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What is population structure?
Population Structure

Among a set of individuals, groups characterized by some measure of genetic 
distinction
A “population” is usually characterized by a distinct distribution over genotypes
Example
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Genotypes                 aa aA AA

Population 1 Population 2
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Motivation
Reconstructing individual ancestry: The Genographic 
Project

https://genographic.nationalgeographic.com/genographic/index.html

Studying human migration
Out of Africa
Multi-regional hypothesis

Study of various traits
Lactose intolerance
Origins in Europe?
Infer from 

Migration studies
Mutation studies in populations

Motivation (continued)
Association studies

Testing genetic basis for diseases.
Population structure in data causes false positives.

© Eric Xing @ CMU, 2005-2009



Genetic Markers
Single Nucleotide Polymorphism (SNP)

Base changes at a single position
Each variant called an allele
Most common type of polymorphism
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More about SNPs
SNPs account for around 90% of human genomic variation

About 10 million SNPs exist in human populations

Most SNPs are outside protein coding regions, i.e., in exons

1 SNP every 100-300 base pairs
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Markers (contd)
Variable Number Tandem Repeats (VNTRs)

Short nucleotide sequence repeating in the genome.
Often show length variation between individuals

Microsatellites (4-5 base repeating units)
Minisatellites (longer repeating units)

Represented as number of counts
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VNTR (DS180) alleles in 6 individuals.

Restriction fragment length 
polymorphisms

DNA variations that can be detected by breaking DNA using 
restriction enzymes, followed by gel electorphoresis.
Method used before modern DNA sequencing techniques.
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Other genetic markers

Copy Number Variation
DNA segment whose numbers 
differ in different genomes

Kilobases to megabases in size

Usually two copies of all  
autosomal regions, one per 
chromosome

Variation due to deletion or 
duplication
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Non-autosomal markers
Y-chromosome

Inherited paternally
Finding Y-chromosomal Adam

Patrilineal most recent common ancestor of all modern Y chromosomes

Mitochondrial DNA
Inherited maternally
Finding Mitochondrial Eve

Matrilineal most recent common ancestor of all mitochondrial DNA
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Methods based on analysis of 
simple markers

Low-dimensional projection
PCA-based methods

Cavalli-Sforza et al (1978)
Patterson et al (2006)

Clustering
Distance-based

Bowcock et al (1994)

Model-based
STRUCTURE- Pritchard et al (2000)
mStruct – Shringarpure and Xing (2008)
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Low-dimensional projections
Genetic data is very large

Number of markers may range from a few hundreds to hundreds of thousands
Thus each individual is described by a high-dimensional vector of marker 
configurations 
A low-dimensional projection allows easy visualization

Technique used
Factor analysis
Many statistical methods exist – ICA, PCA, NMF etc.
Principal Components Analysis (next slide)

Allows projection of individuals into a low dimensional space

Usually projected to 2 dimensions to allow visualization
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Principal Component Analysis
Most common form of factor analysis

The new variables/dimensions ...
Are linear combinations of the original ones

Are uncorrelated with one another
Orthogonal in original dimension space

Capture as much of the original variance in the data as possible

Are called Principal Components

Demo at http://www.cs.mcgill.ca/~sqrt/dimr/dimreduction.html

What are the new axes?

Original Variable A

PC 1PC 2

• Orthogonal directions of greatest variance in data
• Projections along PC1 discriminate the data most along any one axis
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Principal Components

First principal component is the direction of 
greatest variability (covariance) in the data
Second is the next orthogonal (uncorrelated) 
direction of greatest variability

So first remove all the variability along the first 
component, and then find the next direction of 
greatest variability

And so on …

Principal Components Analysis 
(PCA)

Principle
Linear projection method to reduce the number of parameters 
Transfer a set of correlated variables into a new set of uncorrelated variables
Map the data into a space of lower dimensionality
A form of unsupervised learning

Properties
It can be viewed as a rotation of the existing axes to new positions in the space 
defined by original variables
New axes are orthogonal and represent the directions with maximum variability



Computing the Components
Data points are vectors in a multidimensional space
Projection of vector x onto an axis (dimension) u is u.x
Direction of greatest variability is that in which the average square of 
the projection is greatest

I.e. u such that E((u.x)2) over all x is maximized
(we subtract the mean along each dimension, and center the original 
axis system at the centroid of all data points, for simplicity)
This direction of u is the direction of the first Principal Component

Computing the Components
E((u.x)2)  = E ((u.x) (u.x)T) = E (u.x.x T.uT)

The matrix C = x.xT contains the correlations 
(similarities) of the original axes based on how the data 
values project onto them

So we are looking for w that maximizes uCuT, subject to 
u being unit-length

It is maximized when w is the principal eigenvector of the 
matrix C, in which case

uCuT = uλuT = λ if u is unit-length, where λ is the principal 
eigenvalue of the correlation matrix C
The eigenvalue denotes the amount of variability captured along 
that dimension



Why the Eigenvectors?

Maximise uTxxTu s.t uTu = 1 
Construct Langrangian uTxxTu – λuTu
Vector of partial derivatives set to zero

xxTu – λu = (xxT – λI) u = 0
As u ≠ 0 then u must be an eigenvector of xxT with 

eigenvalue λ

Singular Value Decomposition
The first root is called the prinicipal eigenvalue which has an 
associated orthonormal (uTu = 1) eigenvector u 
Subsequent roots are ordered such that λ1> λ2  >… > λM  with 
rank(D) non-zero values.
Eigenvectors form an orthonormal basis i.e. ui

Tuj = δij

The eigenvalue decomposition of xxT = UΣUT , where U = [u1, 
u2, …, uM] and Σ = diag[λ 1, λ 2, …, λ M] 
Similarly the eigenvalue decomposition of xTx = VΣVT

The SVD is closely related to the above x=U Σ1/2 VT

The left eigenvectors U, right eigenvectors V, 
singular values = square root of eigenvalues.



Computing the Components

• Geometrically: centering followed by rotation
– Linear transformation

Similarly for the next axis, etc. 
So, the new axes are the eigenvectors of the matrix of 
correlations of the original variables, which captures the 
similarities of the original variables based on how data 
samples project to them

PCs, Variance and Least-Squares

The first PC retains the greatest amount of variation in the 
sample
The kth PC retains the kth greatest fraction of the variation in 
the sample
The kth largest eigenvalue of the correlation matrix C is the 
variance in the sample along the kth PC

The least-squares view: PCs are a series of linear least squares 
fits to a sample, each orthogonal to all previous ones 



How Many PCs?
For n original dimensions, correlation matrix is nxn, and has 
up to n eigenvectors. So n PCs.
Where does dimensionality reduction come from?
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Dimensionality Reduction
Can ignore the components of lesser significance. 

You do lose some information, but if the eigenvalues are small, you don’t lose 
much
– n dimensions in original data 
– calculate n eigenvectors and eigenvalues
– choose only the first p eigenvectors, based on their 

eigenvalues
– final data set has only p dimensions



PCA analysis (Cavalli-
sforza,1978)

Plot of geographical distribution of 3 PCs
First – blue
Second  - green
Third  - red
Intensity proportional to value of each component
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Comments
Advantages

Statistical tests
For significance of results (Patterson et al. 2006)

Easy visualization

Disadvantages

Only mathematical analysis
No intuition about underlying processes
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Distance-based Clustering
Idea

Compute genetic distance between individuals
Many distance measures possible.
Nei’s genetic distance (Nei, 1972)
Cavalli-Sforza chord measure (Cavalli-Sforza and Edwards, 1967)
Reynolds, Weir, and Cockerham’s genetic distance (1983)

Construct a pairwise distance matrix for given set of 
individuals
Visualize using some representation

Tree-based (neighbor-joining tree)
Multi-dimensional scaling
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Comments
Advantages

Simple to compute
Easy to visualize

Disadvantages

Clustering depends on distance measure chosen
Difficult to determine confidence in clustering
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Model-based clustering: 
Structure

How to display population structure?
Structure (Pritchard et al, 2000) 

Genetic structure of Human Populations (Rosenberg et al. 
2002) 

Africa Europe Mid-East Cent./S. 
Asia

East Asia Oceania

Ancestral 
proportion

Structure model
Hypothesis: Modern populations are created by an intermixing 
of ancestral populations.
An individual’s genome contains contributions from one or 
more ancestral populations.
The contributions of populations can be different for different 
individuals.
Other assumptions

Hardy-weinberg equilbrium
No linkage disequilbrium
Markers are i.i.d (independent and identically distributed)
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The Admixture Model
Admixture of "ancestral frequency profiles (AP)" 

No distinction between ancestral and current alleles
Does not model mutation and chromosomal recombination

`

Ancestral populations 
represented as allele 
frequency profilesfrequency profiles
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0.90
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The Admixture Model

β = Distribution over alleles
One per population –locus pair

To generate an individual’s 
genome
Sample θ from  Dirichlet(α)
For each locus

Sample  z   from Multinomial(θ)
Sample  x from β corresponding to the 
population chosen by z

0.3 0.3 0.4

0.1 0.7 0.2

0.5 0.2 0.3

0.3 0.3 0.4
0.3 0.3 0.4

0.1 0.7 0.2
0.1 0.7 0.2

0.5 0.2 0.3
0.5 0.2 0.3



Comments
Advantages

Generative process
Explicit model of admixture

Meaningful results
Clustering is probabilistic

Can interpret confidence level of clusters

Disadvantages
Alleles are same in ancestral and modern populations
No models of mutation, recombination

Note: Recombination added in extension by Falush et al.
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Allele mutations- modeling allele 
similarity

Microsatellite units

Allele 9 is more similar to allele 10 than allele 2
Allele 10 might be a mutation of allele 9
Structure considers all alleles to be unique
What if we model allele similarity? 
mStruct – Structure under mutations
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Allele - 2

Allele - 9

Allele - 10



From Structure to mStruct

From admixture of APs to admixture of MIMs
MiM: population-specific Mixture of Inheritance Models

The inheritance model:
Microsatellite: SNPs: 
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Comparing population structure 
maps

• A common ancestral population is now seen across all continents!
• Clusters remain unchanged



Analyzing mutation empirically
Contours of empirical accumulated mutation over the world 
map.

Red – high, Blue –low
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A gradient outward from  Africa!

Phylogenetic tree from mStruct
Structural map
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Neighbour-joining Phylogenetic 
Trees from the Structural Maps

mStruct Structure

Novel approaches
Using indirect approaches to study population history

Do not use human genetic data, but study human population 
evolution

Using language phylogenies
Gray et al. (2009)

Using gut bacteria from human populations
Falush et al. (2003)
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