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o Reading: DTW book, Chap 13
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Phenotypical Traits o

e Body measures: R

o == g2 Disease susceptibility and
T % drug response

e Gene expression (microarray) --
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Population-Based Association sels
Study s

\
e Case/control data are collected from unrelated individuals
e Allindividuals are related if we go back far enough in the ancestry
¢
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Linkage Analysis vs. Association | 832¢
Analysis o

e Linkage analysis: Use the linkage disequilibrium between
marker locus and disease locus to localize disease locus

e Association : co-occurrence of alleles and phenotypes in
population. Association is observed when
A) There is a direct causation from the allele to disease
B) The marker and the disease locus are in linkage disequilibrium
C) There are confounding factors such as population stratification or admixture
e Itis important to try to exclude C) from A) and B) in association analysis!

e The marker locus found in linkage analysis of family data may
not show association to the disease in the population of

unrelated individuals.
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Linkage Analysis vs. Association
Analysis

e Linkage Analysis

e Based on pedigree data

Only a very small number of meiosis (and recombinations) separates two
individuals in a given family.

When the disease locus is mapped to be linked to a marker locus, the mapped segment
of chromosome is usually too large. A follow-up study is necessary to further narrow down
the candidate region

A relatively small number of markers need to be genotyped
e Association Analysis
°

Based on controls/cases for a given disease, unrelated individuals in population
°

A large number of meiosis separates two individuals.

The chromosome segment in linkage disequilibrium is small.
A relatively large number of markers are required.

SNPs are commonly used genetic markers because of the availability of high-throughput
genotyping technology
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Linkage Analysis vs. Association
Analysis
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Backcross experiment
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Trait distributions: a classical sels
view oo
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Another representation of a trait HHH
distribution °e
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Note the equivalent of dominance in our trait distributions.
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Note the approximate additivity in our trait distributions here. .
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QTL mapping g

e Data
e Phenotypes: ;= trait value for mouse i

e Genotype:  x;=1/0 (i.e., A/H) of mouse i at marker j(backcross);
need three states for intercross

e Genetic map: Locations of markers

e Goals

e Identify the (or at least one) genomic region, called quantitative trait locus = QTL,
that contributes to variation in the trait

e Form confidence intervals for the QTL location
e Estimate QTL effects
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QTL mapping (BC)

Marker Loci: 1 2

Quantitative disease trait

QTL mapping (F2) s:

Marker Loci: 1 2

Quantitative disease trait
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Discrete Traits:
Case/Control Association Analysis

\
e Case/control data are collected from unrelated individuals

Case(1)/Control(0) Genotype
Individual 1 0
Individual 2 1
Individual N 1

Markers with no Marker associated
o £rc xing @ ABSHOGHA ON with the disease

Discrete Case/Control
Association Analysis

e For each marker locus, find the
3x2 contingency table
containing the counts of three
genotypes

o

o

~
N

AA Ncase,AA Ncont,AA

Aa Ncase Aa Ncont,Aa

Case /(case + contral)
o o
n o
oo o

aa Ncase,aa Ncont,aa
Total Ncase Necont | ®

=}
n
=

e Pearson test with 2 df, or B 1 2
Fisher’'s exact test under the Cenotype score
null hypothesis of no
association
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Discrete Case/Control
Association Analysis

e Alternatively, assume an additive model, where the
heterozygote risk is approximately between the two
homozygotes

e Form a 2x2 contingency table. Each individual contributes
twice from each of the two chromosomes.

A GeaseA Gcont,A
a Geasea Geonta
Total 2XNcase 2XNcont

e Pearson test with 1df
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Models: Recombination °e

e \We assume no chromatid or crossover interference.

= points of exchange (crossovers) along chromosomes
are distributed as a Poisson process, rate 1 in genetic
distance

— the marker genotypes {x;} form a Markov chain along
the chromosome for a backcross; what do they form in
an F,intercross?
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Models: Genotype — Phenotype

e Let y = phenotype,
g = whole genome genotype

e Imagine a small number of QTL with genotypes g;,...., g,
(2r or 3~ distinct genotypes for BC, IC resp, why?).

We assume

E(ylg) = m9+,--.9,), var(ylg) = 0%(9;,...9,)

Models: Genotype — Phenotype | i

e Homoscedacity (constant variance)
0%(94,..-9,) = o (constant)

e Normality of residual variation
Vg ~ Ny 0% )

e Additivity:
#9y,---9p) =t 349; (9;=0/1for BC)

e Epistasis: Any deviations from additivity.
MGp---9p) St 34912099,
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Additivity, or non-additivity (BC)
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The effect of QTL 1 is
the same, irrespective
of the genotype of QTL
2, and vice versa.

Epistatic QTLs
A~ p(C 195)
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Additivity or non-additivity: F2
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Association Analysis with sess
[ X J
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Continuous-valued Traits s
e Continuous-valued traits
e Cholesterol level, blood pressure etc. s & ©
(-]
e For each locus, fit a linear . A0S g
regression using the number of § | A
minor alleles at the given locus ¢ 8 o
of the individual as covariate g 104
" 2548
e Alternatively, for each locus <
perform ANOVA e : .
’ SNPgelnotype !
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The simplest method: ANOVA o
One marker at a time: o | : °
. . . & : 1o @
e Split subjects into groups 80 — o : 1 b
according to genotype at ~ = op g
a single marker 70 - %& ! & (%b
: g d 0
e Do a t-test/ANOVA 5 ﬁo % (g &
e Repeat for each marker 3 807 ‘ @ T8
B % % o %
t-test/ANOVA will tell whether 50 . og@ Qo
there is sufficient evidence to 1 ‘@% ! %’O
say that measurements from 40 g o
one condition (i.e., genotype) | ‘% QJ ol
differ significantly from BB AB BB AB
another Genotype at D1M30 Genotype at D2M29
e LOD score = log,, likelihood ratio, comparing single-QTL model
to the “no QTL anywhere” model.
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ANOVA at marker loci 5
Advantages
+ Simple
» Easily incorporate covariates (sex, env, treatment ...)
» Easily extended to more complex models
Disadvantages
* Must exclude individuals with missing genotype data
* Imperfect information about QTL location
» Suffers in low density scans
* Only considers one QTL at a time
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Interval mapping (IM) o

e Consider any one position in the genome as the location for a
putative QTL

e For a particular mouse, let z = 1/0 if (unobserved) genotype
at QTL is AB/AA

e Calculate Pr(z = 1 | marker data of an interval bracketing the QTL)
e Assume no meiotic interference
e Need only consider flanking typed markers
e May allow for the presence of genotyping errors

e Given genotype at the QTL, phenotype is distributed as

y;| z; ~ Normal( u

zi 7

o?)

e Given marker data, phenotype follows a mixture of normal
distributions
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IM: the mixture model
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IM: estimation and LOD scores .

e Use a version of the EM algorithm to obtain estimates
of Waa, Mag, @nd o (an iterative algorithm)

e Calculate the LOD score
_ {P(datam )
LOD = 109, Up gataino o70) }

e Repeat for all other genomic positions (in practice, at
0.5 cM steps along genome)
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LOD score curves

LOD curves
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LOD thresholds

e To account for the genome-wide search, compare the
observed LOD scores to the distribution of the maximum LOD
score, genome-wide, that would be obtained if there were no
QTL anywhere.

e LOD threshold = 95th %ile of the distribution of genome-wide
maxLOD, when there are no QTL anywhere

e Derivations:
e Analytical calculations (Lander & Botstein, 1989)
e Simulations
e Permutation tests (Churchill & Doerge, 1994).
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Permutation distribution for trait4

maximum LOD score
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Interval mapping

Advantages

* Make proper account of missing data

» Can allow for the presence of genotyping errors
* Pretty pictures

» Higher power in low-density scans

« Improved estimate of QTL location

Disadvantages

» Greater computational effort

* Requires specialized software

» More difficult to include covariates?
* Only considers one QTL at a time
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Multiple QTL methods

Why consider multiple QTL at once?

e To separate linked QTL. If two QTL are close together on the same
chromosome, our one-at-a-time strategy may have problems finding
either (e.qg. if they work in opposite directions, or interact). Our LOD
scores won’t make sense either.

e To permit the investigation of interactions. It may be that interactions
greatly strengthen our ability to find QTL, though this is not clear.

e To reduce residual variation. If QTL exist at loci other than the one
we are currently considering, they should be in our model. For if they
are not, they will be in the error, and hence reduce our ability to
detect the current one. See below.
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The problem o

e n backcross subjects; M markers in all, with at most a
handful expected to be near QTL

X; = genotype (0/1) of mouse i at marker j
y;= phenotype (trait value) of mouse i

Y= u+ T MAX + Which 4,0 ?

= Variable selection in linear models (regression)
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Finding QTL as model selection

Select class of models Search model space
e Additive models e Forward selection (FS)
e Additive plus pairwise interactions e Backward elimination (BE)
e Regression trees e FS followed by BE
e MCMC

Compare models (3

o BIC () = logRSS(»)+ y(dlog n/n) Assess performance

e Sequential permutation tests e Maximize no QTL found;
e control false positive rate
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Logistic Regression for Multiple sels
SNPs in Case/control Association | ¢

Case(1)/Control(0) Genotype
Individual 1 0
Individual 2 1
Individual N 1

« f : logistic function
* Bk : weight for the kth SNP

« Xik : genotype of the kth SNP for the ith individual

(0,1, or 2 depending on the number of minor

alleles)
© Eric Xing @ CMU, 2005-2009 36

p(y,=Case)=f (> x5,

18



Logistic Regression for Multiple
SNPs in Case/control Association

e Variable selection methods
e Stepwise selection procedure
e Shrinkage methods such as Lasso

e Similarly, for continuous-valued traits, multivariate regression
with variable selection methods

© Eric Xing @ CMU, 2005-2009 37
(X X ]
esce

. [ X0

Expression QTL H

e Microarray gene expression level data as phenotype
e cis eQTL : eQTL for the given gene is located near the gene

e trans eQTL : eQTL for the given gene is located far from the gene oron a
different chromosome
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Multi-marker Approach

e Form a new allele by combining multiple SNPs

SNP A SNPB Auxiliary Markers for Haplotypes
0 0 ) 1 0 0 o0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

e Pros : multi-marker approach can capture dependencies
across multiple markers

e SNPsin LD form a haplotype that can be tested as a single allele

e Cons: Haplotype of K SNPs result in 2X haplotypes

e The number of samples corresponding to each haplotype decreases quickly as
we increase K
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