

# Computational Genomics

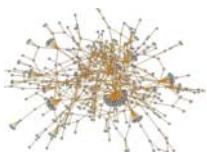
10-810/02-710, Spring 2009

## Biological Networks & Network Evolution

Eric Xing



Lecture 25, April 20, 2009

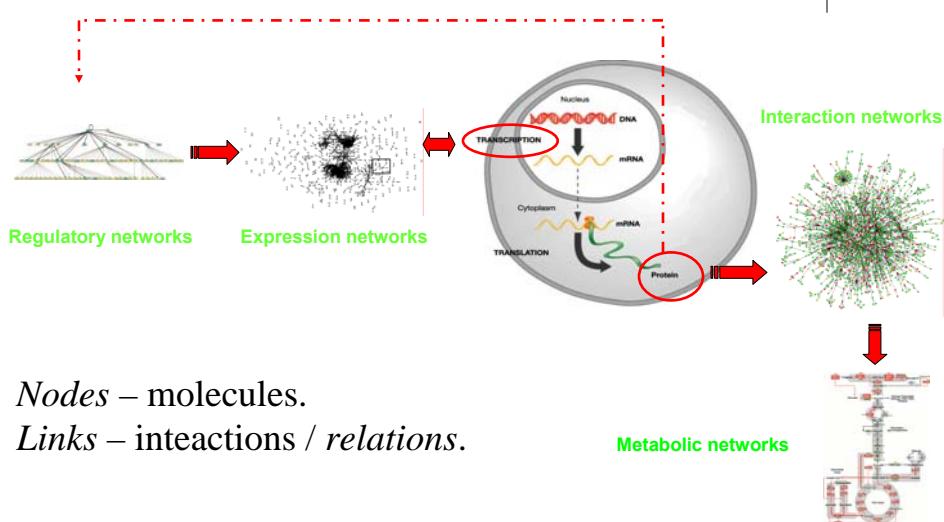


Reading: handouts

© Eric Xing @ CMU, 2005-2009

1

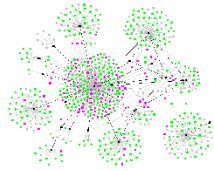
## Molecular Networks



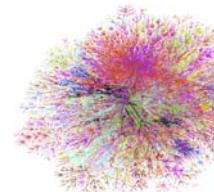
© Eric Xing @ CMU, 2005-2009

2

## Other types of networks



Disease Spread  
[Krebs]



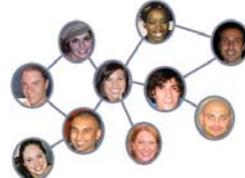
Internet  
[Burch & Cheswick]



Food Web



Electronic Circuit

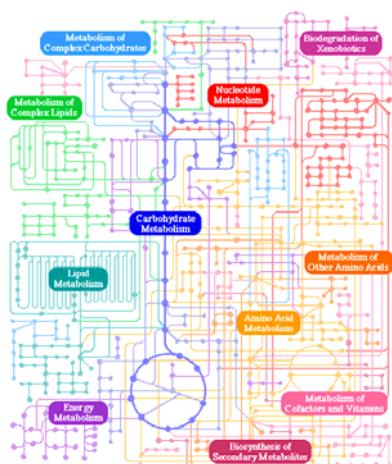


Social Network

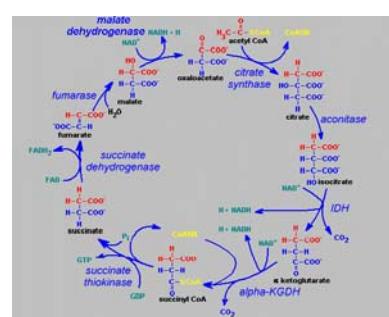
© Eric Xing @ CMU, 2005-2009

3

## Metabolic networks



KEGG database: <http://www.genome.ad.jp/kegg/kegg2.html>

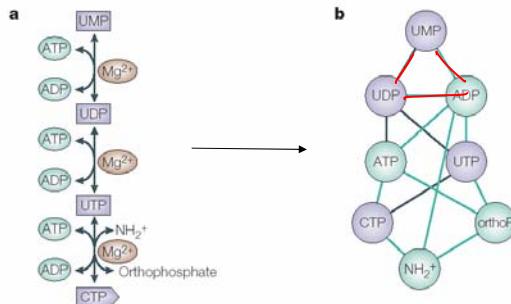


- ❑ Nodes – metabolites (0.5K).
- ❑ Edges – directed biochemical reactions (1K).
- ❑ Reflect the cell's metabolic circuitry.

© Eric Xing @ CMU, 2005-2009

4

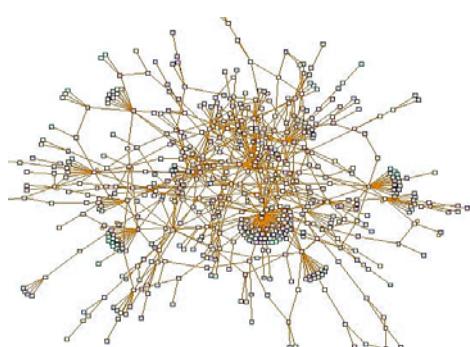
## Graph theoretic description of metabolic networks



"Graph theoretic description for a simple pathway (catalyzed by  $Mg^{2+}$  -dependant enzymes) is illustrated (a). In the most abstract approach (b) all interacting metabolites are considered equally."

Barabasi & Oltvai. NRG. (2004) 5 101-113  
© Eric Xing @ CMU, 2005-2009

## Protein Interaction Networks

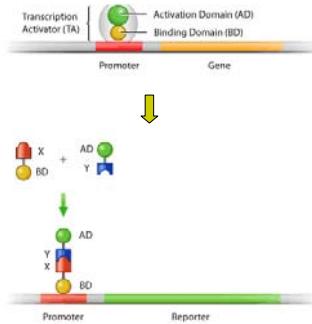


- Nodes – proteins (6K).
- Edges – interactions (15K).
- Reflect the cell's machinery and signaling pathways.

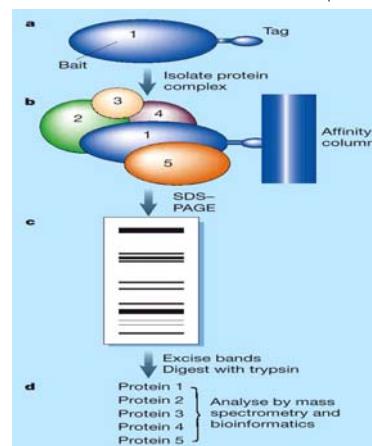
© Eric Xing @ CMU, 2005-2009

6

## Experimental approaches



Yeast Two-Hybrid



Protein coIP

© Eric Xing @ CMU, 2005-2009

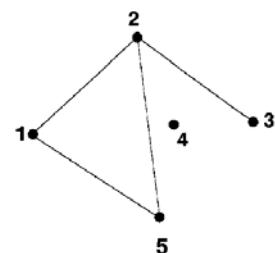
7

## Graphs and Networks

- **Graph:** a pair of sets  $G=\{V,E\}$  where  $V$  is a set of nodes, and  $E$  is a set of edges that connect 2 elements of  $V$ .

- Directed, undirected graphs
- Large, complex networks are ubiquitous in the world:

- Genetic networks
- Nervous system
- Social interactions
- World Wide Web

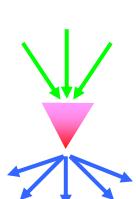


© Eric Xing @ CMU, 2005-2009

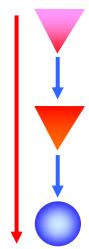
8

## Global topological measures

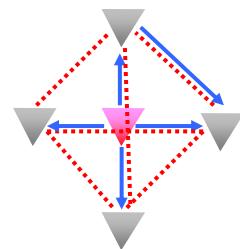
- Indicate the gross topological structure of the network



Connectivity  
(Degree)



Path length



Clustering coefficient

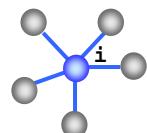
© Eric Xing @ CMU, 2005-2009

[Barabasi]

## Connectivity Measures

- Node degree: the number of edges incident on the node (number of network neighbors.)

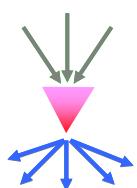
- Undirected networks



Degree of node  $i = 5$

- Degree distribution  $P(k)$ : probability that a node has degree  $k$

- Directed networks, i.e., transcription regulation networks (TRNs)



Incoming degree = 2.1  
→ each gene is regulated by ~2 TFs

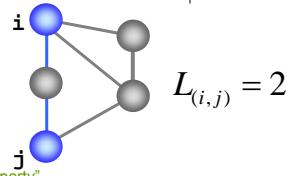
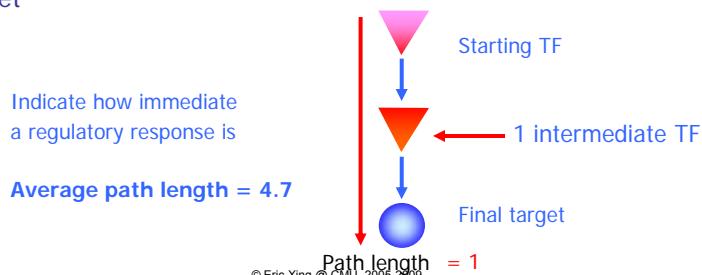
Outgoing degree = 49.8  
→ each TF targets ~50 genes

© Eric Xing @ CMU, 2005-2009

10

## Characteristic path length

- $L_{ij}$  is the number of edges in the shortest path between vertices  $i$  and  $j$ 
  - The characteristic path length of a graph is the average of the  $L_{ij}$  for every possible pair  $(i,j)$
  - Diameter: maximal distance in the network.
  - Networks with small values of  $L$  are said to have the "small world property"
- In a TRN,  $L'_{ij}$  represents the number of intermediate TFs until final target



© Eric Xing @ CMU, 2005-2009

11

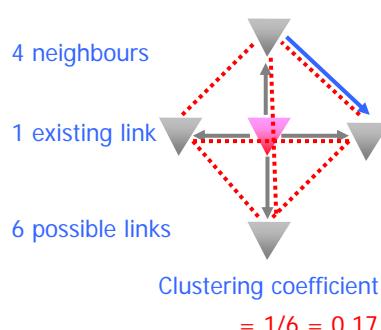
## Clustering coefficient

- The clustering coefficient of node  $i$  is the ratio of the number  $E_i$  of edges that exist among its neighbors, over the number of edges that could exist:

$$C_i = \frac{2T_i}{n_i(n_i-1)}$$

Measure how inter-connected the network is

Average coefficient = 0.11



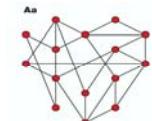
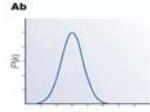
- The clustering coefficient for the entire network  $C$  is the average of all the  $C_i$

© Eric Xing @ CMU, 2005-2009

12

# A Comparison of Global Network Statistics (Barabasi & Oltvai, 2004)

## A. Random Networks [Erdos and Rényi (1959, 1960)]



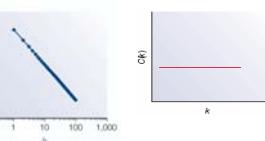
$$P(k) = \frac{e^{-\bar{k}} \bar{k}^k}{k!}$$

Mean path length  $\sim \ln(k)$

Phase transition:

Connected if:  $p \geq \ln(k) / k$

## B. Scale Free [Price, 1965 & Barabasi, 1999]



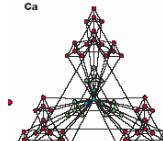
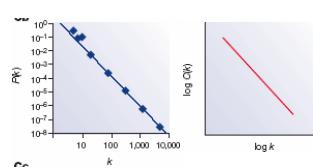
$$P(k) \sim k^{-\gamma}, k \gg 1, 2 < \gamma$$

Mean path length  $\sim \ln \ln(k)$

Preferential attachment. Add proportionally to connectedness



## C. Hierarchical



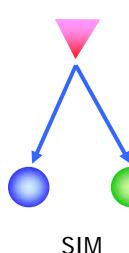
Copy smaller graphs and let them keep their connections.

© Eric Xing @ CMU, 2005-2009

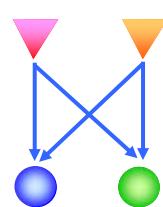
13

# Local network motifs

- Regulatory modules within the network



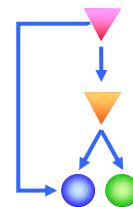
SIM



MIM



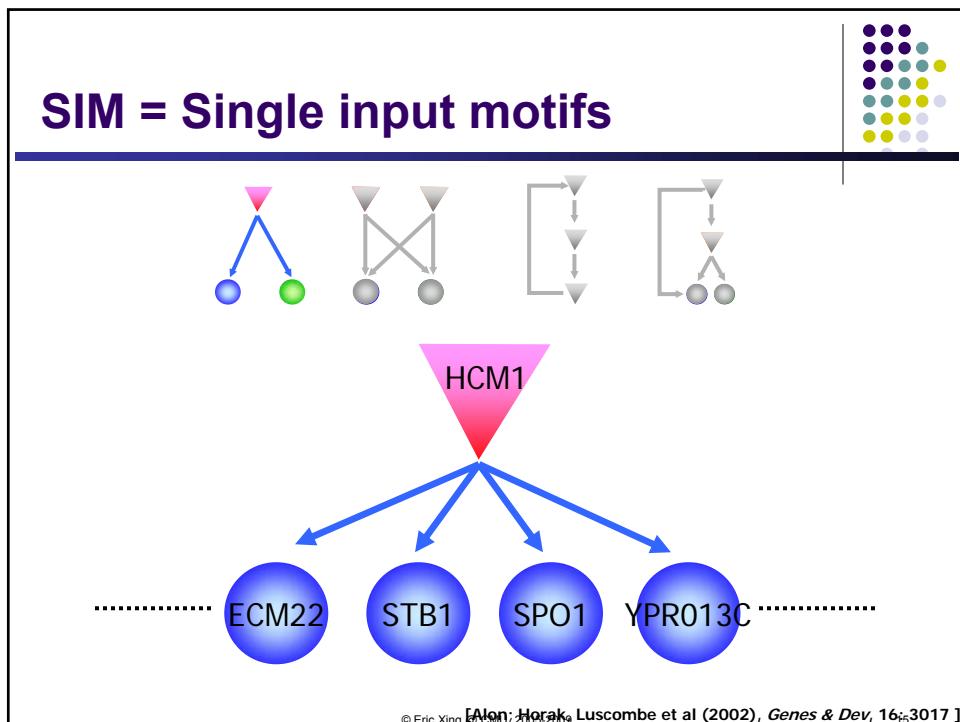
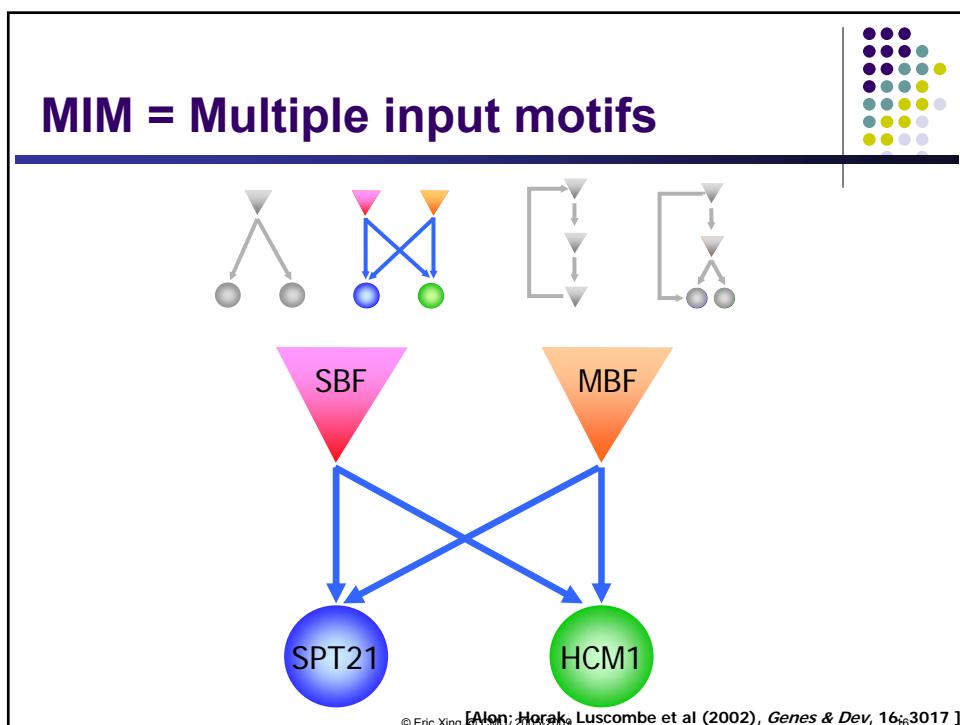
FBL



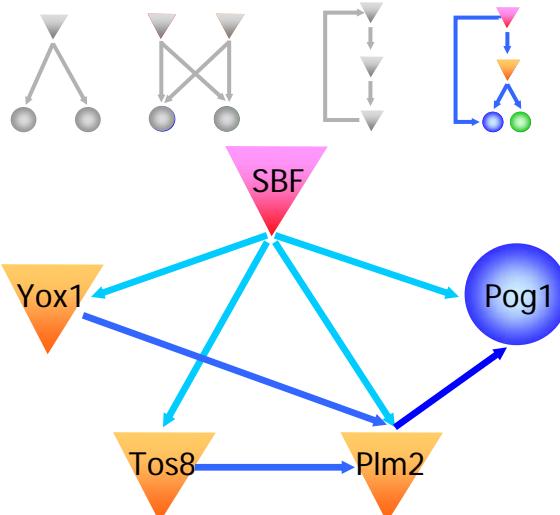
FFL

© Eric Xing @ CMU, 2005-2009

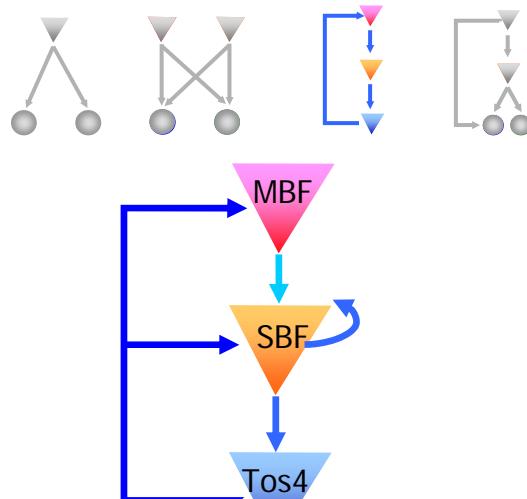
[Alon]



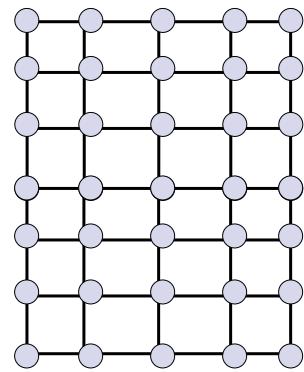
## FFL = Feed-forward loops



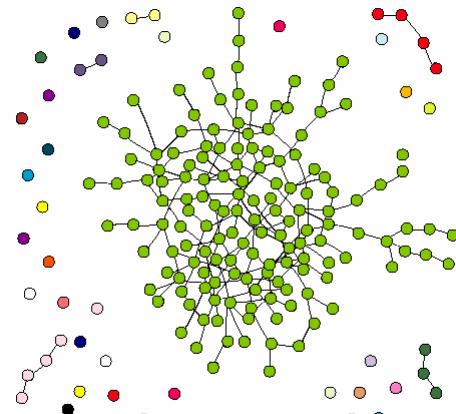
## FBL = Feed-back loops



## What network structure should be used to model a biological network?



lattice



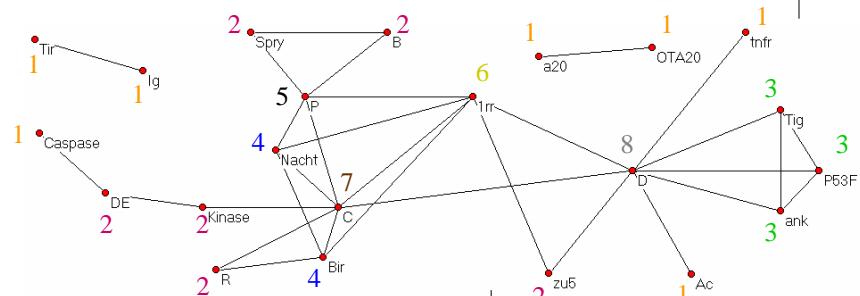
random

© Eric Xing @ CMU, 2005-2009

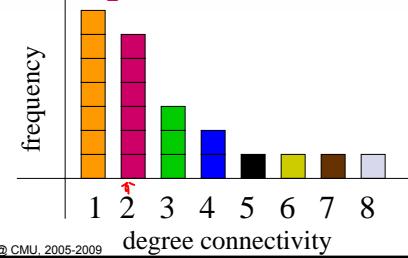
Strogatz S.H., *Nature* (2001) 410 268

19

## Calculating the degree connectivity of a network



Degree connectivity distributions:

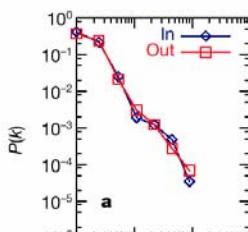
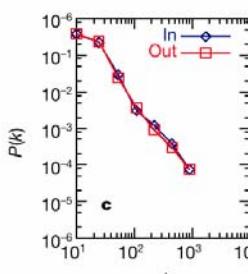


© Eric Xing @ CMU, 2005-2009

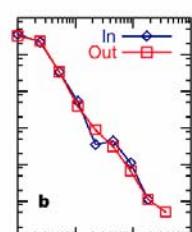
20

## Connectivity distributions for metabolic networks

*A. fulgidus*  
(archaea)



*C. elegans*  
(eukaryote)

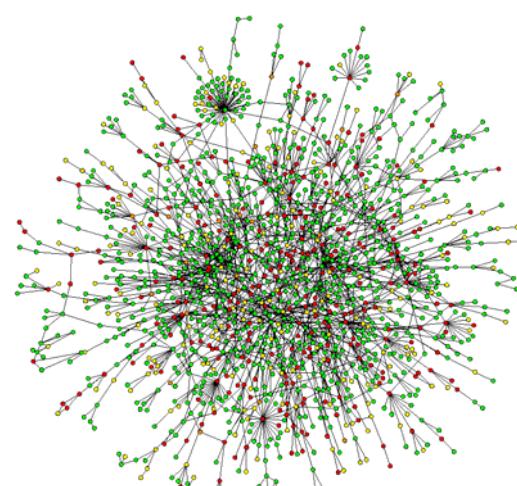


*E. coli*  
(bacterium)

averaged  
over 43  
organisms

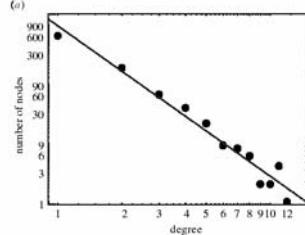
Jeong et al. Nature (2000) 407 651-654

## Protein-protein interaction networks



(color of nodes is explained later)

© Eric Xing @ CMU, 2005-2009

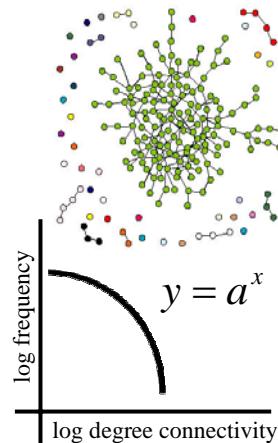


Jeong et al. Nature 411, 41 - 42 (2001)  
Wagner. RSL (2003) 270 457-466<sub>22</sub>

## Random versus scaled exponential degree distribution



- Degree connectivity distributions differs between random and observed (metabolic and protein-protein interaction) networks.



© Eric Xing @ CMU, 2005-2009



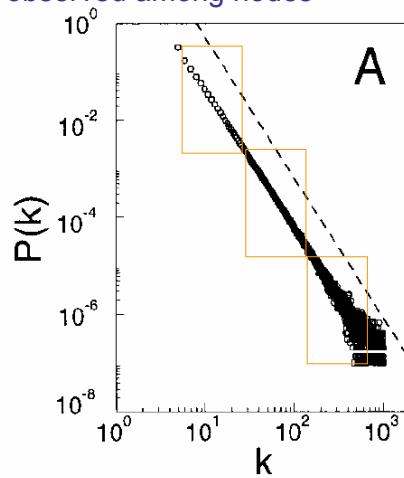
Strogatz S.H., *Nature* (2001) 410 268

23

## What is so “scale-free” about these networks?

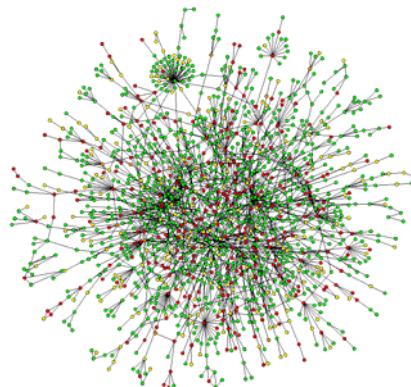


- No matter which scale is chosen the same distribution of degrees is observed among nodes



24

# Models for networks of complex topology



- Erdos-Renyi (1960)
- Watts-Strogatz (1998)
- Barabasi-Albert (1999)

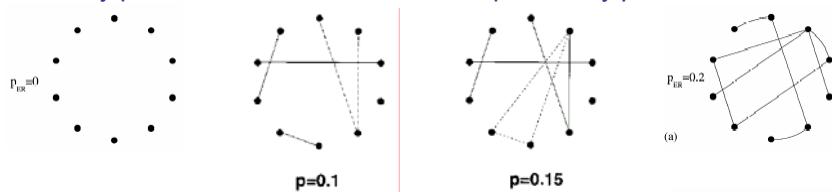
© Eric Xing @ CMU, 2005-2009

25

## Random Networks: The Erdős-Rényi [ER] model (1960):

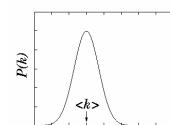


- $N$  nodes
- Every pair of nodes is connected with probability  $p$ .



- Mean degree:  $(N-1)p$ .
- Degree distribution is binomial, concentrated around the mean.
- Average distance ( $Np > 1$ ):  $\log N$

- Important result: many properties in these graphs appear suddenly, at a threshold value of  $PER(N)$ 
  - If  $PER \sim c/N$  with  $c < 1$ , then almost all vertices belong to isolated trees
  - Cycles of all orders appear at  $PER \sim 1/N$



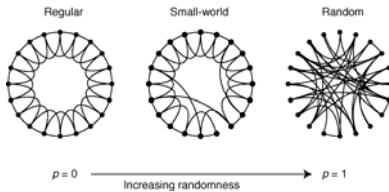
© Eric Xing @ CMU, 2005-2009

26

## The Watts-Strogatz [WS] model (1998)



- Start with a regular network with  $N$  vertices
- Rewire each edge with probability  $p$



For  $p=0$  (Regular Networks):

- high clustering coefficient
- high characteristic path length

For  $p=1$  (Random Networks):

- low clustering coefficient
- low characteristic path length

- QUESTION: What happens for intermediate values of  $p$ ?

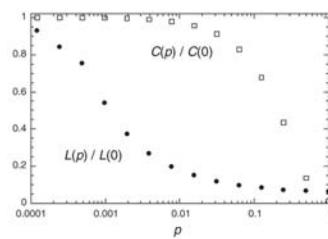
© Eric Xing @ CMU, 2005-2009

27

## WS model, cont.



- There is a broad interval of  $p$  for which  $L$  is small but  $C$  remains large



- Small world networks are common :

Table 1 Empirical examples of small-world networks

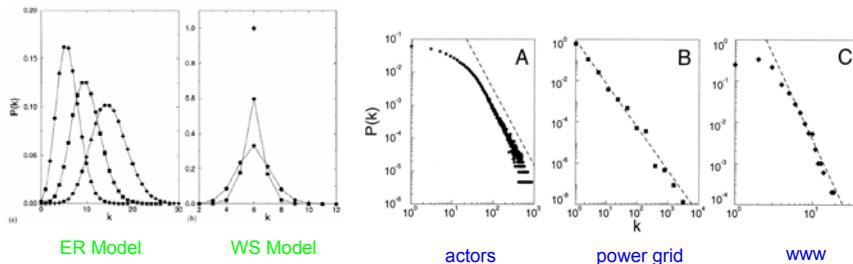
|                   | $L_{\text{actual}}$ | $L_{\text{random}}$ | $C_{\text{actual}}$ | $C_{\text{random}}$ |
|-------------------|---------------------|---------------------|---------------------|---------------------|
| Film actors       | 3.65                | 2.99                | 0.79                | 0.00027             |
| Power grid        | 18.7                | 12.4                | 0.080               | 0.005               |
| <i>C. elegans</i> | 2.65                | 2.25                | 0.28                | 0.05                |

© Eric Xing @ CMU, 2005-2009

28

## Scale-free networks: The Barabási-Albert [BA] model (1999)

- The distribution of degrees:



- In real network, the probability of finding a highly connected node decreases exponentially with  $k$

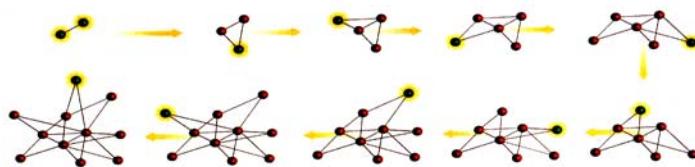
$$P(K) \sim K^{-\gamma}$$

© Eric Xing @ CMU, 2005-2009

29

## BA model, cont.

- Two problems with the previous models:
  1.  $N$  does not vary
  2. the probability that two vertices are connected is uniform
- The BA model:
  - Evolution: networks expand continuously by the addition of new vertices, and
  - Preferential-attachment (rich get richer): new vertices attach preferentially to sites that are already well connected.

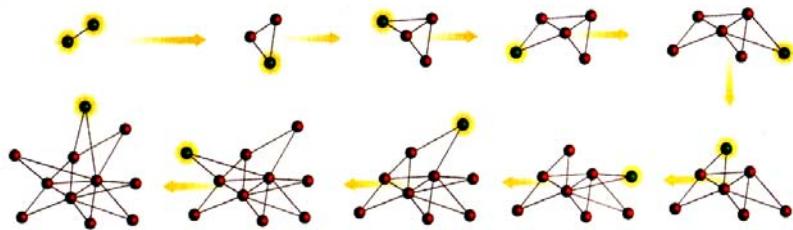


© Eric Xing @ CMU, 2005-2009

30

## Scale-free network model

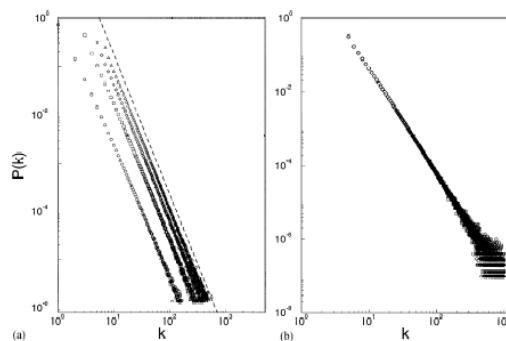
- GROWTH: starting with a small number of vertices  $m_0$  at every timestep add a new vertex with  $m \leq m_0$
- PREFERENTIAL ATTACHMENT: the probability  $\Pi$  that a new vertex will be connected to vertex  $i$  depends on the connectivity of that vertex:  $\Pi(k_i) = \frac{k_i}{\sum_j k_j}$



© Eric Xing @ CMU, 2005-2009

Barabasi & Bonabeau Sci. Am. May 2003 60-69  
Barabasi and Albert. Science (1999) 286 509-512

## Scale Free Networks



a) Connectivity distribution with  $N = m_0 + t = 300000$  and  $m_0 = m = 1$  (circles),  $m_0 = m = 3$  (squares), and  $m_0 = m = 5$  (diamonds) and  $m_0 = m = 7$  (triangles)

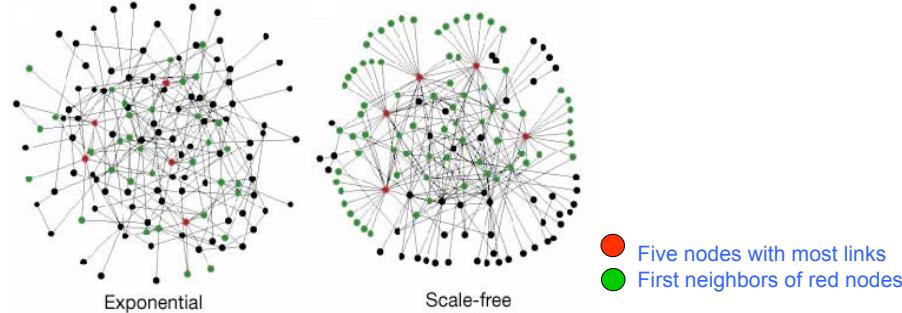
b)  $P(k)$  for  $m_0 = m = 5$  and system size  $N = 100000$  (circles),  $N = 150000$  (squares) and  $N = 200000$  (diamonds)

© Eric Xing @ CMU, 2005-2009 Barabasi and Albert. Science (1999) 286 509-512

## Comparing Random Vs. Scale-free Networks



- Two networks both with 130 nodes and 215 links



- The importance of the connected nodes in the scale-free network:
  - 27% of the nodes are reached by the five most connected nodes, in the scale-free network more than 60% are reached.

© Eric Xing @ CMU, 2005-2009

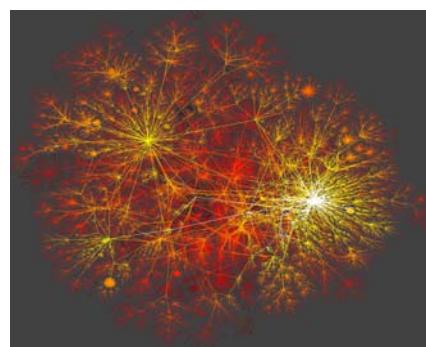
Modified from Albert et al. *Science* (2000) **406** 378-382

## Failure and Attack

Albert et al. *Science* (2000) **406** 378-382



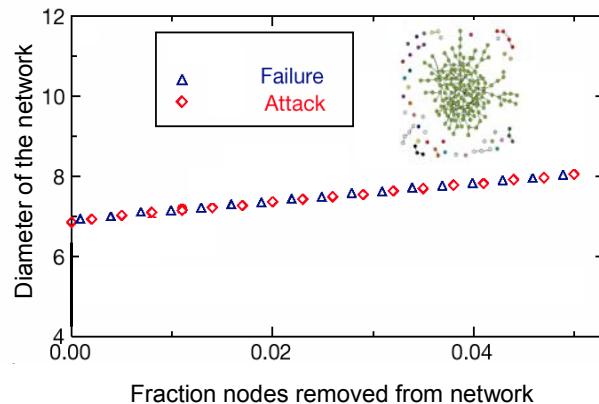
- Failure: Removal of a random node.
- Attack: The selection and removal of a few nodes that play a vital role in maintaining the network's connectivity.



© Eric Xing @ CMU, 2005-2009 a macroscopic snapshot of Internet connectivity by K. C. Claffy

## Failure and Attack, cont.

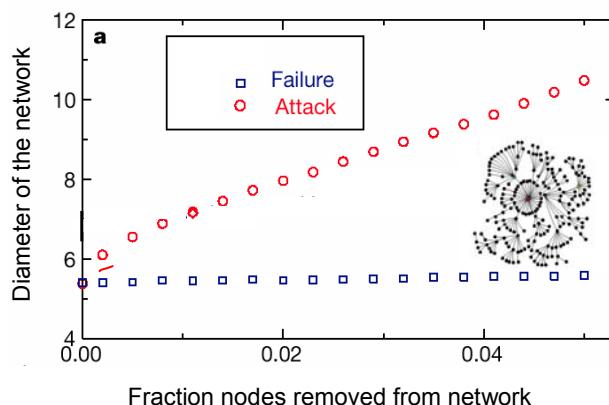
- Random networks are homogeneous so there is no difference between failure and attack



© Eric Xing @ CMU, 2005-2009 Modified from Albert et al. Science (2000) 406 378-382

## Failure and Attack, cont.

- Scale-free networks are robust to failure but susceptible to attack

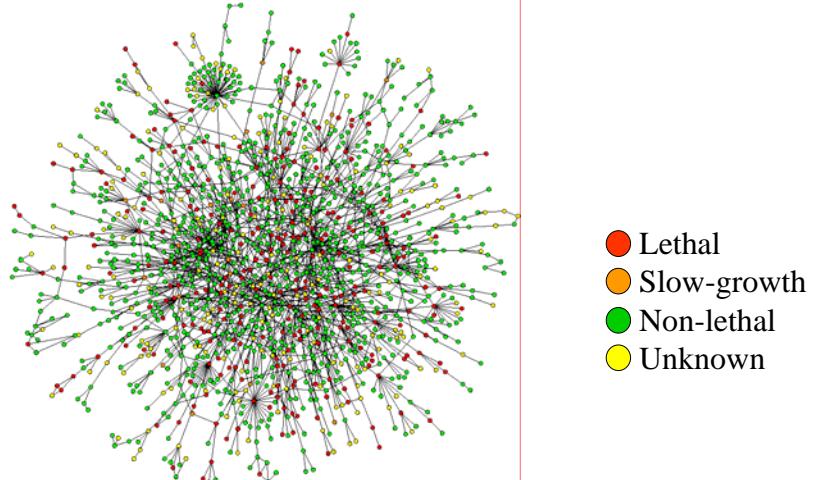


© Eric Xing @ CMU, 2005-2009 Modified from Albert et al. Science (2000) 406 378-382

## The phenotypic effect of removing the corresponding protein:



- Yeast protein-protein interaction networks

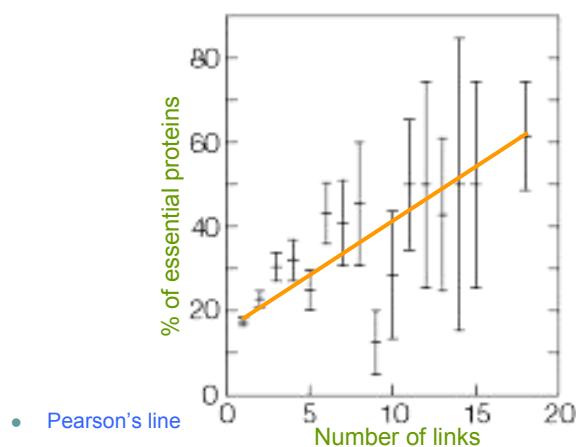


Jeong *et al. Nature* 411, 41 - 42 (2001)

## Lethality and connectivity are positively correlated



- Average and standard deviation for the various clusters.

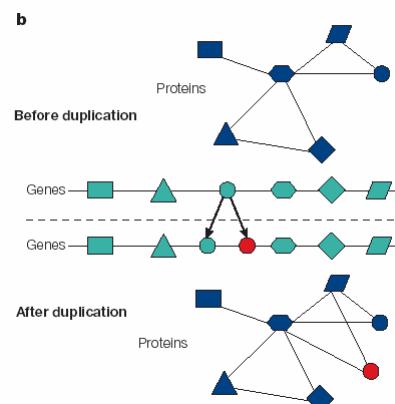


© Eric Xing @ CMU, 2005-2009

Jeong *et al. Nature* 411, 41 - 42 (2001)

## Genetic foundation of network evolution

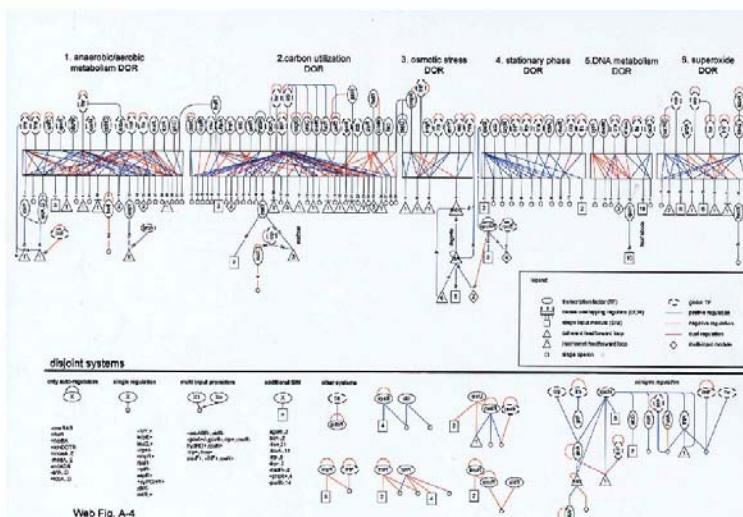
- Network expansion by gene duplication
  - A gene duplicates
  - Inherits its connections
  - The connections can change
- Gene duplication slow  $\sim 10^{-9}/\text{year}$
- Connection evolution fast  $\sim 10^{-6}/\text{year}$



© Eric Xing @ CMU, 2005-2009

Barabasi & Oltvai. NRG. (2004) 5 101-113

## The transcriptional regulation network of *Escherichia coli*.



Web Fig. A-4

Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan & Uri Alon (2002) Nature Genetics 31, 64 - 68

## Motifs in the networks

- Deployed a motif detection algorithm on the transcriptional regulation network.
- Identified three recurring motifs (significant with respect to random graphs).

**single input module (SIM)**

**feedforward loop**

**dense overlapping regulons (DOR)**

Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan & Uri Alon (2002) Nature Genetics 31:64 - 68  
© Eric Xing @ CMU, 2005-2009

## Convergent evolution of gene circuits

- Are the components of the feed-forward loop for example homologous?
- Circuit duplication is rare in the transcription network

**a**

$F_{\max} = 1$   
 $C = 5$   
 $A = 0$

$F_{\max} = 3$   
 $C = 2$

$F_{\max} = 5$   
 $C = 1$   
 $A \approx 1$

Increasing common ancestry

**b**

|                | Circuit type | Number of circuits | Number of families (C)          | Index of common ancestry (A)        | Largest circuit family ( $F_{\max}$ ) |
|----------------|--------------|--------------------|---------------------------------|-------------------------------------|---------------------------------------|
| <i>Yeast</i>   | Feed-forward | 48                 | 44 (46.8 ± 1.9; $P = 0.05$ )    | 0.082 (0.023 ± 0.035; $P = 0.009$ ) | 5 (1.9 ± 1.4; $P = 0.05$ )            |
|                | Bi-fan       | 542                | 435 (469.0 ± 37.7; $P = 0.18$ ) | 0.197 (0.135 ± 0.070; $P = 0.18$ )  | 49 (41.0 ± 31.7; $P = 0.33$ )         |
|                | MM-2         | 176                | 168 (164.5 ± 8.6; $P = 0.60$ )  | 0.045 (0.065 ± 0.050; $P = 0.60$ )  | 5 (7.4 ± 6.2; $P = 0.59$ )            |
|                | Reg chain(3) | 33                 | 33                              | 0                                   | 1                                     |
| <i>E. coli</i> | Feed-forward | 11                 | 11                              | 0                                   | 1                                     |
|                | Bi-fan       | 27                 | 27                              | 0                                   | 1                                     |

Conant and Wagner. Nature Genetics (2003) 34:264-266  
© Eric Xing @ CMU, 2005-2009

## Acknowledgements



- Itai Yanai and Doron Lancet
- Mark Gerstein
- Roded Sharan
- Jotun Hein
- Serafim Batzoglou

for some of the slides modified from their lectures or tutorials

© Eric Xing @ CMU, 2005-2009

43

## Reference

- Barabási and Albert. *Emergence of scaling in random networks*. Science **286**, 509-512 (1999).
- Yook et al. *Functional and topological characterization of protein interaction networks*. Proteomics **4**, 928-942 (2004).
- Jeong et al. *The large-scale organization of metabolic networks*. Nature **407**, 651-654 (2000).
- Albert et al. *Error and attack tolerance in complex networks*. Nature **406**, 378 (2000).
- Barabási and Oltvai, *Network Biology: Understanding the Cell's Functional Organization*, Nature Reviews, vol 5, 2004

© Eric Xing @ CMU, 2005-2009

44