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© Eric Xing @ CMU, 2005-2009 2

Expression networksRegulatory networks

Interaction networks

Metabolic networks

Nodes – molecules.
Links – inteactions / relations.

Molecular Networks
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Disease 
Spread

[Krebs]

Social Network

Food Web

Electronic
Circuit

Internet
[Burch & Cheswick]

Other types of networks
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KEGG database: http://www.genome.ad.jp/kegg/kegg2.html

Metabolic networks

Nodes – metabolites (0.5K).
Edges – directed biochemichal
reactions (1K).
Reflect the cell’s metabolic circuitry.
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“Graph theoretic description for a simple pathway (catalyzed by Mg2+ -dependant 
enzymes) is illustrated (a). In the most abstract approach (b) all interacting 
metabolites are considered equally.”

Graph theoretic description of 
metabolic networks
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Protein Interaction Networks

Nodes – proteins (6K).
Edges – interactions (15K).
Reflect the cell’s machinery and 
signlaing pathways.
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Experimental approaches

Protein coIPYeast Two-Hybrid
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Graphs and Networks

Graph: a pair of sets G={V,E} where V is a set of nodes, 
and E is a set of edges that connect 2 elements of V.

Directed, undirected graphs

Large, complex networks are 
ubiquitous in the world:  

Genetic networks
Nervous system
Social interactions
World Wide Web
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Global topological measures
Indicate the gross topological structure of the network

Connectivity
(Degree)

Path length Clustering coefficient

[Barabasi]
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Connectivity Measures
Node degree: the number of edges incident on the node 
(number of network neighbors.)

Undetected networks 

Degree distribution P(k): probability that a node has degree k.

Directed networks, i.e., transcription regulation networks (TRNs)

Incoming degree = 2.1
each gene is regulated by ~2 TFs

Outgoing degree = 49.8
each TF targets ~50 genes

i Degree of node i = 5
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Lij is the number of edges in the shortest 
path between vertices i and j

The characteristic path length of a graph is the 
average of the Lij for every possible pair (i,j)
Diameter: maximal distance in the network.

Networks with small values of L are said to have the “small world property”

In a TRN, L’ij represents the number of intermediate TFs until final 
target

( , ) 2i jL =

i

j

Characteristic path length 

Path length

Starting TF

Final target

1 intermediate TF

= 1

Indicate how immediate
a regulatory response is

Average path length = 4.7
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Clustering coefficient 
The clustering coefficient of node i is the ratio of the number 
Ei of edges that exist among its neighbors, over the number 
of edges that could exist: 

CI=2TI/nI(nI-1)

The clustering coefficient for the entire network C is the 
average of all the Ci

Clustering coefficient

4 neighbours

1 existing link

6 possible links

= 1/6 = 0.17

Measure how inter-connected 
the network is

Average coefficient = 0.11
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A Comparison of Global Network 
Statistics (Barabasi & Oltvai, 2004)

P(k) ~ k−γ ,  k >>1,  2 < γ

!
)(

k
kekP

kk−

=
A. Random Networks   [Erdos and Rényi (1959, 1960)]

B. Scale Free [Price,1965 & Barabasi,1999]  

C.Hierarchial

Mean path length ~ ln(k)

Phase transition:
Connected if: p ≥ ln( k ) / k

Preferential 
attachment. Add 
proportionally to 
connectedness

Mean path length ~ lnln(k)

Copy smaller graphs and let 
them keep their connections.
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Local network motifs

Regulatory modules within the network

SIM MIM FFLFBL

[Alon]
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YPR013C

HCM1

SPO1STB1ECM22

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

SIM = Single input motifs
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SBF

HCM1SPT21

MBF

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

MIM = Multiple input motifs
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SBF

Yox1

Tos8 Plm2

Pog1

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

FFL = Feed-forward loops
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MBF

SBF

Tos4

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

FBL = Feed-back loops
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What network structure should be 
used to model a biological network?
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Calculating the degree 
connectivity of a network
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A. fulgidus
(archaea)

C. elegans
(eukaryote)

E. coli
(bacterium)

averaged 
over 43 
organisms

Jeong et al. Nature (2000) 407 651-654

Connectivity distributions for 
metabolic networks
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(color of nodes is explained later)\ Jeong et al. Nature 411, 41 - 42 (2001)

Wagner. RSL (2003) 270 457-466

Protein-protein interaction 
networks
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Random versus scaled 
exponential degree distribution 

Degree connectivity distributions differs between random and 
observed (metabolic and protein-protein interaction) networks.
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What is so “scale-free” about 
these networks?

No matter which scale is chosen the same distribution of 
degrees is observed among nodes
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Erdos-Renyi (1960)
Watts-Strogatz (1998)
Barabasi-Albert (1999)

Models for networks of complex 
topology
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N nodes
Every pair of nodes is connected with probability p.

Mean degree: (N-1)p.
Degree distribution is binomial, concentrated around the mean.
Average distance (Np>1): log N

Important result: many properties in these graphs appear quite 
suddenly, at a threshold value of PER(N)

If PER~c/N  with  c<1, then almost all vertices belong to isolated trees
Cycles of all orders appear at PER ~ 1/N

Random Networks: 
The Erdős-Rényi [ER] model (1960):
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For p=0 (Regular Networks): 
• high clustering coefficient 
• high characteristic path length

For p=1 (Random Networks): 
• low clustering coefficient
• low characteristic path length

The Watts-Strogatz [WS] model 
(1998)

Start with a regular network with N vertices
Rewire each edge with probability p

QUESTION: What happens for intermediate values of p?
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WS model, cont.
There is a broad interval of p for which L is small but C 
remains large

Small world networks are common :
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ER Model

ER Model WS Model actors power grid www

( ) ~P K K γ−

Scale-free networks: 
The Barabási-Albert [BA] model (1999)

The distribution of degrees:

In real network, the probability of finding a highly connected 
node decreases exponentially with k

© Eric Xing @ CMU, 2005-2009 30

Two problems with the previous models:
1. N does not vary
2. the probability that two vertices are connected is uniform

The BA model:
Evolution:  networks expand continuously by the addition of new vertices, and

Preferential-attachment (rich get richer): new vertices attach preferentially to sites 
that are already well connected.

BA model, cont.
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GROWTH: starting with a small number of vertices m0 at 
every timestep add a new vertex with m ≤ m0

PREFERENTIAL ATTACHMENT: the probability Π that a 
new vertex will be connected to vertex i depends on the 
connectivity of that vertex:

Scale-free network model

Barabasi and Albert. Science (1999) 286 509-512
Barabasi & Bonabeau Sci. Am. May 2003 60-69
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Scale Free Networks

a) Connectivity distribution with N = m0+t=300000 and m0=m=1(circles), 
m0=m=3 (squares), and m0=m=5 (diamons) and m0=m=7 (triangles)

b) P(k) for m0=m=5 and system size N=100000 (circles), N=150000 
(squares) and N=200000 (diamonds)

Barabasi and Albert. Science (1999) 286 509-512
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Comparing Random Vs. Scale-
free Networks

Two networks both with 130 nodes and 215 links)

The importance of the connected nodes in the scale-free 
network:

27% of the nodes are reached by the five most connected nodes, in the scale-
free network more than 60% are reached.

Five nodes with most links
First neighbors of red nodes
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Failure: Removal of a random node.

Attack: The selection and removal of a few nodes that play a 
vital role in maintaining the network’s connectivity.

Albert et al. Science (2000) 406 378-382

a macroscopic snapshot of Internet connectivity by K. C. Claffy

Failure and Attack
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Random networks are homogeneous so there is no difference 
between failure and attack

Modified from Albert et al. Science (2000) 406 378-382

Fraction nodes removed from network
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Failure and Attack, cont.
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Fraction nodes removed from network
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Failure and Attack, cont.
Scale-free networks are robust to failure but susceptible to 
attack
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Lethal
Slow-growth
Non-lethal
Unknown

Jeong et al. Nature 411, 41 - 42 (2001)

The phenotypic effect of removing the 
corresponding protein:

Yeast protein-protein interaction networks

© Eric Xing @ CMU, 2005-2009 38Jeong et al. Nature 411, 41 - 42 (2001)

Lethality and connectivity are 
positively correlated

Average and standard deviation for the various clusters.

Pearson’s linear correlation coefficient = 0.75
Number of links
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Genetic foundation of network 
evolution

Network expansion by gene duplication
A gene duplicates
Inherits it connections
The connections can change

Gene duplication slow ~10-9/year
Connection evolution fast ~10-6/year

© Eric Xing @ CMU, 2005-2009 40Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan & Uri Alon (2002) Nature Genetics 31 64 - 68

The transcriptional regulation 
network of Escherichia coli.
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Motifs in the networks
Deployed a motif detection 
algorithm on the transcriptional 
regulation network.
Identified three recurring motifs 
(significant with respect to 
random graphs).

© Eric Xing @ CMU, 2005-2009 42Conant and Wagner. Nature Genetics (2003) 34 264-266

Convergent evolution of gene 
circuits

Are the components of the 
feed-forward loop for 
example homologous?

Circuit duplication is rare in 
the transcription network



22

© Eric Xing @ CMU, 2005-2009 43

Acknowledgements

Itai Yanai and Doron Lancet
Mark Gerstein
Roded Sharan
Jotun Hein
Serafim Batzoglou

for some of the slides modified from their lectures or tutorials

© Eric Xing @ CMU, 2005-2009 44

Reference
Barabási and Albert. Emergence of scaling in random 
networks. Science 286, 509-512 (1999).
Yook et al. Functional and topological characterization of 
protein
interaction networks. Proteomics 4, 928-942 (2004).
Jeong et al. The large-scale organization of metabolic 
networks. Nature 407, 651-654 (2000).
Albert et al. Error and attack tolerance in complex 
networks. Nature 406 , 378 (2000). 
Barabási and Oltvai, Network Biology: Understanding the 
Cell's Functional Organization, Nature Reviews, vol 5, 
2004


