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e Regulation of expression of genes is crucial:
e Genes control cell behavior by controlling which proteins are made by a cell and
when and where they are delivered
e Regulation occurs at many stages:
e pre-transcriptional (chromatin structure)
e transcription initiation
e RNA editing (splicing) and transport
e Translation initiation
e Post-translation modification
e RNA & Protein degradation

e Understanding regulatory processes is a central problem
of biological research
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Inferring gene regulatory
networks

e Expression network

mostly sometimes rarely
e gets most attentions so far, many algorithms
e still algorithmically challenging

e Protein-DNA interaction network
e
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e actively pursued recently, some interesting methods available
e lots of room for algorithmic advance

© Eric Xing @ CMU, 2005-2009

Inferring gene regulatory
networks -

e Network of cis-regulatory pathways

e Success stories in sea urchin, fruit fly, etc, from decades of experimental
research

e Statistical modeling and automated learning just started
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. EXpression networks o
e Early work
e Clustering of expression data
Groups together genes with similar expression pattern
Disadvantage: does not reveal structural relations between genes
e Boolean Network
Deterministic models of the logical interactions between genes
Disadvantage: deterministic, static
e Deterministic linear models
Disadvantage: under-constrained, capture only linear interactions
e The challenge:
e Extract biologically meaningful information from the expression data
e Discover genetic interactions based on statistical associations among data
e Currently dominant methodology
e Probabilistic network
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robabilistic Network Approac o

e Characterize stochastic (non-deterministic!)
relationships between expression patterns of different
genes

e Beyond pair-wise interactions => structure!
e Many interactions are explained by intermediate factors
e Regulation involves combined effects of several gene-products

e Flexible in terms of types of interactions (not necessarily
linear or Boolean!)
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What is a Graphical Model?

--- example from a signal transduction pathway

e A possible world for cellular signal transduction:

Receptor A X, Receptor B X,

X6
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Representation .o
e Dependencies among variables
’V'embra”e

Cytosol |

Nucleus !

...............................................................................................
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Probabilistic Graphical Models

a If X{'s are conditionally independent (as described by a PGM), the
joint can be factored to a product of simpler terms, e.g.,

) P(Xy, X1 Xg0 Xy Xg, Xg X7, Xg)
] % (

e b= P(Xy) P(X)) P(Xg| Xp) P(X,] X5) P(Xs| X5)
P(X¢| Xay X) POX;] Xg) P(Xgl X5, Xo)

[Kinasec ] % [ Kinase D

o Why we may favor a PGM?
o Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !
o Modular combination of heterogeneous parts — data fusion

o Bayesian Philosophy

e Knowledge meets data =
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Probabilistic Inference °e

e Computing statistical queries regarding the network, e.g.:
e Is node X independent on node Y given nodes Z,W ?
e What is the probability of X=true if (Y=false and Z=true)?
e What is the joint distribution of (X,Y) if R=false?
e What is the likelihood of some full assignment?

e What is the most likely assignment of values to all or a subset the nodes of the
network?

e General purpose algorithms exist to fully automate such
computation

e Computational cost depends on the topology of the network
e Exact inference:
The junction tree algorithm
e Approximate inference;
Loopy belief propagation, variational inference, Monte Carlo sampling
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Two types of GMs

\
e Directed edges give causality relationships (Bayesian

Network or Directed Graphical Model):

e Undirected edges simply give correlations between
variables (Markov Random Field or Undirected
Graphical model):
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Bayesian Network

e Structure: DAG

e Meaning: a node is
conditionally independent
of every other node in the
network outside its Markov
blanket

e Location conditional
distributions (CPD) and the
DAG completely determines o R —

the joint dist.
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Markov Random Fields

Structure: an undirected
graph

* Meaning: a node is
conditionally independent of
every other node in the network
given itsﬁQ\irected neighbors

 Local contingency functions
(potentials) and the cliques in
the graph completely determine
the joint dist.

* Give correlations between

variables, but no explicit way to
generate samples
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Independencies o
e Common parent

e Fixing B decouples Aand C

"given the level of gene B, the levels of A and C are independent”

Cascade
e Knowing B decouples Aand C

"given the level of gene B, the level gene A provides no Q
extra prediction value for the level of gene C"

V-structure
e Knowing C couples A and B
because A can "explain away" B w.r.t. C

"If A correlates to C, then chance for B to also correlate to B will decrease"

The language is compact, the
concepts are rich!
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Why Bayesian Networks?

e Sound statistical foundation and intuitive probabilistic
semantics

e Compact and flexible representation of (in)dependency
structure of multivariate distributions and interactions

e Natural for modeling global processes with local
interactions => good for biology

e Natural for statistical confidence analysis of results and
answering of queries

e Stochastic in nature: models stochastic processes & deals
(“sums out”) noise in measurements

e General-purpose learning and inference
e Capture causal relationships
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Possible Biological Interpretation | ¢

Measured expression :> Random variables
level of each gene (node)
Gene interaction :> Probabilistic dependencies
(edge)
e Common cause C8>
Ao o
e Intermediate gene G TBo—>
e Common/combinatorial effects 4O CB>5
-
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More directed probabilistic
networks

e Dynamic Bayesian Networks
(Ong et. al)

e Temporal series "static"

_ o Module network (Segal et al.)

e Partition variables into modules that
share the same parents and the same

CPD.
e Probabilistic Relational -
Models (Segal et al.) cR
e Data fusion: integrating related data from = i =

multiple sources

17
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Bayesian Network — CPDs

Local Probabilities: CPD - conditional probability
distribution P(X;/Pa,)

e Discrete variables: Multinomial Distribution (can represent any kind
of statistical dependency)
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Bayesian Network — CPDs (cont.)

e Continuous variables: e.g. linear Gaussian
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Learning Bayesian Network

e The goal:

e Given set of independent samples (assignments of random

variables), find the best (the most likely?) Bayesian Network

(both DAG and CPDs)
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Learning Bayesian Network

» Learning of best CPDs given DAG is easy

— collect statistics of values of each node given specific assignment to its parents

» Learning of the graph topology (structure) is NP-hard
— heuristic search must be applied, generally leads to a locally optimal network

 Overfitting
— It turns out, that richer structures give higher likelihood P(D|G) to the data
(adding an edge is always preferable)

==
-
P(C|A) <P(C|A B)
— more parameters to fit => more freedom => always exist more "optimal" CPD(C)
» We prefer simpler (more explanatory) networks

— Practical scores regularize the likelihood improvement complex networks.
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Microarray Data
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Expression data

Learning Algorithm

Ceo &>
RO 4D
O

e Structural EM (Friedman 1998)

e The original algorithm

e Sparse Candidate Algorithm (Friedman et al.)
e Discretizing array signals
e Hill-climbing search using local operators: add/delete/swap of a
single edge
e Feature extraction: Markov relations, order relations
e Re-assemble high-confidence sub-networks from features

Module network learning (Segal et al.)
e Heuristic search of structure in a "module graph”

e Module assignment

e Parameter sharing

e Prior knowledge: possible regulators (TF genes)
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Confidence Estimates et
\
Bootstrap approach: D D
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C(F) = ;21{;‘ A
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Results from SCA + feature sels
extraction (rriedman et al.) -

The initially learned network of The “mating response” substructure
~800 genes
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Gaussian Graphical Models

e Why?

Sometimes an UNDIRECTED
association graph makes more
sense and/or is more

informative

e gene expressions may be influenced
by unobserved factor that are post-
transcriptionally regulated

& & @ L ‘/1 d‘a\%ﬁy\:‘\\m'
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e The unavailability of the state of B
results in a constrain over A and C /.
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Covariance Selection

e Multivariate Gaussian over all continuous expressions

P, X, ]) expl 4 (X- )" =4 (% - )}

- 1
n)*|zff
e The precision matrix K=X-! reveals the topology of the
(undirected) network
E(x[Xx;)= Z(Kij /Kii)xj
o Edge~ K| >0 j

e Learning Algorithm: Covariance selection

e \Want a sparse matrix
Regression for each node with degree constraint (Dobra et al.)
Regression for each node with hierarchical Bayesian prior (Li, et al)
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Learning Ising Model
(i.e. pairwise MRF)

\
e Assuming the nodes are discrete, and edges are weighted,

then for a sample x,, we have
P(x4]©) = (rxp(z f}r‘,;f.'d.,' + Z Oijwagiva; — 1((—)))
eV (i.4)EE

° has been used to obtain a sparse estimate of E
with continuous X

e We can use graphical L_1 regularized logistic regression to
obtain a sparse estimate of with discrete X
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Recall lasso .

0; = arg néi_nl(é’.i) + M| 0 |1

(3

where [(6;) = log P(y;|x;.b‘;).

e The neighborhood selection method:
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Graph Regression

Lasso:

-
0 = ;11‘g1t:jn ; 1) + Ml 0]
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Graph Regression o
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Graph Regression

O
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Consistency

e Theorem: for the graphical regression algorithm, under
certain verifiable conditions (omitted here for simplicity):

P [(?()\N) # G} = 0O (exp(=Cn)) =0
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Summary: Learning GM

e Learning of best CPDs given DAG is easy

e collect statistics of values of each node given specific assignment to its parents

e Learning of the graph topology (structure) is
e heuristic search must be applied, generally leads to a locally optimal network

e We prefer simpler (more explanatory) networks
e Regularized graph regression
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