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Molecular Networks °e

Nodes — molecules.
LlnkS - InteaCtIOHS / I’E|atIOI’lS Metabolic networks
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Other types of networks
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Metabolic networks .

Nodes — metabolites (0.5K).

-

KEGG database: http://www.genome.ad.jp/kegg/kegg2.html

Bice? & o
Socondary Metabolies.

Motabelizm of a
Colaciors and Vitamins
Plyces yihess i of

]

Edges — directed biochemichal
reactions (1K).
Reflect the cell’s metabolic circuitry.
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Graph theoretic description of
metabolic networks
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“Graph theoretic description for a simple pathway (catalyzed by Mg2* -dependant
enzymes) is illustrated (a). In the most abstract approach (b) all interacting
metabolites are considered equally.”

ooy oy soosBADASH & Oltvai. NRG. (2004) 5 103-113

Protein Interaction Networks

o Nodes — proteins (6K).
o Edges — interactions (15K).
0 Reflect the cell’s machinery and
signlaing pathways.
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Experimental approaches
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Graphs and Networks

e Graph: a pair of sets G={V,E} where V is a set of nodes,
and E is a set of edges that connect 2 elements of V.

e Directed, undirected graphs

e Large, complex networks are

ubiquitous in the world:

e Genetic networks
e Nervous system
e Social interactions
e World Wide Web
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Global topological measures &
\
e Indicate the gross topological structure of the network
\l/ v ‘0.0 f'“"
7 4 AL
v v
Connectivity Path length Clustering coefficient
(Degree)
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Connectivity Measures &

e Node degree: the number of edges incident on the node
(number of network neighbors.)

e Undetected networks

0

Degree of node i = 5

Degree distribution A(k): probability that a node has degree .
e Directed networks, i.e., transcription regulation networks (TRNs)

\l/ Incoming degree = 2.1
—each gene is regulated by ~2 TFs

v
‘71&‘ Outgoing degree = 49.8

—each TF targets ~50 genes
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Characteristic path length :
\
° L,-j is the number of edges in the shortest i
path between vertices /and j

e The characteristic path length of a graph is the L(i, ) = 2

average of the L, for every possible pair (/)
e Diameter: maximal distance in the network. =

J
Networks with small values of L are said to have the “small world property”

e InaTRN, L} represents the number of intermediate TFs until final
target

V¥V  Starting TF

Indicate how immediate
a regulatory response is v<— 1 intermediate TF

Average path length = 4.7 1

Final target
v
2
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Clustering coefficient

e The clustering coefficient of node /is the ratio of the number
£, of edges that exist among its neighbors, over the number
of edges that could exist:

C=2T/ny(n-1) 4 neighbours

Measure how inter-connected
the network is 1 existing link

Average coefficient = 0.11

6 possible links

Clustering coefficient
=1/6 =0.17

e The clustering coefficient for the entire network Cis the

average of all the C;
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A Comparison of Global Network | $3::
Statistics (Barabasi & oitvai, 2004) oo
A. Random Networks [Erdos and Rényi (1959, 1960)] e FKK ‘
P(k) =

k!
Mean path length ~ In(k)

Phase transition:
Connected if: P = In(k)/k

B. Scale Free [Price,1965 & Barabasi,1999] P(K)~k7, k>>1 2<y
Bb
Mean path length ~ Inin(k)

Preferential

attachment. Add |
proportionally to !
connectedness

Ck)

iRt
£ g Copy smaller graphs and let
E.l : them keep their connections.
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Local network motifs :

e Regulatory modules within the network
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SIM = Single input motifs -
!
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MIM = Multiple input motifs -
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FFL = Feed-forward loops

T 0S Sy P | 2
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FBL = Feed-back loops
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What network structure should be
used to model a biological network?

Strogatz S.H., Nature (2001) 410 268

lattice random
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Calculating the degree
connectivity of a network -

Degree connectivity distributions: >

5

>

o

o

| L

12 345678
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Connectivity distributions for
metabolic networks

10°

E. coli

A. fulgidus 10
(bacterium)

(archaea) g 107

UBRA B B B B B B

106 PRTTTT BRI MR

10 F
107F averaged
C.elegans g 10°F over 43
(eukaryote) % jo<F organisms
10°F ¢ 4 [Fa
DS ST R W AT TP Wi veT:
10" 10 10° 10° 10" 100 107 1P

Jeong et al. Nature (2000) 407 651-654

Protein-protein interaction
networks

-
[ T 3 4 5 6TEGIOR
degree

Jeong et al. Nature 411, 41 - 42 (2001)

color of nodes is explained later)\
( P ) © Eric Xing @ CMU, 2005-2009 Wagner. RSL (2003) 270 457-466;




Random versus scaled
exponential degree distribution

\
e Degree connectivity distributions differs between random and

observed (metabolic and protein-protein interaction) networks.

> >
2 X 2 — ya
g y=a g y=xX
o o
£ E
(@2} (@2
o 2

log degree connectivity log degree connectivity
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Strogatz S.H., Nature (2001) 410 268

What is so “scale-free” about
these networks? o

e No matter which scale is chosen the same distribution of
degrees is observed among nodes
10°

24
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Models for networks of complex sels
topology -
e Erdos-Renyi (1960)
e Watts-Strogatz (1998)
e Barabasi-Albert (1999)
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Random Networks: sels
The Erdés-Rényi [ER] model (1960): o

e N nodes
e Every pair of nodes is connected with probability p.

. L4
- . L 1 L
- . . _"' _—
po=n / 1
|
. . . -
L) . .- -
. .
p=0.1

e Mean degree: (N-1)p.
e Degree distribution is binomial, concentrated around the mean.

P(r)

e Average distance (Np>1): log N

<k>
'

e Important result: many properties in these graphs appca: quitc
suddenly, at a threshold value of PER(N)

e If PER~c/N with c<1, then almost all vertices belong to isolated trees
e Cycles of all orders appear at PER ~ 1/N
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The Watts-Strogatz [WS] model 3
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(1998)
e Start with a regular network with N vertices
e Rewire each edge with probability p
Reqular Small-workd
p=0 p=1
Increasing randomness
For p=0 (Regular Networks): For p=1 (Random Networks):
* high clustering coefficient * low clustering coefficient
 high characteristic path length * low characteristic path length
e QUESTION: What happens for intermediate values of p?
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WS model, cont. o
e There is a broad interval of p for which L is small but C
remains large
T TR "u
* ) Clp)/ cloy =
r?_ Lip) ! LtO]- L )
10,0001 o0 DgUI o 1
e Small world networks are common :
Table 1 Empirical examples of small-world networks
Laotual L random Cactual Clrandam
Film actors 365 298 073 0.00027
Power grid 187 124 0080 0.005
C. elegans 288 225 028 0.05
© Eric Xing @ CMU, 2005-2009 28
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Scale-free networks: sees
sy = [ X J
The Barabasi-Albert [BA] model (1999) o
e The distribution of degrees:
o Il N ":' T 10° :\\-\‘ B \0°i 3 C
- -:-‘.-_. ] E‘D : m.r '._.\’I w ' ‘._..I
-'w?:‘!:"-'.',-"::::ﬁ:::""'»}'-:r' ; - E Faas |o°‘;°- T Io.:c!;‘"”Tu — m’.'.;\‘fn lo'"_)o ks .".‘\_
' k
ER Model WS Model actors power grid www
e In real network, the probability of finding a highly connected
node decreases exponentially with &
P(K)~ K~
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BA model, cont. o

e Two problems with the previous models:

1. N does not vary

2. the probability that two vertices are connected is uniform

e The BA model:

e Evolution: networks expand continuously by the addition of new vertices, and

e Preferential-attachment (rich get richer): new vertices attach preferentially to sites
that are already well connected.

© Eric Xing @ CMU, 2005-2009
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Scale-free network model

|
e GROWTH: starting with a small number of vertices m, at

every timestep add a new vertex with m < m,

e PREFERENTIAL ATTACHMENT: the probability 1 that a
new vertex will be connected to vertex /depends on the
connectivity of that vertex: [](k) =<'

2.k
j

Al e S PN

Barabasi & Bonabeau Sci. Am. May 2003 60-69

© Eric Xing @ CMU, 2005-2009 Barabasi and Albert. Science (1999) 286 §09-512
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Scale Free Networks .

P(K)

a) Connectivity distribution with N = m,+t=300000 and m,=m=1(circles),
my=m=3 (squares), and m,=m=>5 (diamons) and m,=m=7 (triangles)

b) P(k) for my=m=>5 and system size N=100000 (circles), N=150000
(squares) and N=200000 (diamonds)

o Eric Xing @ CMU, 20052000 Barabasi and Albert. Science (1999) 286 509-512




Comparing Random Vs. Scale- §§:
free Networks o

e Two networks both with 130 nodes and 215 links)

s shes
LE N B

@ Five nodes with most links

@ First neighbors of red nodes
Exponential

Scale-free

e The importance of the connected nodes in the scale-free
network:
e 27% of the nodes are reached by the five most connected nodes, in the scale-
free network more than 60% are reached.

© Eric Xing @ CMU, 2005-2009 Modified from Alber |. Science (2 408 378-382

Fa i I U re a n d AttaC k Albert et al. Science (2000) 406 378-382

e Failure: Removal of a random node.

e Attack: The selection and removal of a few nodes that play a
vital role in maintaining the network’s connectivity.

o ric xin@dRR0EABISSNapshot of Internet connectivity by K. C. Glaffy




Failure and Attack, cont.

e Random networks are homogeneous so there is no difference
between failure and attack

12 : |
<
g A Failure
g or & Attack
c
)
S
Y— 8 L
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B GAO A AD AD AC AO AC AO AO 4o
2
s o _
(m]

4 \ | . |
0.00 0.02 0.0

Fraction nodes removed from network
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Failure and Attack, cont.

e Scale-free networks are robust to failure but susceptible to
attack

12 T T T T

o Failure o ©
10F o Attack o © T

Diameter of the network

4 " 1 " 1
0.00 0.02 0.04
Fraction nodes removed from network

o Eric xing @ cmu, 200040ified from Albert et al. Science (2000) 406 378-382
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The phenotypic effect of removing the | se¢¢
. . [ X J
corresponding protein: °
e Yeast protein-protein interaction networks

@ Lethal

O Slow-growth

@ Non-lethal

O Unknown

Jeong et al. Nature 411, 41 - 42(2001)

Lethality and connectivity are
positively correlated o

e Average and standard deviation for the various clusters.

&G -

o

% of essential proteins
]
t
_'_
3
o
|—

; A - A J
P s li 0 > 10 15 20
‘ earsons ine Number of links

© Eric Xing @ CMU, 2005-2009 Jeong et al. Nature 411, 41 - 4242001)
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Genetic foundation of network
evolution

e Network expansion by gene duplication
e A gene duplicates
b

e Inherits it connections
e The connections can change
Proteins
) ) Before duplication
e Gene duplication slow ~10%/year
e Connection evolution fast ~10%/year
After duplication
Proteins

© Eric Xing @ CMU, 2005-2009 Barabasi & Oltvai. NRG. (2004) 5 101-113

The transcriptional regulation
network of Escherichia coli. H
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Wab Fig. A

Shai S. Shen-Orr, Ry Milo. @W@gg&_%@gan & Uri Alon (2002) Nature Genetics 31,64 - 68
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Motifs in the networks

e Deployed a motif detection
algorithm on the transcriptional
regulation network.

e Identified three recurring motifs

(significant with respect to
random graphs).

single input module (SIM)
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Shai S. Shen-Orr, RyLIMilg, Shaaoalils Mangan & Uri Alon (2002) Nature Genetics 31,64 - 68

dense overlapping regulons (DOR)
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Convergent evolution of gene

circuits

e Are the components of the
feed-forward loop for
example homologous?

e Circuit duplication is rare in
the transcription network

Frax=1 Fmax= 3 Frax=5
C=5 c=2 c=1
e |

Increasing common ancestry
b
Circuit Mumber | Humber of | Index of Largest
type of families (C) | common circuit family
circuits ancestry (A) | (Finas)
Yeast i 44 (488« 0082 (0.02TN 5(1.0+ 14
Feed forward 48 |1.9;P=0.08) %035 P=008 P=005)
435 0197 (0. 135+ MO [AT.0£ 31T
B0 sip |We00s 37T A0 Po0TE)| P-033)
P =018
e 68 TA5(0065T 574262,
S M qre | (1648 4 8.8 NQED P =080 P=0.50)
P=080)
-
Reg.chain(®) | 33 33 0 1
E coli iy
Fecdforward 1 " 0 1
A T 7 0 1

o Eri xing <RI Wagner. Nature Genetics (2003) 34 264-266

21



Acknowledgements

e [tai Yanai and Doron Lancet
e Mark Gerstein

e Roded Sharan

e Jotun Hein

e Serafim Batzoglou

for some of the slides modified from their lectures or tutorials

© Eric Xing @ CMU, 2005-2009 43
000
b4
[ X X )
Reference °e

e Barabasi and Albert. Emergence of scaling in random
networks. Science 286, 509-512 (1999).

e Yook et al. Functional and topological characterization of
protein
interaction networks. Proteomics 4, 928-942 (2004).

e Jeong et al. The large-scale organization of metabolic
networks. Nature 407, 651-654 (2000).

e Albert et al. Error and attack tolerance in complex
networks. Nature 406 , 378 (2000).

e Barabasi and Oltvai, Network Biology: Understanding the
Cell's Functional Organization, Nature Reviews, vol 5,
2004

© Eric Xing @ CMU, 2005-2009 44

22



