm to nucleus

© Eric Xing @ CMU, 2005-2009 4

PPI Network
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Yeast Two-Hybrid System (Y2H) 
A molecular biology technique used to discover protein-
protein interactions.   

It tests physical interactions (such as binding) between two 
proteins

Key: the activation of downstream reporter gene(s) by the 
binding of a transcription factor onto an upstream activating 
sequence (UAS) 
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Y2H: I
Gal4 transcription factor gene produces two domain protein 
(BD and AD) which is essential for transcription of the reporter
gene (LacZ).
BD is responsible for binding to the UAS
AD is responsible for activation of transcription
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Y2H: II
Two fusion proteins are prepared: Gal4BD+Bait and 
Gal4AD+Prey. None of them is usually sufficient to initiate the 
transcription (of the reporter gene) alone.
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Y2H: III
When both fusion proteins are produced and Bait part of the 
first interact with Prey part of the second, transcription of the 
reporter gene occurs.
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Protein-DNA Interactions
Find DNA binding target seq for each transcription factor

Understand the regulatory relations between genes

System biology: build gene regulatory networks
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ChIP-Sequencing (ChIP-Seq) 
A molecular biology technique used to analyze protein 
interactions with DNA.

It combines chromatin immunoprecipitation (ChIP) with 
massively parallel DNA sequencing to identify binding sites of 
DNA-associated proteins

It can be used to precisely map global binding sites for any 
protein of interest (more accurate than ChIP-chip).
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ChIP-Seq: I
Covalent cross-links between proteins and DNA are formed, 
typically by treating cells with formaldehyde or another 
chemical reagent.
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ChIP-Seq: II
Isolate genomic DNA
Sonicate DNA to produce sheared, soluble chromatin
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ChIP-Seq: III
An antibody specific to the protein of interest is used to 
selectively coimmunoprecipitate the protein-bound DNA 
fragments that were covalently cross-linked.
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ChIP-Seq: IV
Reverse cross-links, purify DNA and prepare for sequencing
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ChIP-Seq: V
Map the resulting sequences back to the reference genome, 
whereby the most frequently sequenced fragments formed 
peaks at specific genomic regions.
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Other Related Techniques
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Mining and analyzing networks
Identifying Signaling Pathways

color-coding technique (Alon, Yuster and Zwick. 1995) and generalizations (Scott et al. RECOMB 2005)

Identifying Interaction Complexes (clique-like structures)
Statistical subgraph scoring (Sharan et al. RECOMB 2004)

Network alignment
PathBLAST: identify conserved pathways (Kelley et al 2003)
MaWISh: identify conserved multi-protein complexes (Koyuturk et al 2004)
Nuke: Scalable and General Pairwise and Multiple Network Alignment (Flannick, Novak, Srinivasan, 
McAdams, Batzoglou 2005)

Network Dynamics
Sandy: backtracking to find active sub-network (Luscombe et al, Nature 2005)

Node function inference
Stochastic block models (Aroldi et al, 2006)
Latent space models (Hoff, 2004)

Link prediction
Naïve Bayes classifier, Bayesian network
MRF
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Evolutionary Path
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MRCA-Most Recent Common Ancestor

?
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Network evolution

3 Problems:

1. Test all possible 
relationships.

2. Examine unknown 
internal states.

3. Explore unknown 
paths between states 
at nodes.

Network alignment
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Sequence alignment seeks to identify conserved DNA or 
protein sequence

Intuition: conservation implies functionality
EFTPPVQAAYQKVVAGV (human)
DFNPNVQAAFQKVVAGV (pig)
EFTPPVQAAYQKVVAGV (rabbit)

By similar intuition, subnetworks
conserved across species are 
likely functional modules

Motivation
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Network Alignment
“Conserved” means two subgraphs contain proteins having 
homologous sequences, serving similar functions, having 
similar interaction profiles

Key word is similar, not identical

Product graph:
Nodes: groups of sequence-similar proteins, one per species. 
Edges: conserved interactions.

mismatch/substitution

Protein 
groups

Conserved 
interactions
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Scoring Scheme
Given two protein subsets, one in each species, with a many-
to-many correspondence between them, we wish:

Each subset induces a dense subgraph.
Matched protein pairs are sequence-similar.

Two hypothesis:
Conserved complex model: matched pairs are similar.
Random model: matched pairs are randomly chosen.
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Scoring Scheme cont.
For multiple networks: run into problem of scoring a multiple 
sequence alignment.
Need to balance edge and vertex terms.

Practical solution: 
Sensible threshold for sequence similarity.
Nodes in alignment graph are filtered accordingly.
Node terms are removed from score.
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Preprocessing

Interaction scores: 
logistic regression on 
#observations, expression 
correlation, clustering coeff.

Network alignment
Subnetwork search

Filtering & 
Visualizing
p-value<0.01, 
≤80% overlap

Conserved paths

Conserved clustersProtein 
groups

Conserved 
interactions

Multiple Network Alignment

Two recent algorithms:
???, Sharan et al. PNAS 2005
Nuke: Flannick, Novak, Srinivasan, McAdams, Batzoglou 2005
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hypothetical
ancestral

module

descendants

equivalence
classes

Nuke: the model

Example:
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S = SN + SE

= 11.0 + 4.0

log P(nodes | M)
P(nodes | R)

+ log P(edges | M)
P(edges | R)

2.5

4.0 1.5

3.0
0.8

0.4
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0.8
1.2
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0.60.5 0.6

-0.2

Nuke: Scoring
Probabilistic scoring of alignments:

M : Alignment model (network evolved from a common ancestor)
R : Random model (nodes and edges picked at random)
Nodes and edges scored independently: How? This is hot research issue! (not 
covered here)
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Seed

Extend

A General Network Aligner: Algorithm

Given this model of network alignment and scoring framework, how
to efficiently find alignments between a pair of networks (N1, N2)?
Constructing every possible set of equivalence classes clearly 
prohibitive
Idea: seeded alignment

Inspired by seeded sequence alignment (BLAST)
Identify regions of network in which “good” alignments likely to be found

MaWISh does this, using high-degree nodes for seeds
Can we avoid such strong topological constraints?
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Multiple Alignment

M. tuberculosis E. coli C. crescentus

Progressive alignment technique
Used by most multiple sequence aligners

Simple modification of implementation to align 
alignments rather than networks

Node scoring already uses weighted SOP
Edge scoring remains unchanged
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pbpB pbpB

mraY mraY

ftsZ ftsZ

murD murD

Cj0693c HP0707

ftsA ftsA

murE murE

murG murG

murC murC
murF murF

ftsW ftsW

lpxC lpxC

mrdB mrdB

Cell division

wzc yccC CC0164
yccZ wza CC0169 CC2432

wcaJ CC1486 CC2425 CC2384 CC0166
Polysaccharide transport

ruvC ruvC

ruvB ruvB

ruvA ruvA

Cj0965c HP0496
Cj0112 HP1126

exbB2 exbB
pal pal

exbB3 exbB
exbB1 exbB

exbD2 exbD3 exbD1 exbD exbD exbD

DNA uptake

Pairwise alignments
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ex bB tolQ ex bB ex bB exbB2 ex bB1 exbB ex bB

exbD ex bD exbD2 exbD3 exbD1 ex bD ex bD exbD

CC3230 Cj0112 HP 1126

y bgC CC3234 Cj0965c HP 0496

pal pal pal pal

ruvC ruvC ruvC ruvC

r uv A ruvA r uvA ruv A

ruv B r uvB ruv B ruvB

DNA uptake

gyrB gyrB gyrB gyrB dnaA dnaA dnaA dnaA

dnaN dnaN dnaN dnaN

yidC yidC yidC yidC

gidA gidA gidA gidA
trmE thdF thdF thdF

DNA replication

Multiple alignments
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Target Genes

Transcription Factors

Dynamic Yeast TF network

Analyzed network as a 
static entity

But network is dynamic
Different sections of the network are 
active under different cellular conditions

Integrate gene expression 
data

[Luscombe et al, Nature]
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1,385Stress response

1,715DNA damage

1,876Diauxic shift

876Sporulation

437Cell cycle

No. genesCellular condition

Gene expression data
Genes that are differentially expressed under five cellular 
conditions

Assume these genes undergo transcription regulation

[Luscombe et al, Nature]
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Define differentially expressed genes

Identify TFs that regulate these genes

Identify further TFs that regulate these TFs

Active regulatory sub-network

Backtracking to find active sub-
network

[Luscombe et al, Nature]
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static

Network usage under different 
conditions
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cell cycle

Network usage under different 
conditions

© Eric Xing @ CMU, 2005-2009 36

sporulation

Network usage under different 
conditions
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diauxic shift

Network usage under different 
conditions
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DNA damage

Network usage under different 
conditions
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stress response

Network usage under different 
conditions
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Cell cycle Sporulation Diauxic shift DNA damage Stress

Network usage under different 
conditions

How to model the networks change? 
--- an open problem

[Luscombe et al, Nature]
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Network Tomography: functional 
analysis
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Motivation

In many networks (e.g., biological network, citation networks), 
each node may be “multiple-class”, i.e.,  has multiple 
functional/topical aspects.
The interaction of a node (e.g., a protein) with different nodes
(partners) may be under different function context. 
Prior knowledge of group interaction may be available.

A Latent Mixture Membership 
Model
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Topic vector of node i Topic vector of node j

Topic vector of node j as acceptorTopic indicators of node i as donor

The link indicator of (i,j)

A Mixture Membership Stochastic 
Blockmodel (MMSB) Airoldi, Blei, Fienberg, and Xing, 2008
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Hierarchical Bayesian MMSB
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Variational Inference
The Joint likelihood:

GMF approximation:

MF approximation:
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Inferred Mixed membership 
Network Tomography
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Dynamic MMSB
Fu, Song, and Xing, 2009
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Trajectory of MM of genes during 
Drosophila life cycle
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Summary of MMSB
A stochastic block model

Each node can play "multiple roles", and its ties with other 
nodes can be explained by different roles

Hierarchical Bayesian formalism

Dynamic tomography

Efficient variational inference
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Computational Molecular Biology

UsingUsing
mathematical modelsmathematical models
andand
computational reasoningcomputational reasoning
to pursue to pursue 
predictive understandingpredictive understanding
of lifeof life
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Research in Computer Science
Computer science is a ``science of the artificial.’’

Problems are precisely stated and are often generic rather 
than application-specific.

The quality of an algorithm is measured by its worst-case time 
bound.

Mathematical elegance is just as important as relevance to 
applications.
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Research in Computational 
Biology

The goal is to understand ground truth.

Problem statements are often fuzzy.

Problems are often application-specific, and problem 
formulations must be faithful to those applications.

The quality of an algorithm is measured by its performance on 
real data.

Biological findings are more important than computational 
methods.

© Eric Xing @ CMU, 2005-2009 54

Adapting to Computational 
Biology

Choose problems that are fundamental, timely and relevant. 

Mathematical depth and elegance are highly desirable, but  often
simple mathematics, artfully applied, is the key to success.

Avoid problems that will change when technology changes.

Learn the biological background of your problem, the available 
sources of data and their noise characteristics.

Work with an application-oriented team and don’t get typecast as an 
algorithms specialist or just "play with numbers."

Benchmark your algorithms on real data, establish a user 
community and make your software available and easy to use.
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Computational Biology can Benefit 
from Research in Machine Learning

Biological processes are stochastic and partially observed
probabilistic models and statistical inference/learning algorithms

Biological data are usually non-linear and high dimensional
kernel methods and convex optimization

Biological systems are complex and usually intractable
efficient representation and approximation techniques

Biological prior knowledge provide crucial model constrains 
and biological subjects can be studied from different angles

Bayesian approach and data fusion methods
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3) Interactive Analysis

1) Extendable Models

2) Effective Algorithm and Simulators

Conclusion 

4) Better medicine and experiments
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