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Quantitative Trait Locus (QTL) MappingQuantitative Trait Locus (QTL) Mapping

Eric XingEric Xing

Lecture 23, April 13, 2009

Reading: DTW book, Chap 13 
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Phenotypical Traits 

Body measures:

Disease susceptibility and 
drug response

Gene expression (microarray)
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Population-Based Association 
Study

Case/control data are collected from unrelated individuals
All individuals are related if we go back far enough in the ancestry
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Linkage Analysis vs. Association 
Analysis

Linkage analysis: Use the linkage disequilibrium between 
marker locus and disease locus to localize disease locus 

Association : co-occurrence of alleles and phenotypes in 
population. Association is observed when
A) There is a direct causation from the allele to disease
B) The marker and the disease locus are in linkage disequilibrium
C) There are confounding factors such as population stratification or admixture

It is important to try to exclude C) from A) and B) in association analysis!

The marker locus found in linkage analysis of family data may 
not show association to the disease in the population of 
unrelated individuals.
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Linkage Analysis vs. Association 
Analysis

Linkage Analysis
Based on pedigree data
Only a very small number of meiosis (and recombinations) separates two 
individuals in a given family. 

When the disease locus is mapped to be linked to a marker locus, the mapped segment 
of chromosome is usually too large. A follow-up study is necessary to further narrow down 
the candidate region
A relatively small number of markers need to be genotyped

Association Analysis
Based on controls/cases for a given disease, unrelated individuals in population
A large number of meiosis separates two individuals. 

The chromosome segment in linkage disequilibrium is small.
A relatively large number of markers are required.
SNPs are commonly used genetic markers because of the availability of high-throughput 
genotyping technology
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Linkage Analysis vs. Association 
Analysis
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Backcross experiment
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F2 intercross experiment
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Trait distributions: a classical 
view
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Note the equivalent of dominance in our trait distributions.

Another representation of a trait 
distribution
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Note the approximate additivity in our trait distributions here.

A second example
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QTL mapping
Data

Phenotypes:  yi = trait value for mouse i
Genotype:      xij = 1/0 (i.e., A/H) of mouse i at marker j(backcross);

need three states for intercross
Genetic map: Locations of markers

Goals 
Identify the (or at least one) genomic region, called quantitative trait locus = QTL,  
that contributes to variation in the trait
Form confidence intervals for the QTL location 
Estimate QTL effects
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QTL mapping (BC)
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QTL mapping (F2)
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Discrete Traits: 
Case/Control Association Analysis

Case/control data are collected from unrelated individuals

Individual 1

Individual 2

Individual N

Case(1)/Control(0)

0

1

1

Genotype

. . C . . . . .  T . . C . . . . . . . T . . .

. . C . . . . .  A . . C . . . . . . . T . . .

. . G  . . . . . A . . G . . . . . . . A . . .

. . C . . . . .  T . . C . . . . . . . T . . .

. . G  . . . . . T . . C . . . . . . . T . . .

. . G  . . . . . T . . G . . . . . . . T . . .

Marker associated 
with the disease

Markers with no 
association

…
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Discrete Case/Control 
Association Analysis

For each marker locus, find the 
3x2 contingency table 
containing the counts of three 
genotypes

Pearson test with 2 df, or 
Fisher’s exact test under the 
null hypothesis of no 
association 

Genotype Case Control
AA Ncase,AA Ncont,AA

Aa Ncase,Aa Ncont,Aa

aa Ncase,aa Ncont,aa

Total Ncase Ncont
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Discrete Case/Control
Association Analysis 

Alternatively, assume an additive model, where the 
heterozygote risk is approximately between the two 
homozygotes
Form a 2x2 contingency table. Each individual contributes 
twice from each of the two chromosomes.

Pearson test with 1df

Genotype Case Control
A Gcase,A Gcont,A

a Gcase,a Gcont,a

Total 2xNcase 2xNcont
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Models: Recombination

We assume no chromatid or crossover interference.

⇒ points of exchange (crossovers) along chromosomes 
are distributed as a Poisson process, rate 1 in genetic 
distance

⇒ the marker genotypes {xij} form a Markov chain along 
the chromosome for a backcross; what do they form in 
an F2 intercross?
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Models: Genotype → Phenotype
Let   y = phenotype,                                        

g = whole genome genotype

Imagine a small number of QTL with genotypes g1,…., gp
(2p or 3p distinct genotypes for BC, IC resp, why?).                  

We assume

E(y|g) =   µ(g1,…gp ), var(y|g) =  σ2(g1,…gp)
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Models: Genotype → Phenotype
Homoscedacity (constant variance)

 σ2(g1,…gp)  = σ2  (constant)

Normality of residual variation
y|g ~ N(µg ,σ2  )

Additivity: 
µ(g1,…gp ) = µ + ∑∆j gj (gj = 0/1 for BC)

Epistasis: Any deviations from additivity.

µ(g1,…gp ) = µ + ∑∆j gj +∑ωij gi gj
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The effect of QTL 1 is 
the same, irrespective 
of the genotype of QTL 
2, and vice versa.1∆2∆

Epistatic QTLs

)|(~ ji gp∆

Additivity, or non-additivity (BC)
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Additivity or non-additivity: F2
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Association Analysis with 
Continuous-valued Traits

Continuous-valued traits
Cholesterol level, blood pressure etc.

For each locus, fit a linear 
regression using the number of 
minor alleles at the given locus 
of the individual as covariate

Alternatively, for each locus 
perform ANOVA
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One marker at a time:
● Split subjects into groups 

according to genotype at 
a single marker

● Do a t-test/ANOVA
● Repeat for each marker

● LOD score = log10 likelihood ratio, comparing single-QTL model 
to the “no QTL anywhere” model.

t-test/ANOVA will tell whether 
there is sufficient evidence to 
say that measurements from 
one condition (i.e., genotype) 
differ significantly from 
another 

The simplest method: ANOVA



13

© Eric Xing @ CMU, 2005-2009 25

Advantages
• Simple
• Easily incorporate covariates (sex, env, treatment ...)
• Easily extended to more complex models

Disadvantages
• Must exclude individuals with missing genotype data
• Imperfect information about QTL location
• Suffers in low density scans
• Only considers one QTL at a time

ANOVA at marker loci
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Interval mapping (IM)
Consider any one position in the genome as the location for a 
putative QTL
For a particular mouse, let z = 1/0 if  (unobserved) genotype 
at QTL is AB/AA
Calculate Pr(z = 1 | marker data of an interval bracketing the QTL)

Assume no meiotic interference
Need only consider flanking typed markers
May allow for the presence of genotyping errors

Given genotype at the QTL, phenotype is distributed as

yi | zi ~ Normal( µzi , σ2 )

Given marker data, phenotype follows a mixture of normal 
distributions
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AA AB AB

IM: the mixture model
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● Use a version of the EM algorithm to obtain estimates 
of µAA, µAB, and σ (an iterative algorithm)

● Calculate the LOD score

● Repeat for all other genomic positions (in practice, at 
0.5 cM steps along genome)

{ })QTL no|data(
)ˆ,ˆ|data(

10log=LOD P
P ABAA µµ

IM: estimation and LOD scores
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LOD score curves
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LOD thresholds
To account for the genome-wide search, compare the 
observed LOD scores to the distribution of the maximum LOD 
score, genome-wide, that would be obtained if there were no 
QTL anywhere.

LOD threshold = 95th %ile of the distribution of genome-wide   
maxLOD, when there are no QTL anywhere

Derivations: 
Analytical calculations (Lander & Botstein, 1989)
Simulations 
Permutation tests (Churchill & Doerge, 1994).
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Permutation distribution for trait4
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Advantages
• Make proper account of missing data
• Can allow for the presence of genotyping errors
• Pretty pictures
• Higher power in low-density scans
• Improved estimate of QTL location

Disadvantages
• Greater computational effort
• Requires specialized software
• More difficult to include covariates?
• Only considers one QTL at a time

Interval mapping
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Multiple QTL methods

Why consider multiple QTL at once?

To separate linked QTL. If two QTL are close together on the same 
chromosome, our one-at-a-time strategy may have problems finding 
either (e.g. if they work in opposite directions, or interact). Our LOD 
scores won’t make sense either.
To permit the investigation of interactions. It may be that interactions 
greatly strengthen our ability to find QTL, though this is not clear. 

To reduce residual variation. If  QTL exist at loci other than the one 
we are currently considering, they should be in our model. For if they 
are not, they will be in the error, and hence reduce our ability to 
detect the current one. See below.
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The problem

n backcross subjects; M markers in all, with at most a 
handful expected to be near QTL

xij = genotype (0/1) of mouse i at marker j
yi = phenotype (trait value) of mouse i

Yi = µ + ∑j=1
M ∆jxij + εj                 Which ∆j ≠ 0 ?

⇒ Variable selection in linear models (regression)
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Select class of models
Additive models
Additive plus pairwise interactions
Regression trees

Compare models (γ)
BICδ(γ) = logRSS(γ)+ γ(δlog n/n)
Sequential permutation tests

Search model space
Forward selection (FS)
Backward elimination (BE)
FS followed by BE
MCMC

Assess performance
Maximize no QTL found;
control false positive rate

Finding QTL as model selection

© Eric Xing @ CMU, 2005-2009 36

Logistic Regression for Multiple 
SNPs in Case/control Association

. . C . . . . .  T . . C . . . . . . . T . . .

. . C . . . . .  A . . C . . . . . . . T . . .

. . G  . . . . . A . . G . . . . . . . A . . .

. . C . . . . .  T . . C . . . . . . . T . . .

. . G  . . . . . T . . C . . . . . . . T . . .

. . G  . . . . . T . . G . . . . . . . T . . .

∑
=

==
K

k
ik ki xfyp

1
)()case( β

• f : logistic function
• βk : weight for the kth SNP
• xik : genotype of the kth SNP for the ith individual 
(0,1, or 2 depending on the number of minor 
alleles) 

Individual 1

Individual 2

Individual N

Case(1)/Control(0)

0

1

1

Genotype

…
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Logistic Regression for Multiple 
SNPs in Case/control Association

Variable selection methods
Stepwise selection procedure
Shrinkage methods such as Lasso

Similarly, for continuous-valued traits, multivariate regression 
with variable selection methods
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Expression QTL
Microarray gene expression level data as phenotype

cis eQTL : eQTL for the given gene is located near the gene
trans eQTL : eQTL for the given gene is located far from the gene or on a 
different chromosome
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Multi-marker Approach
Form a new allele by combining multiple SNPs

Pros : multi-marker approach can capture dependencies 
across multiple markers

SNPs in LD form a haplotype that can be tested as a single allele

Cons: Haplotype of K SNPs result in 2K haplotypes
The number of samples corresponding to each haplotype decreases quickly as 
we increase K

SNP A    SNP B
0 0
0 1
1 0
1 1

Auxiliary Markers for Haplotypes
1 0        0 0
0 1        0 0
0 0        1 0
0 0        0 1
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