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What is population structure? .

e Population Structure

e Among a set of individuals, groups characterized by some measure of genetic
distinction

e A “population” is usually characterized by a distinct distribution over genotypes
e Example

Genotypes . aa . aA . AA

Population 1 Population 2
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Motivation :
\
e Reconstructing individual ancestry: The Genographic
Project
o httos://aenoaraphic.nationalaeoaranhic.com/aenoaraphic/index.html
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Motivation (continued) o

e Association studies
e Testing genetic basis for diseases.
e Population structure in data causes false positives.

Population 1 Cases Population 2

I
-
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Controls
Genotype laalll2a A
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Genetic Markers

e Single Nucleotide Polymorphism (SNP)
e Base changes at a single position
e Each variant called an allele
e Most common type of polymorphism

chromosome;::/_
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More about SNPs o

e SNPs account for around 90% of human genomic variation

About 10 million SNPs exist in human populations

Most SNPs are outside protein coding regions, i.e., in exons

1 SNP every 100-300 base pairs
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Markers (contd) &
e Variable Number Tandem Repeats (VNTRS)
e Short nucleotide sequence repeating in the genome.
e Often show length variation between individuals
Microsatellites (4-5 base repeating units)
Minisatellites (longer repeating units)
e Represented as number of counts
VNTR (DS180) alleles in 6 individuals.
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Restriction fragment length
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polymorphisms :

e DNA variations that can be detected by breaking DNA using
restriction enzymes, followed by gel electorphoresis.

e Method used before modern DNA sequencing techniques.

Restriction site
4

(VN béood grop)

Electrophorasis
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Other genetic markers

o S i
e Copy Number Variation _ G @
—E— ... =
e DNA segment whose numbers T e | g
differ in different genomes o S
e i,
Kilobases to megabases in size = \ o
4_D_
—=
e Usually two copies of all
autosomal regions, one per e} )
—
chromosome = :
N R |

e Variation due to deletion or
Copy-number variation (CMV) can occur in ambiguous

dup||cat|on patterns. (a) Individuals in a populstion may have
different copy numbers on hemalegous
chromosomes at CNV loci. For example, here
individuzl & and D have two copies, zlthough the
patterns are different: A has one copy on each
chromosome, whereas D has two on one
chromosome and zera on the other. (b) Individuals
may also have CNVs that contain SHPs. For example,
individuals E, F, and G each have three copies, but
the patterns can be distinguished by the numbers of
copies on each chromoseme and variations defined
by SHPs.
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Non-autosomal markers

e Y-chromosome
e Inherited paternally

e Finding Y-chromosomal Adam
Patrilineal most recent common ancestor of all modern Y chromosomes

e Mitochondrial DNA

e Inherited maternally
e Finding Mitochondrial Eve
Matrilineal most recent common ancestor of all mitochondrial DNA
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simple markers o
e Low-dimensional projection
e PCA-based methods
Cavalli-Sforza et al (1978)
Patterson et al (2006)
e Clustering
e Distance-based
Bowcock et al (1994)
e Model-based
STRUCTURE- Pritchard et al (2000)
mStruct — Shringarpure and Xing (2008)
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Low-dimensional projections e

Genetic data is very large

Number of markers may range from a few hundreds to hundreds of thousands

Thus each individual is described by a high-dimensional vector of marker

configurations
A low-dimensional projection allows easy visualization

Technique used

Factor analysis
Many statistical methods exist — ICA, PCA, NMF etc.
Principal Components Analysis (next slide)

Allows projection of individuals into a low dimensional space

Usually projected to 2 dimensions to allow visualization
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Principal Component Analysis 5
e Most common form of factor analysis
e The new variables/dimensions ...
e Are linear combinations of the original ones
e Are uncorrelated with one another
Orthogonal in original dimension space
e Capture as much of the original variance in the data as possible
e Are called Principal Components
e Demo at
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What are the new axes? :

PC 2 PC 1

Original Variable B

Original Variable A

» Orthogonal directions of greatest variance in data
* Projections along PC1 discriminate the data most along any one axis
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Principal Components '
\
e First principal component is the direction of
greatest variability (covariance) in the data
e Second is the next orthogonal (uncorrelated)
direction of greatest variability
e So first remove all the variability along the first
component, and then find the next direction of
greatest variability
e Andsoon ...
. . . e00
Principal Components Analysis sess
(PCA) s

e Principle
e Linear projection method to reduce the number of parameters
e Transfer a set of correlated variables into a new set of uncorrelated variables
e Map the data into a space of lower dimensionality
e A form of unsupervised learning

e Properties

e It can be viewed as a rotation of the existing axes to new positions in the space
defined by original variables

e New axes are orthogonal and represent the directions with maximum variability




Computing the Components

e Data points are vectors in a multidimensional space
e Projection of vector x onto an axis (dimension) u is u.x

e Direction of greatest variability is that in which the average square of
the projection is greatest
e l.e. usuch that E((u.x)?2) over all x is maximized

e (we subtract the mean along each dimension, and center the original
axis system at the centroid of all data points, for simplicity)

e This direction of u jis the directidn of the first Principal Component

Computing the Components

e E((u.x)?) =E ((u.x) (ux)") = E (u.x.x ".uT)

e The matrix C = x.xT contains the correlations
(similarities) of the original axes based on how the data
values project onto them

e So we are looking for w that maximizes uCuT, subject to
u being unit-length

e It is maximized when w is the principal eigenvector of the
matrix C, in which case
e uCu™=u)uT =1 if uis unit-length, where 1 is the principal
eigenvalue of the correlation matrix C

e The eigenvalue denotes the amount of variability captured along
that dimension
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Why the Eigenvectors? g
Maximise u™XXTu s.tu'u = 1
Construct Langrangian u™xT™u —AuTu
Vector of partial derivatives set to zero
XXTu—-AU=(XXT-A)u=0
As u # 0 then u must be an eigenvector of xx™ with
eigenvalue A
[ X X ]
0000
H
Singular Value Decomposition '

e The first root is called the prinicipal eigenvalue which has an
associated orthonormal (u"u = 1) eigenvector u

e Subsequent roots are ordered such that A;> A, >... > A\, with

rank(D) non-zero values.
e Eigenvectors form an orthonormal basis i.e. u;"u; = g;
e The eigenvalue decomposition of xx™ = UZUT , where U = [u,,
U, ..., uy]and Z =diag[A , A5, ..., Ayl

¢ Similarly the eigenvalue decomposition of x'™x = VEVT
e The SVD is closely related to the above x=U Z"2 VT

e The left eigenvectors U, right eigenvectors V,

e singular values = square root of eigenvalues.




Computing the Components

e Similarly for the next axis, etc.

e S0, the new axes are the eigenvectors of the matrix of
correlations of the original variables, which captures the
similarities of the original variables based on how data
samples project to them

A

Geometrically: centering followed by rotation
— Linear transformation

PCs, Variance and Least-Squares

e The first PC retains the greatest amount of variation in the
sample

e The k' PC retains the ki greatest fraction of the variation in
the sample

e The ki largest eigenvalue of the correlation matrix C is the
variance in the sample along the k" PC

e The least-squares view: PCs are a series of linear least squares
fits to a sample, each orthogonal to all previous ones




How Many PCs?

e For n original dimensions, correlation matrix is nxn, and has
up to n eigenvectors. So n PCs.

e Where does dimensionality reduction come from?

Dimensionality Reduction

Can ignore the components of lesser significance.

PC1 PC2 PC3 PC4 PCs5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t lose
much

— n dimensions in original data
— calculate n eigenvectors and eigenvalues

— choose only the first p eigenvectors, based on their
eigenvalues

— final data set has only p dimensions
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Comments ot
Advantages

o Statistical tests
e For significance of results (Patterson et al. 2006)

e Easy visualization

Disadvantages

e Only mathematical analysis
e No intuition about underlying processes
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Distance-based Clustering :
Idea
e Compute genetic distance between individuals
e Many distance measures possible.
e Nei’s genetic distance (Nei, 1972)
e Cavalli-Sforza chord measure (Cavalli-Sforza and Edwards, 1967)
e Reynolds, Weir, and Cockerham’s genetic distance (1983)
e Construct a pairwise distance matrix for given set of
individuals
e Visualize using some representation
e Tree-based (neighbor-joining tree)
e Multi-dimensional scaling
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Comments 8
Advantages

e Simple to compute
e Easy to visualize

Disadvantages

e Clustering depends on distance measure chosen
e Difficult to determine confidence in clustering
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Structure s
e How to display population structure?
e Structure (Pritchard et al, 2000)
Ancestral
proportion
East Asia Oceania

Genetic structure of Human Populations (Rosenberg et al.
2002)

29

Structure model

e Hypothesis: Modern populations are created by an intermixing
of ancestral populations.

e An individual’s genome contains contributions from one or
more ancestral populations.

e The contributions of populations can be different for different
individuals.

e Other assumptions
e Hardy-weinberg equilbrium
e No linkage disequilbrium
e Markers are i.i.d (independent and identically distributed)
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The Admixture Model

e Admixture of "ancestral frequency profiles (AP)"

Ancestral populations

Structure 2.1 3 0.4 represented as allele
. B - - freguency profiles

e No distinction between ancestral and current alleles
e Does not model mutation and chromosomal recombination

The Admixture Model

B = Distribution over alleles
e One per population —locus pair

e To generate an individual’s
genome

e Sample 0 from Dirichlet( a)

e For each locus
e Sample z from Multinomial( 0 )

e Sample x from B corresponding to the
population chosen by z
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Comments s
Advantages
e Generative process
e Explicit model of admixture
e Meaningful results
e Clustering is probabilistic
e Can interpret confidence level of clusters
Disadvantages
e Alleles are same in ancestral and modern populations
e No models of mutation, recombination
e Note: Recombination added in extension by Falush et al.
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Allele mutations- modeling allele | $3::
similarity -

e Microsatellite units 3

Allele - 2 | I— —

Allele -9 | 1 1 1 1 1 1 1 1

Allele - 10 | 1 1 1 1 1 1 1 1

e Allele 9 is more similar to allele 10 than allele 2
e Allele 10 might be a mutation of allele 9

e Structure considers all alleles to be unique

e What if we model allele similarity?

e mStruct — Structure under mutations
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From Structure to mStruct
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e From admixture of APs to admixture of MIMs
e MiM: population-specific Mixture of Inheritance Models

e The inheritance model: )

. ) 1 q ,-
e Microsatellite: F[bu]—l_n.,_in-" . SNPs: Paja) = 7= (1 - 570 q b e {0,1).

Comparing population structure
maps s

B Ancestry structure maps inferred from microsatellite portion of the HGDP dataset,
using mStruct and Structure with 4 ancestral population. The colors represent different an-
cestral populations.

* A common ancestral population is now seen across all continents!
» Clusters remain unchanged




Analyzing mutation empirically

\
e Contours of empirical accumulated mutation over the world

map.
e Red - high, Blue —low

A gradient outward from Africa!
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Phylogenetic tree from mStruct selt
Structural map -
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Neighbour-joining Phylogenetic
Trees from the Structural Maps

mStruct Structure

Novel approaches

e Using indirect approaches to study population history

e Do not use human genetic data, but study human population
evolution

e Using language phylogenies
e Gray etal. (2009)

e Using gut bacteria from human populations
e Falush et al. (2003)
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