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Gene regulatory networks

Regulation of expression of genes is crucial: 
Genes control cell behavior by controlling which proteins are made by a cell and 
when and where they are delivered

Regulation occurs at many stages:
pre-transcriptional (chromatin structure)
transcription initiation
RNA editing (splicing) and transport
Translation initiation
Post-translation modification
RNA & Protein degradation

Understanding regulatory processes is a central problem 
of biological research
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Inferring gene regulatory 
networks

Expression network

gets most attentions so far, many algorithms
still algorithmically challenging  

Protein-DNA interaction network

actively pursued recently, some interesting methods available
lots of room for algorithmic advance
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Inferring gene regulatory 
networks

Network of cis-regulatory pathways

Success stories in sea urchin, fruit fly, etc, from decades of experimental 
research  
Statistical modeling and automated learning just started
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1: Expression networks

Early work 
Clustering of expression data

Groups together genes with similar expression pattern
Disadvantage: does not reveal structural relations between genes

Boolean Network
Deterministic models of the logical interactions between genes
Disadvantage: deterministic, static

Deterministic linear models
Disadvantage: under-constrained, capture only linear interactions

The challenge:
Extract biologically meaningful information from the expression data
Discover genetic interactions based on statistical associations among data 

Currently dominant methodology
Probabilistic network
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Probabilistic Network Approach

Characterize stochastic (non-deterministic!) 
relationships between expression patterns of different 
genes

Beyond pair-wise interactions => structure!
Many interactions are explained by intermediate factors
Regulation involves combined effects of several gene-products

Flexible in terms of types of interactions (not necessarily 
linear or Boolean!)
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What is a Graphical Model?
--- example from a signal transduction pathway

A possible world for cellular signal transduction: 
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GM: Structure Simplifies 
Representation

Dependencies among variables



5

© Eric Xing @ CMU, 2005-2009 9

If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

Why we may favor a PGM?
Incorporation of domain knowledge and causal (logical) structures

Modular combination of heterogeneous parts – data fusion

Bayesian Philosophy
Knowledge meets data

Probabilistic Graphical Models

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost ! 

θ α θ⇒⇒

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Probabilistic Inference

Computing statistical queries regarding the network, e.g.:
Is node X independent on node Y given nodes Z,W ?
What is the probability of X=true if (Y=false and Z=true)?
What is the joint distribution of (X,Y) if R=false?
What is the likelihood of some full assignment?
What is the most likely assignment of values to all or a subset the nodes of the 
network?

General purpose algorithms exist to fully automate such 
computation 

Computational cost depends on the topology of the network
Exact inference: 

The junction tree algorithm

Approximate inference; 
Loopy belief propagation, variational inference, Monte Carlo sampling 
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Two types of GMs

Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

Undirected edges simply give correlations between 
variables (Markov Random Field or Undirected 
Graphical model):
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Bayesian Network
Structure: DAG

Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

Location conditional 
distributions (CPD) and the 
DAG completely determines 
the joint dist. 
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Structure: an undirected 
graph

• Meaning: a node is 
conditionally independent of 
every other node in the network 
given its Directed neighbors

• Local contingency functions 
(potentials) and the cliques in 
the graph completely determine 
the joint dist. 

• Give correlations between 
variables, but no explicit way to 
generate samples

X

Y1 Y2

Markov Random Fields
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Local Structures & 
Independencies

Common parent
Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent"

Cascade
Knowing B decouples A and C
"given the level of gene B, the level gene A provides no 
extra prediction value for the level of gene C"

V-structure
Knowing C couples A and B
because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

The language is compact, the 
concepts are rich!
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Why Bayesian Networks?
Sound statistical foundation and intuitive probabilistic 
semantics
Compact and flexible representation of (in)dependency
structure of multivariate distributions and interactions
Natural for modeling global processes with local 
interactions => good for biology
Natural for statistical confidence analysis of results and 
answering of queries
Stochastic in nature: models stochastic processes & deals 
(“sums out”) noise in measurements
General-purpose learning and inference
Capture causal relationships
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Measured expression 
level of each gene

Gene interaction

Random variables
(node)

Probabilistic dependencies
(edge)

Common cause

Intermediate gene 

Common/combinatorial effects
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Possible Biological Interpretation
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Dynamic Bayesian Networks 
(Ong et. al)

Temporal series "static"
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Module network (Segal et al.)
Partition variables into modules that 
share the same parents and the same 
CPD. 

Probabilistic Relational 
Models (Segal et al.)

Data fusion: integrating related data from 
multiple sources 

More directed probabilistic 
networks
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Bayesian Network – CPDs

Local Probabilities:  CPD - conditional probability 
distribution P(Xi|Pai)

Discrete variables: Multinomial Distribution (can represent any kind 
of statistical dependency)
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Bayesian Network – CPDs (cont.)
Continuous variables:   e.g. linear Gaussian
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Learning Bayesian Network
The goal:

Given set of independent samples (assignments of random 
variables), find the best (the most likely?) Bayesian Network 
(both DAG and CPDs)

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)

……..
(B,E,A,C,R)=(F,T,T,T,F)
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• Learning of best CPDs given DAG is easy
– collect statistics of values of each node given specific assignment to its parents

• Learning of the graph topology (structure) is NP-hard
– heuristic search must be applied, generally leads to a locally optimal network

• Overfitting
– It turns out, that richer structures give higher likelihood P(D|G) to the data 

(adding an edge is always preferable)

– more parameters to fit => more freedom => always exist more "optimal" CPD(C)

• We prefer simpler (more explanatory) networks
– Practical scores regularize the likelihood improvement complex networks.
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Learning Bayesian Network
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Gene Expression Profiling by 
Microarrays
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Microarray Data

1hr
2hr

3hr

4hr

…
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Learning Algorithm

Expression data

Structural EM (Friedman 1998)
The original algorithm

Sparse Candidate Algorithm (Friedman et al.)
Discretizing array signals
Hill-climbing search using local operators: add/delete/swap of a 
single edge
Feature extraction: Markov relations, order relations
Re-assemble high-confidence sub-networks from features

Module network learning (Segal et al.)
Heuristic search of structure in a "module graph"
Module assignment
Parameter sharing
Prior knowledge: possible regulators (TF genes) 

BN Learning Algorithms
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Bootstrap approach:
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Estimate “Confidence level”:

Confidence Estimates
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The initially learned network of 
~800 genes
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The “mating response” substructure

Results from SCA + feature 
extraction (Friedman et al.)
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Why? 

Sometimes an UNDIRECTED
association graph makes more 
sense and/or is more 
informative

gene expressions may be influenced 
by unobserved factor that are post-
transcriptionally regulated

The unavailability of the state of B 
results in a constrain over A and C

B
A C

B
A C

B
A C

Gaussian Graphical Models
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Multivariate Gaussian over all continuous expressions 

The precision matrix K=Σ−1 reveals the topology of the 
(undirected) network

Edge ~ |Kij| > 0

Learning Algorithm: Covariance selection
Want a sparse matrix

Regression for each node with degree constraint (Dobra et al.)
Regression for each node with hierarchical Bayesian prior (Li, et al)
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Learning Ising Model 
(i.e. pairwise MRF)

Assuming the nodes are discrete, and edges are weighted, 
then for a sample xd, we have 

Graph lasso has been used to obtain a sparse estimate of E 
with continuous X

We can use graphical L_1 regularized logistic regression to 
obtain a sparse estimate of with discrete X
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The neighborhood selection method: 

Recall lasso 
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Graph Regression

Lasso:
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Graph Regression
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Graph Regression
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Consistency

Theorem: for the graphical regression algorithm, under 
certain verifiable conditions (omitted here for simplicity):
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Summary: Learning GM
Learning of best CPDs given DAG is easy

collect statistics of values of each node given specific assignment to its parents

Learning of the graph topology (structure) is NP-hard
heuristic search must be applied, generally leads to a locally optimal network

We prefer simpler (more explanatory) networks
Regularized graph regression
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