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Molecular Networks '

e Inferred molecular networks:
e Gene correlation networks (lecture 26)
e Module networks (lecture 27)

e Physical molecular networks:
e Protein-protein interaction (PPI) networks
e Protein-DNA interaction (PPI) networks --- transcription regulation networks
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Protein-Protein Interactions (PPI)

|
e Protein-protein interactions involve the association of protein

molecules

e Eg. signals from the exterior of a cell are mediated to the
inside of that cell by protein-protein interactions

e Eg. form protein complex, such as nuclear pore, that carries
another protein from cytoplasm to nucleus
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Yeast Two-Hybrid System (Y2H)

\
e A molecular biology technique used to discover protein-

protein interactions.

e |t tests physical interactions (such as binding) between two
proteins

e Key: the activation of downstream reporter gene(s) by the
binding of a transcription factor onto an upstream activating
sequence (UAS)
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e Gal4 transcription factor gene produces two domain protein
(BD and AD) which is essential for transcription of the reporter
gene (Lacz).

e BD is responsible for binding to the UAS
e AD is responsible for activation of transcription

\ Gal4
/Gy AD

S

Galg

L] UAS | Reporter gene (LacZ)| |
A. Regular transcription of the reporter gene
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Y2H: |l

e Two fusion proteins are prepared: Gal4BD+Bait and
Gal4dAD+Prey. None of them is usually sufficient to initiate the
transcription (of the reporter gene) alone.
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3 ) o transcripian
[ UAS iReporter gene (JLacZ] |
B. One fusion protein only (Gal4-BD + Bait) - no transcription
%
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= no transcription
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C. One fusion protein only (Gal4-AD + Prey) - no transcription
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Y2H: 1ll

e When both fusion proteins are produced and Bait part of the
first interact with Prey part of the second, transcription of the

reporter gene occurs.
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D. Two fusion proteins with interacting Bait and Prey
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Protein-DNA Interactions s
\
e Find DNA binding target seq for each transcription factor
e Understand the regulatory relations between genes
e System biology: build gene regulatory networks
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ChlIP-Sequencing (ChIP-Seq)

\
e A molecular biology technique used to analyze protein

interactions with DNA.

e It combines chromatin immunoprecipitation (ChIP) with
massively parallel DNA sequencing to identify binding sites of
DNA-associated proteins

e |t can be used to precisely map global binding sites for any
protein of interest (more accurate than ChIP-chip).
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ChIP-Seq: |

e Covalent cross-links between proteins and DNA are formed,
typically by treating cells with formaldehyde or another
chemical reagent.

@ Cross-link whole cells
@ with formaldehyde
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ChIP-Seq: I

e |Isolate genomic DNA
e Sonicate DNA to produce sheared, soluble chromatin
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ChlIP-Seq: Il

e An antibody specific to the protein of interest is used to
selectively coimmunoprecipitate the protein-bound DNA
fragments that were covalently cross-linked.
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ChlIP-Seq: IV

\
e Reverse cross-links, purify DNA and prepare for sequencing
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ChIP-Seq: V

e Map the resulting sequences back to the reference genome,
whereby the most frequently sequenced fragments formed
peaks at specific genomic regions.

182367900 182368300 182368700
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Exp 1 Chil
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Other Related Techniques
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Mining and analyzing networks

e |dentifying Signaling Pathways
. color-coding technique (Alon, Yuster and Zwick. 1995) and generalizations (Scott et al. RECOMB 2005)
e |dentifying Interaction Complexes (clique-like structures)
° Statistical subgraph scoring (Sharan et al. RECOMB 2004)
e Network alignment
. PathBLAST: identify conserved pathways (Kelley et al 2003)

. MaWISh: identify conserved multi-protein complexes (Koyuturk et al 2004)

° Nuke: Scalable and General Pairwise and Multiple Network Alignment (Flannick, Novak, Srinivasan,
McAdams, Batzoglou 2005)

e Network Dynamics
. Sandy: backtracking to find active sub-network (Luscombe et al, Nature 2005)

e Node function inference
° Stochastic block models (Aroldi et al, 2006)
. Latent space models (Hoff, 2004)
e Link prediction
. Naive Bayes classifier, Bayesian network
. MRF
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Network evolution

MRCA-Most Recent Common Ancestor

3 Problems:
1. Testall possible . =
relationships. ’ (BD
2. Examine unknown =
internal states. e
3. Explore unknown gl
paths between states
at nodes.
- Network alignment @—D o—I ov
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Motivation .

e Sequence alignment seeks to identify conserved DNA or
protein sequence
e Intuition: conservation implies functionality

EFTPPVQAAYQKVVAGY (human)
DFNPNVQAAFQKVVAGY (pig)
EFTPPVQAAYQKVVAGY (rabbit)

e By similar intuition, subnetworks

conserved across species are e

likely functional modules rmE: ISR I o'

ove UG gy neA BRSRUERARI drA
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Network Alignment

\
e “Conserved” means two subgraphs contain proteins having

homologous sequences, serving similar functions, having
similar interaction profiles

e Key word is similar, not identical

CIZATD
Coo o)

Conserved Protein
Ao A interactions groups
mismatch/substitution
e Product graph:
e Nodes: groups of sequence-similar proteins, one per species.
e Edges: conserved interactions.
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Scoring Scheme :

e Given two protein subsets, one in each species, with a many-
to-many correspondence between them, we wish:
e Each subset induces a dense subgraph.
e Matched protein pairs are sequence-similar.

e Two hypothesis:
e Conserved complex model: matched pairs are similar.
e Random model: matched pairs are randomly chosen.

Pr(S, , |similar
L(C,C")=LE)/LC)x [] A (S, |similar)
u,v matched r(Su,v | random)
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Scoring Scheme cont.

!
e For multiple networks: run into problem of scoring a multiple

sequence alignment.
e Need to balance edge and vertex terms.

e Practical solution:
e Sensible threshold for sequence similarity.
e Nodes in alignment graph are filtered accordingly.
e Node terms are removed from score.
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Multiple Network Alignment o

. Subnetwork search
Network alignment

Preprocessing (6o % Conserved paths Filtering &
Interaction scores: =) =) = Visualizing
logistic regression on @ p-value<0.01,
#observations, expression <80% overlap

Conserved

correlation, clustering coeff.

Conserved clusters
groups

interactions

e Two recent algorithms:
e 7?77, Sharan et al. PNAS 2005
e Nuke: Flannick, Novak, Srinivasan, McAdams, Batzoglou 2005
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Nuke: the model

e Example:

hypothetical
ancestral
module

descendants

equivalence
classes

© Eric Xing @ CMU, 2005-2009 25

Nuke: Scoring

e Probabilistic scoring of alignments:

P(nodes | M) o P(edges| M)
P(nodes |R) P(edges|R)

e M: Alignment model (network evolved from a common ancestor)
e R :Random model (nodes and edges picked at random)
e Nodes and edges scored independently: How? This is hot research issue! (not

covered here)
S= S, + S

15
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A General Network Aligner: Algorithm

e Given this model of network alignment and scoring framework, how
to efficiently find alignments between a pair of networks (N1, N2)?

e Constructing every possible set of equivalence classes clearly
prohibitive

e |dea: seeded alignment
e Inspired by seeded sequence alignment (BLAST)

e Identify regions of network in which “good” alignments likely to be found
MaWISh does this, using high-degree nodes for seeds
Can we avoid such strong topological constraints?

Seed
Extend
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Multiple Alignment o
e Progressive alignment technique
e Used by most multiple sequence aligners
M. tuberculosis E. coli C. crescentus
e Simple modification of implementation to align
alignments rather than networks
e Node scoring already uses weighted SOP
e Edge scoring remains unchanged
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Pairwise alignments

DNA uptake

Polysaccharide transport
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Dynamic Yeast TF network

Target Genes

Transcription Factors

Analyzed network as a
static entity

But network is dynamic

e Different sections of the network are
active under different cellular conditions

Integrate gene expression
data

© Eric Xing @ CMU, 2005-2009 [Luscombe et al, Vature]

Gene expression data

e Genes that are differentially expressed under five cellular

conditions
Cellular condition No. genes
Cell cycle 437
Sporulation 876
Diauxic shift 1,876
DNA damage 1,715
Stress response 1,385

e Assume these genes undergo transcription regulation

© Eric Xing @ CMU, 2005-2009
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Backtracking to find active sub- | 3%
network o2
O O o Define differentially expressed genes

> > O / o Identify TFs that regulate these genes

\ | 4 a ldentify further TFs that regulate these TFs
| —
r’*—’v
O A O Active regulatory sub-network
L S ©FEric Xing @ CMU, 2005-2009 [Luscombe et al, yature]
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Network usage under different sels
conditions -
static
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Network usage under different
conditions &
cell cycle |
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Network usage under different sels
conditions HH

sporulation
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Network usage under different
conditions &
diauxic shift
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Network usage under different
conditions o
DNA damage
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. 000

Network usage under different sels
conditions o

stress response
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Network usage under different sels
conditions °e

Cell cycle Sporulation Diauxic shift DNA damage Stress

How to model the networks change?

--- an open problem
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Network Tomography: functional
analysis
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A Latent Mixture Membership
Model

Motivation

e In many networks (e.g., biological network, citation networks),
each node may be “multiple-class”, i.e., has multiple
functional/topical aspects.

e The interaction of a node (e.g., a protein) with different nodes
(partners) may be under different function context.

e Prior knowledge of group interaction may be available.
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A Mixture Membership Stochastic | $3::
B | O C k m O d el (M M S B) Airoldi, Blei, Fienberg, and Xing, 2008 :.
|
Topic vector of node i Topic vector of node j

~ A

(8) (8)
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Hierarchical Bayesian MMSB -

] \
R0
/ NN KK

For each object i=1,...,N: For each pair of object (i)

6, ~ Dirichlet(c) Z, ;1 ~Multi(6,)
For each topic-pair (s,?): : Zi2~ Multi(OJ.)
7., ~ Beta(p) R~ Bernoulli{pyz// vzge t (l—p)o‘o)
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Variational Inference

e The Joint likelihood:

ZJZ,JJ»I,/Z\:: 1 rzl ozl -l Zw(l /‘,‘J)ZI’Z 11/”/2>/I2 1

Z,‘/ L jatig.2
P(/",ZaeyV):HH/ Xym‘ﬂ ! (lizymn)
e GMF approximation:
N K N
Q(ryzvf),;/lfr,/f):(]_[q((), I/t,)]X[ [Ta@.. \V;,)JX[ [Ta@,1225,10.,)
i=1 s=1=1 i=1,j=1

u :”+Zj<zuﬂ>+z/<z’-l‘z>

Ver :/j+z/‘//}r<z/‘/.1z/ /.2>

e MF approximation:

N \ « N\ (N \
q(r,z,l),y\a,/J)—(Hq((), [ 1) ’X[ [TaGe, v x| TT0 18,0022 10007, W,/);
Uit ) \s=11 == )
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Inferred Mixed membership
Network Tomography H
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Fu, Song, and Xing, 2009

N ;‘ \\ Dynamic MMSB

1 (2, PR af (T
T HH i
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Trajectory of MM of genes during
Drosophilalife cycle
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Summary of MMSB

e A stochastic block model

e Each node can play "multiple roles", and its ties with other
nodes can be explained by different roles

e Hierarchical Bayesian formalism

e Dynamic tomography

e Efficient variational inference
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Computational Molecular Biology

Using
mathematical models
and

computational reasoning
to pursue

predictive understanding
of life
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Research in Computer Science 4

e Computer science is a “'science of the artificial.”

e Problems are precisely stated and are often generic rather
than application-specific.

e The quality of an algorithm is measured by its worst-case time
bound.

e Mathematical elegance is just as important as relevance to
applications.
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Research in Computational
Biology

e The goal is to understand ground truth.
e Problem statements are often fuzzy.

e Problems are often application-specific, and problem
formulations must be faithful to those applications.

e The quality of an algorithm is measured by its performance on
real data.

e Biological findings are more important than computational
methods.
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Adapting to Computational
Biology o

e Choose problems that are fundamental, timely and relevant.

e Mathematical depth and elegance are highly desirable, but often
simple mathematics, artfully applied, is the key to success.

e Avoid problems that will change when technology changes.

e Learn the biological background of your problem, the available
sources of data and their noise characteristics.

e Work with an application-oriented team and don't get typecast as an
algorithms specialist or just "play with numbers."

e Benchmark your algorithms on real data, establish a user
community and make your software available and easy to use.
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Computational Biology can Benefit
from Research in Machine Learning

\
e Biological processes are stochastic and partially observed

e probabilistic models and statistical inference/learning algorithms

e Biological data are usually non-linear and high dimensional
e kernel methods and convex optimization

e Biological systems are complex and usually intractable
o efficient representation and approximation techniques

e Biological prior knowledge provide crucial model constrains
and biological subjects can be studied from different angles
e Bayesian approach and data fusion methods
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Conclusion :

ﬁ 2) Effective Algorithm and Simulators

1) Extendable Models

4) Better medicine and experiments
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