

# Computational Genomics

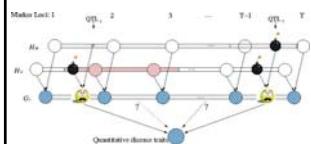
10-810/02-710, Spring 2009

## Quantitative Trait Locus (QTL) Mapping

Eric Xing

Lecture 23, April 13, 2009

Reading: DTW book, Chap 13

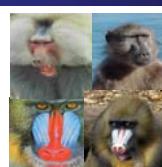


© Eric Xing @ CMU, 2005-2009

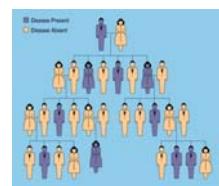
1

## Phenotypical Traits

- Body measures:

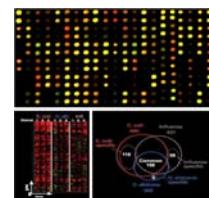


- 



Disease susceptibility and drug response

- Gene expression (microarray)



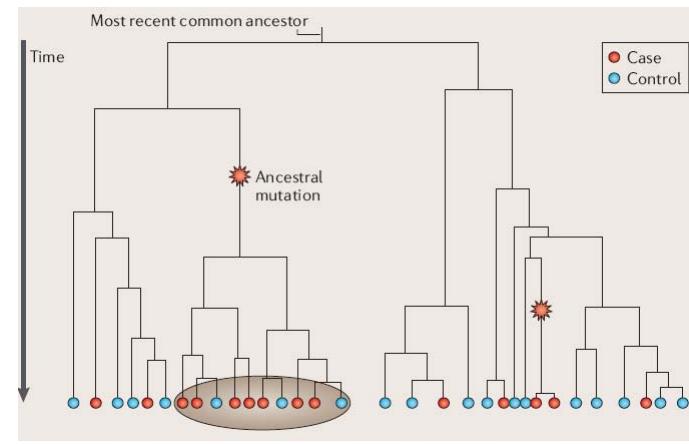
© Eric Xing @ CMU, 2005-2009

2

## Population-Based Association Study



- Case/control data are collected from unrelated individuals
  - All individuals are related if we go back far enough in the ancestry



3

## Linkage Analysis vs. Association Analysis



- Linkage analysis: Use the linkage disequilibrium between marker locus and disease locus to localize disease locus
- Association : co-occurrence of alleles and phenotypes in population. Association is observed when
  - A) There is a direct causation from the allele to disease
  - B) The marker and the disease locus are in linkage disequilibrium
  - C) There are confounding factors such as population stratification or admixture
    - It is important to try to exclude C) from A) and B) in association analysis!
- The marker locus found in linkage analysis of family data may not show association to the disease in the population of unrelated individuals.

© Eric Xing @ CMU, 2005-2009

4

# Linkage Analysis vs. Association Analysis

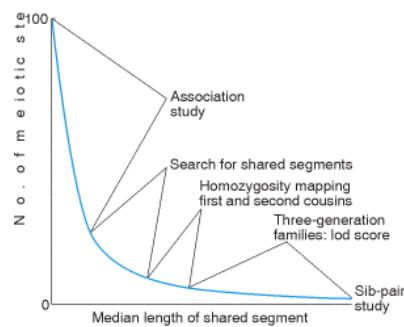


- Linkage Analysis
  - Based on pedigree data
  - Only a very small number of meiosis (and recombinations) separates two individuals in a given family.
    - When the disease locus is mapped to be linked to a marker locus, the mapped segment of chromosome is usually **too large**. A follow-up study is necessary to further narrow down the candidate region
    - A relatively small number of markers need to be genotyped
- Association Analysis
  - Based on controls/cases for a given disease, unrelated individuals in population
  - A large number of meiosis separates two individuals.
    - The chromosome segment in linkage disequilibrium is **small**.
    - A relatively large number of markers are required.
    - SNPs are commonly used genetic markers because of the availability of high-throughput genotyping technology

© Eric Xing @ CMU, 2005-2009

5

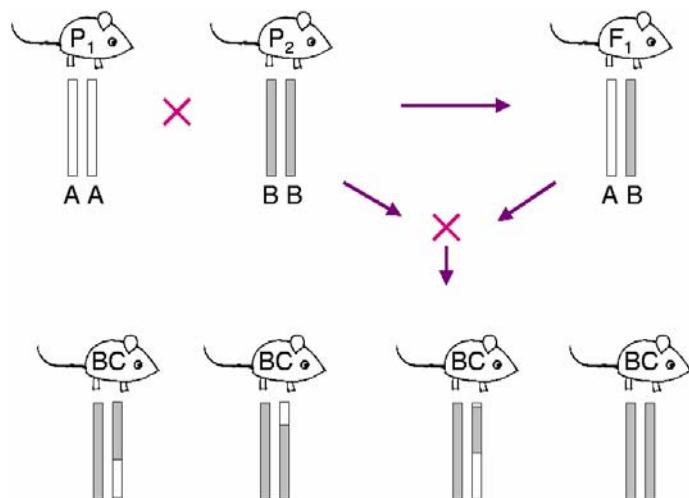
# Linkage Analysis vs. Association Analysis



© Eric Xing @ CMU, 2005-2009

6

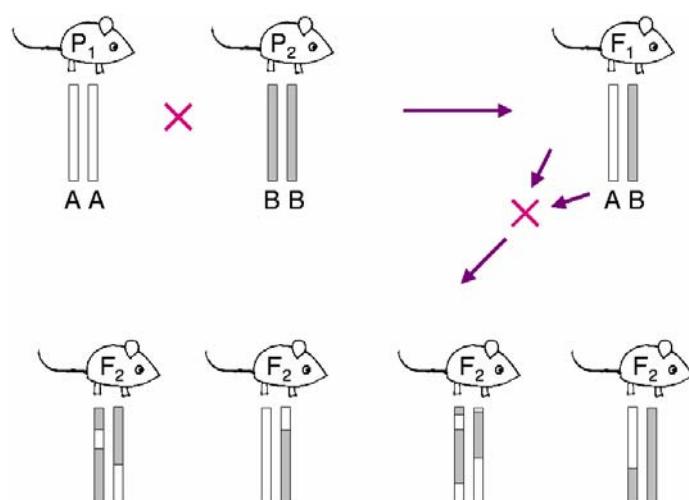
## Backcross experiment



© Eric Xing @ CMU, 2005-2009

7

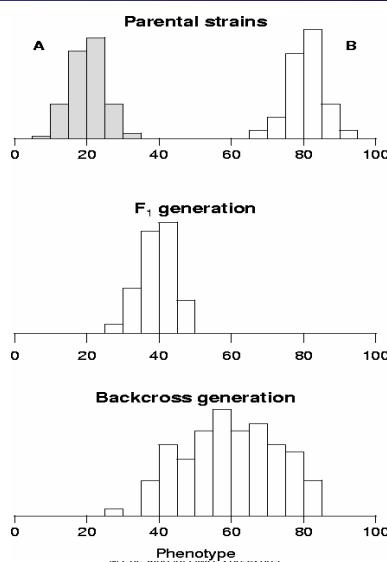
## $F_2$ intercross experiment



© Eric Xing @ CMU, 2005-2009

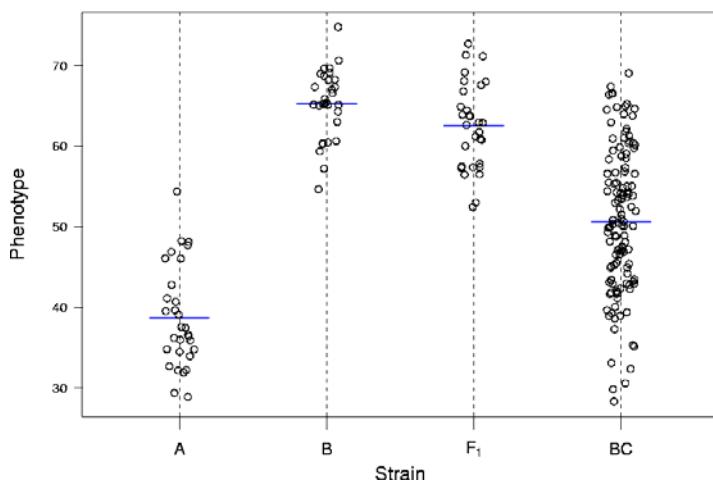
8

## Trait distributions: a classical view



9

## Another representation of a trait distribution

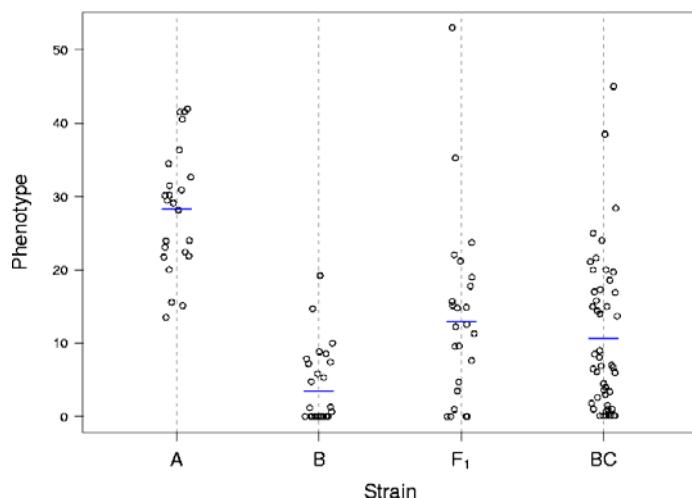


Note the equivalent of dominance in our trait distributions.

© Eric Xing @ CMU, 2005-2009

10

## A second example



Note the approximate additivity in our trait distributions here.

11

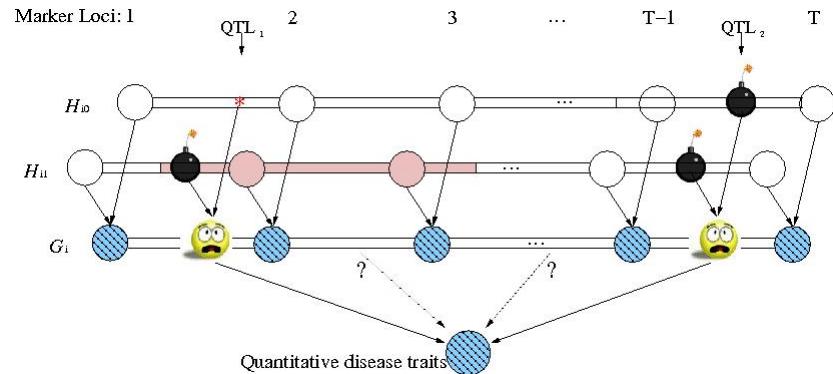
## QTL mapping

- Data
  - Phenotypes:  $y_i$  = trait value for mouse  $i$
  - Genotype:  $x_{ij} = 1/0$  (i.e., A/H) of mouse  $i$  at marker  $j$  (backcross); need three states for intercross
  - Genetic map: Locations of markers
- Goals
  - Identify the (or at least one) genomic region, called quantitative trait locus = QTL, that contributes to variation in the trait
  - Form confidence intervals for the QTL location
  - Estimate QTL effects

© Eric Xing @ CMU, 2005-2009

12

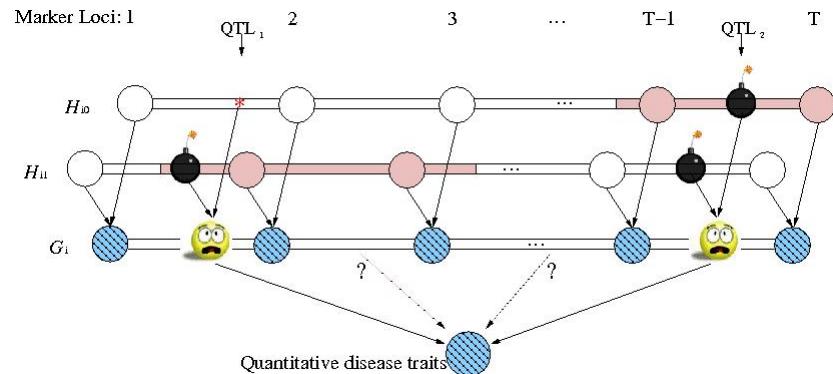
## QTL mapping (BC)



© Eric Xing @ CMU, 2005-2009

13

## QTL mapping (F2)



© Eric Xing @ CMU, 2005-2009

14

## Discrete Traits: Case/Control Association Analysis



- Case/control data are collected from unrelated individuals

|              | Case(1)/Control(0) | Genotype |   |   |
|--------------|--------------------|----------|---|---|
| Individual 1 | 0                  | C        | T | C |
|              |                    | C        | A | C |
| Individual 2 | 1                  | G        | A | G |
|              |                    | C        | T | C |
| ⋮            |                    |          |   |   |
| Individual N | 1                  | G        | T | C |
|              |                    | G        | T | G |

← Markers with no association      → Marker associated with the disease

© Eric Xing @ CMU, 2005-2009

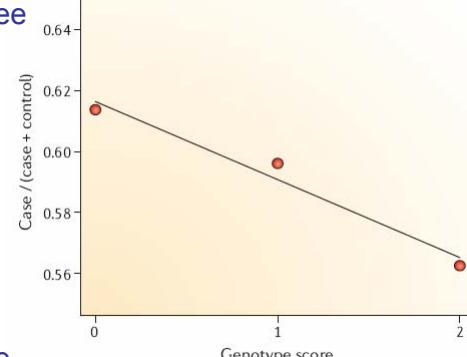
15

## Discrete Case/Control Association Analysis



- For each marker locus, find the 3x2 contingency table containing the counts of three genotypes

| Genotype | Case          | Control       |
|----------|---------------|---------------|
| AA       | $N_{case,AA}$ | $N_{cont,AA}$ |
| Aa       | $N_{case,Aa}$ | $N_{cont,Aa}$ |
| aa       | $N_{case,aa}$ | $N_{cont,aa}$ |
| Total    | $N_{case}$    | $N_{cont}$    |



- Pearson test with 2 df, or Fisher's exact test under the null hypothesis of no association

© Eric Xing @ CMU, 2005-2009

16

## Discrete Case/Control Association Analysis



- Alternatively, assume an additive model, where the heterozygote risk is approximately between the two homozygotes
- Form a 2x2 contingency table. Each individual contributes twice from each of the two chromosomes.

| Genotype | Case                       | Control                    |
|----------|----------------------------|----------------------------|
| A        | $G_{\text{case},A}$        | $G_{\text{cont},A}$        |
| a        | $G_{\text{case},a}$        | $G_{\text{cont},a}$        |
| Total    | $2 \times N_{\text{case}}$ | $2 \times N_{\text{cont}}$ |

- Pearson test with 1df

© Eric Xing @ CMU, 2005-2009

17

## Models: Recombination



- We assume no chromatid or crossover interference.
  - ⇒ points of exchange (crossovers) along chromosomes are distributed as a Poisson process, rate 1 in genetic distance
  - ⇒ the marker genotypes  $\{x_{ij}\}$  form a Markov chain along the chromosome for a backcross; what do they form in an  $F_2$  intercross?

© Eric Xing @ CMU, 2005-2009

18

## Models: Genotype → Phenotype



- Let  $y$  = phenotype,  
 $g$  = whole genome genotype
- Imagine a small number of QTL with genotypes  $g_1, \dots, g_p$  ( $2^p$  or  $3^p$  distinct genotypes for BC, IC resp, why?).

We assume

$$E(y|g) = \mu(g_1, \dots, g_p), \quad \text{var}(y|g) = \sigma^2(g_1, \dots, g_p)$$

© Eric Xing @ CMU, 2005-2009

19

## Models: Genotype → Phenotype



- **Homoscedacity** (constant variance)

$$\sigma^2(g_1, \dots, g_p) = \sigma^2 \text{ (constant)}$$

- **Normality** of residual variation

$$y|g \sim N(\mu_g, \sigma^2)$$

- **Additivity:**

$$\mu(g_1, \dots, g_p) = \mu + \sum \Delta_j g_j \quad (g_j = 0/1 \text{ for BC})$$

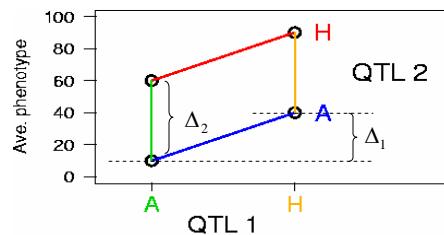
- **Epistasis:** Any deviations from additivity.

$$\mu(g_1, \dots, g_p) = \mu + \sum \Delta_j g_j + \sum \omega_{ij} g_i g_j$$

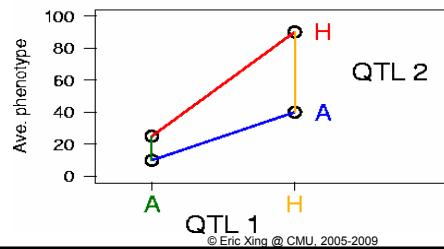
© Eric Xing @ CMU, 2005-2009

20

## Additivity, or non-additivity (BC)



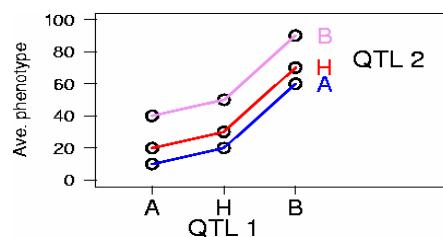
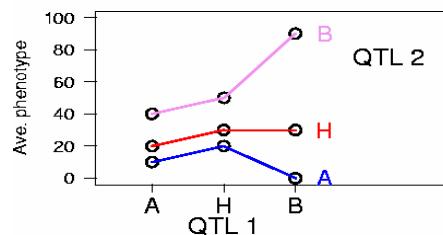
The effect of QTL 1 is the same, irrespective of the genotype of QTL 2, and vice versa.



Epistatic QTLs

$$\Delta_i \sim p(\cdot | g_j)$$

## Additivity or non-additivity: F2



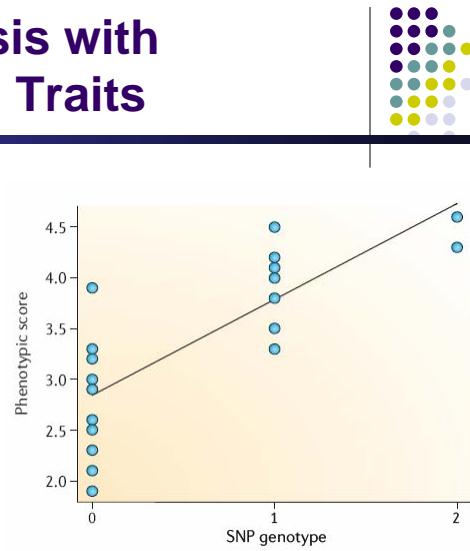
© Eric Xing @ CMU, 2005-2009

21

22

## Association Analysis with Continuous-valued Traits

- Continuous-valued traits
  - Cholesterol level, blood pressure etc.
- For each locus, fit a linear regression using the number of minor alleles at the given locus of the individual as covariate
- Alternatively, for each locus perform ANOVA



© Eric Xing @ CMU, 2005-2009

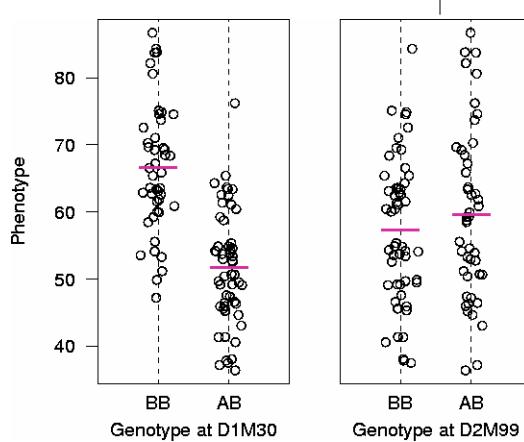
23

## The simplest method: ANOVA

### One marker at a time:

- Split subjects into groups according to genotype at a single marker
- Do a t-test/ANOVA
- Repeat for each marker

t-test/ANOVA will tell whether there is sufficient evidence to say that measurements from one condition (i.e., genotype) differ significantly from another



- LOD score =  $\log_{10}$  likelihood ratio, comparing single-QTL model to the “no QTL anywhere” model.

© Eric Xing @ CMU, 2005-2009

24

## ANOVA at marker loci



### Advantages

- Simple
- Easily incorporate covariates (sex, env, treatment ...)
- Easily extended to more complex models

### Disadvantages

- Must exclude individuals with missing genotype data
- Imperfect information about QTL location
- Suffers in low density scans
- Only considers one QTL at a time

© Eric Xing @ CMU, 2005-2009

25

## Interval mapping (IM)



- Consider any one position in the genome as the location for a putative QTL
- For a particular mouse, let  $z = 1/0$  if (unobserved) genotype at QTL is AB/AA
- Calculate  $\Pr(z = 1 | \text{marker data of an interval bracketing the QTL})$ 
  - Assume no meiotic interference
  - Need only consider flanking typed markers
  - May allow for the presence of genotyping errors
- Given genotype at the QTL, phenotype is distributed as

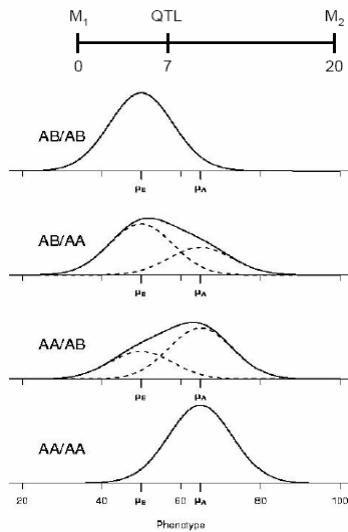
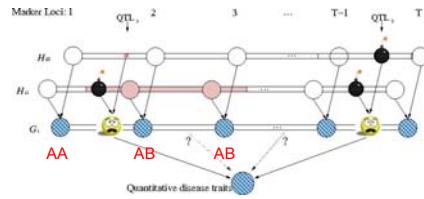
$$y_i | z_i \sim \text{Normal}(\mu_{zi}, \sigma^2)$$

- Given marker data, phenotype follows a *mixture* of normal distributions

© Eric Xing @ CMU, 2005-2009

26

## IM: the mixture model



© Eric Xing @ CMU, 2005-2009

27

## IM: estimation and LOD scores

- Use a version of the EM algorithm to obtain estimates of  $\mu_{AA}$ ,  $\mu_{AB}$ , and  $\sigma$  (an *iterative* algorithm)
- Calculate the LOD score

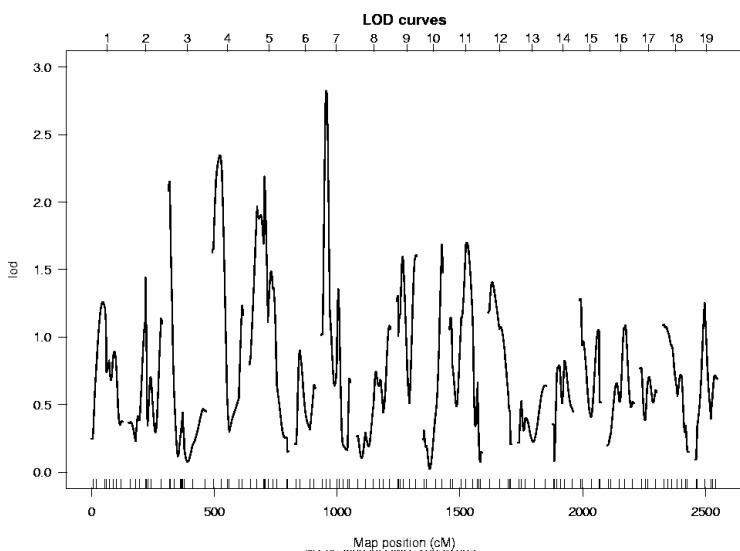
$$\text{LOD} = \log_{10} \left\{ \frac{P(\text{data} | \hat{\mu}_{AA}, \hat{\mu}_{AB})}{P(\text{data} | \text{no QTL})} \right\}$$

- Repeat for all other genomic positions (in practice, at 0.5 cM steps along genome)

© Eric Xing @ CMU, 2005-2009

28

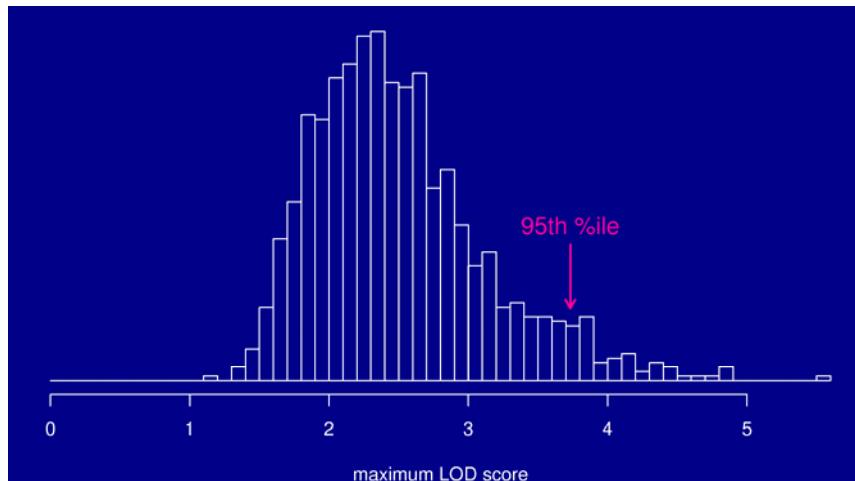
## LOD score curves



## LOD thresholds

- To account for the genome-wide search, compare the observed LOD scores to the distribution of the maximum LOD score, genome-wide, that would be obtained if there were no QTL anywhere.
- **LOD threshold** = 95th %ile of the distribution of genome-wide maxLOD, when there are no QTL anywhere
- **Derivations:**
  - Analytical calculations (Lander & Botstein, 1989)
  - Simulations
  - Permutation tests (Churchill & Doerge, 1994).

## Permutation distribution for trait4



© Eric Xing @ CMU, 2005-2009

31

## Interval mapping



### Advantages

- Make proper account of missing data
- Can allow for the presence of genotyping errors
- Pretty pictures
- Higher power in low-density scans
- Improved estimate of QTL location

### Disadvantages

- Greater computational effort
- Requires specialized software
- More difficult to include covariates?
- Only considers one QTL at a time

© Eric Xing @ CMU, 2005-2009

32

## Multiple QTL methods



### Why consider multiple QTL at once?

- To separate linked QTL. If two QTL are close together on the same chromosome, our one-at-a-time strategy may have problems finding either (e.g. if they work in opposite directions, or interact). Our LOD scores won't make sense either.
- To permit the investigation of interactions. It may be that interactions greatly strengthen our ability to find QTL, though this is not clear.
- To reduce residual variation. If QTL exist at loci other than the one we are currently considering, they should be in our model. For if they are not, they will be in the error, and hence reduce our ability to detect the current one. See below.

© Eric Xing @ CMU, 2005-2009

33

## The problem



- $n$  backcross subjects;  $M$  markers in all, with at most a handful expected to be near QTL

$x_{ij}$  = genotype (0/1) of mouse  $i$  at marker  $j$   
 $y_i$  = phenotype (trait value) of mouse  $i$

$$Y_i = \mu + \sum_{j=1}^M \Delta_j x_{ij} + \varepsilon_i \quad \text{Which } \Delta_j \neq 0 ?$$

⇒ Variable selection in linear models (regression)

© Eric Xing @ CMU, 2005-2009

34

## Finding QTL as model selection



### Select class of models

- Additive models
- Additive plus pairwise interactions
- Regression trees

### Search model space

- Forward selection (FS)
- Backward elimination (BE)
- FS followed by BE
- MCMC

### Compare models ( $\gamma$ )

- $BIC_{\delta}(\gamma) = \log RSS(\gamma) + \gamma(\delta \log n/n)$
- Sequential permutation tests

### Assess performance

- Maximize no QTL found;
- control false positive rate

© Eric Xing @ CMU, 2005-2009

35

## Logistic Regression for Multiple SNPs in Case/control Association



|              | Case(1)/Control(0) | Genotype                    |
|--------------|--------------------|-----------------------------|
| Individual 1 | 0                  | ... C ... T ... C ... T ... |
| Individual 2 | 1                  | ... G ... A ... G ... A ... |
| ⋮            |                    |                             |
| Individual N | 1                  | ... G ... T ... C ... T ... |

$$p(y_i=\text{case}) = f\left(\sum_{k=1}^K x_{ik} \beta_k\right)$$

- $f$  : logistic function
- $\beta_k$  : weight for the  $k$ th SNP
- $x_{ik}$  : genotype of the  $k$ th SNP for the  $i$ th individual (0, 1, or 2 depending on the number of minor alleles)

© Eric Xing @ CMU, 2005-2009

36

## Logistic Regression for Multiple SNPs in Case/control Association



- Variable selection methods
  - Stepwise selection procedure
  - Shrinkage methods such as Lasso
- Similarly, for continuous-valued traits, multivariate regression with variable selection methods

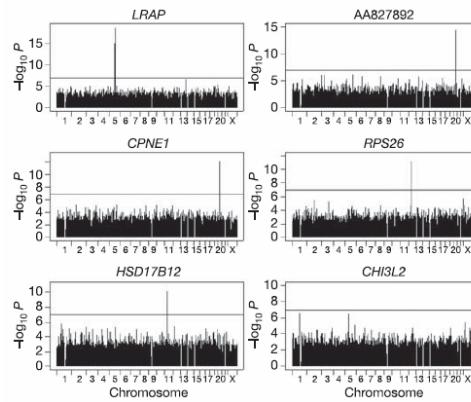
© Eric Xing @ CMU, 2005-2009

37

## Expression QTL



- Microarray gene expression level data as phenotype
  - cis eQTL : eQTL for the given gene is located near the gene
  - trans eQTL : eQTL for the given gene is located far from the gene or on a different chromosome



38

## Multi-marker Approach



- Form a new allele by combining multiple SNPs

| SNP A | SNP B |  | Auxiliary Markers for Haplotypes |   |   |   |
|-------|-------|--|----------------------------------|---|---|---|
| 0     | 0     |  | 1                                | 0 | 0 | 0 |
| 0     | 1     |  | 0                                | 1 | 0 | 0 |
| 1     | 0     |  | 0                                | 0 | 1 | 0 |
| 1     | 1     |  | 0                                | 0 | 0 | 1 |

- Pros : multi-marker approach can capture dependencies across multiple markers
  - SNPs in LD form a haplotype that can be tested as a single allele
- Cons: Haplotype of  $K$  SNPs result in  $2^K$  haplotypes
  - The number of samples corresponding to each haplotype decreases quickly as we increase  $K$

© Eric Xing @ CMU, 2005-2009

39

## Acknowledgements

Melanie Bahlo, WEHI  
Hongyu Zhao, Yale  
Karl Broman, Johns Hopkins  
Nusrat Rabbee, UCB

© Eric Xing @ CMU, 2005-2009

40

## References



[www.netspace.org/MendelWeb](http://www.netspace.org/MendelWeb)

HLK Whitehouse: **Towards an Understanding of the Mechanism of Heredity**, 3rd ed. Arnold 1973

Kenneth Lange: **Mathematical and statistical methods for genetic analysis**, Springer 1997

Elizabeth A Thompson: **Statistical inference from genetic data on pedigrees**, CBMS, IMS, 2000.

Jurg Ott : **Analysis of human genetic linkage**, 3rd edn  
Johns Hopkins University Press 1999

JD Terwilliger & J Ott : **Handbook of human genetic linkage**, Johns Hopkins University Press 1994