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TCGAGGTATTAAC
The ancestral chromosome
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TCGAGGTATTAAC
TCTAGGTATTAAC
TCGAGGCATTAAC
TCTAGGTGTTAAC
TCGAGGTATTAGC
TCTAGGTATCAAC

*   ** * *
The SNPsThe SNPs
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TCTCGGAGGAGGTATATTTTAAAACC
TCTCTTAGGAGGTATATTTTAAAACC
TCTCGGAGGAGGCACATTTTAAAACC
TCTCTTAGGAGGTGTGTTTTAAAACC
TCTCGGAGGAGGTATATTTTAAGGCC
TCTCTTAGGAGGTATATTCCAAAACC

useful markers for studying useful markers for studying disease associationdisease association or or genome evolution:genome evolution:
---- landmarks, indicators, colandmarks, indicators, co--variates, causes variates, causes ……

TCTC██AGGAGG████TT██AA██CC
TCTC██AGGAGG████TT██AA██CC
TCTC██AGGAGG████TT██AA██CC
TCTC██AGGAGG████TT██AA██CC
TCTC██AGGAGG████TT██AA██CC
TCTC██AGGAGG████TT██AA██CC

The haplotypesThe haplotypes



5

© Eric Xing @ CMU, 2005-2009 9

a diploid individual

Cp

Cm

chromosome

“Binary” nt-substitutions at a single locus on a chromosome
− each variant is called an "allele"

GATCTTCGTACTGAGT
GATCTTCGTACTGAGT
GATTTTCGTACGGAAT
GATTTTCGTACTGAGT
GATCTTCGTACTGAAT
GATTTTCGTACGGAAT
GATTTTCGTACGGAAT
GATCTTCGTACTGAAT

Single Nucleotide Polymorphism 
(SNP)
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Some Facts About SNPs
More than 5 million common SNPs each with frequency 10-
50% account for the bulk of human DNA sequence difference

About 1 in every 600 base pairs

It is estimated that ~60,000 SNPs occur within exons; 85% of 
exons within 5 kb of nearest SNP
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GATCTTCGTACTGAGT
GATCTTCGTACTGAGT
GATTTTCGTACGGAAT
GATTTTCGTACTGAGT
GATCTTCGTACTGAAT
GATTTTCGTACGGAAT
GATTTTCGTACGGAAT
GATCTTCGTACTGAAT

CTG 3/8

TGA 3/8

CTA 2/8

Haplotype

Consider J binary markers in a genomic region
There are 2J possible haplotypes 

− but in fact, far fewer are seen in human population
Good genetic marker for population, evolution and hereditary diseases …

chromosome

disease X
healthy
healthy

What is a haplotype?
-- a more discriminative state of a chromosomal region
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2 13
61

9 15
174

1 9
62

9 17
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127
146
71

18 18
1 4
10 10

Genotypes Haplotypes

13
1
15
4
9
2
17
12
7
6
1
18
4
10

2
6
9
17
1
6
9
2
12
14
7
18
1
10

Haplotype

Re-construction

Chromosome phase is knownChromosome phase is unknown

Haplotype and Genotype
A collection of alleles derived from the same chromosome
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Linkage Disequilibrium
LD reflects the relationship between alleles at different loci.

Alleles at locus A: frequencies p1,…, pm

Alleles at locus B: frequencies q1,…,qn

Haplotype frequency for AiBj:
equilibrium value: pi qj

Observed value: hij

Linkage disequilibrium: hij -pi qj

Linkage disequilibrium is an allelic association measure (difference between the 
actual haplotype frequency and the equilibrium value)
More precisely: gametic association

Association studies.
If inheriting a certain allele at the disease locus increases the chance of getting 
the disease, and the disease and marker loci are in LD, then the frequencies of 
the marker alleles will differ between diseased and non-diseased individuals.
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Use of Polymorphism in Gene 
Mapping

1980s – RFLP marker maps
1990s – microsatellite marker maps
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Advantages of SNPs in genetic
analysis of complex traits

Abundance: high frequency on the genome
Position: throughout the genome (level of influence of 
type of SNP, e.g. coding region, promoter site, on 
phenotypic expression?)
Ease of genotyping
Less mutable than other forms or polymorphisms
Allele frequency drift (different populations)
Haplotypic patterns
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Haplotype analyses
Haplotype analyses

Linkage disequilibrium assessment
Disease-gene discovery
Genetic demography
Chromosomal evolution studies

Why Haplotypes
Haplotypes are more powerful discriminators between cases and controls in 
disease association studies
Use of haplotypes in disease association studies reduces the number of tests to 
be carried out.
With haplotypes we can conduct evolutionary studies
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C T A

T G A

C G A

T T A

??????

haplotype h≡(h1, h2)
possible associations of alleles to 

chromosome

Heterozygous
diploid individual

C T A

T G ACp

Cm

Genotype g
pairs of alleles with association of 
alleles to chromosomes unknown

ATGC
sequencing

TC TG AA

Phase ambiguity
-- haplotype reconstruction for individuals
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Inferring Haplotypes
Genotype: AT//AA//CG

Maternal genotype: TA//AA//CC
Paternal genotype: TT//AA//CG
Then the haplotype is AAC/TAG.

Genotype: AT//AA//CG
Maternal genotype: AT//AA//CG
Paternal genotype: AT//AA//CG
Cannot determine unique haplotype

Problem: determine Haplotypes without parental genotypes
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Haplotype Inference
The Rationale: parsimony

Many haplotypes are shared in a population
Data for many individuals allows phasing SNP genetypes

0 1 1 1 0
1 0 1 0 1

1 1 1 0 1
1 0 0 1 1

1/0 0/1 1/1 0/1 0/1

1 1 1 1 1
0 0 1 0 0 1 1 1 1 1

1 0 0 0 1

1/1 0/1 0/1 0/1 1/1

This solution seems ‘better’
since it uses fewer haplotypes
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Genotype 
representations

0/0 0
1/1 1
0/1 2

Genotypes of 
14 individual

21 2 222 02
02 1 111 22
11 0 000 01
02 1 111 22
21 2 222 02
02 1 111 22
11 0 000 01
02 1 111 22
21 2 222 02
22 2 222 21
21 1 222 02
02 1 111 22
22 2 222 21
21 2 222 02

|| | ||| ||

Identifiability



11

© Eric Xing @ CMU, 2005-2009 21

01 1 000 00
11 0 000 01
01 1 000 00
00 1 111 11
11 0 000 01
11 0 000 01
01 1 000 00
00 1 111 11
01 1 000 00
11 0 000 01
00 1 111 11
01 1 000 00
11 0 000 01
11 0 000 01
01 1 000 00
00 1 111 11
01 1 000 00
11 0 000 01
00 1 111 11
11 0 000 01
11 0 000 01
01 1 000 00
00 1 111 11
01 1 000 00
11 0 000 01
00 1 111 11
01 1 000 00
11 0 000 01

11 0 000 01

|| | ||| || 

01 1 000 00

|| | ||| ||

00 1 111 11

|| | ||| ||

11

10

7

01 1 111 00
11 0 000 01
01 1 111 00
00 1 111 11
11 0 000 01
11 0 000 01
01 1 111 00
00 1 111 11
01 1 111 00
11 0 000 01
00 1 111 11
01 1 111 00
11 0 000 01
11 0 000 01
01 1 111 00
00 1 111 11
01 1 111 00
11 0 000 01
00 1 111 11
11 0 000 01
11 1 000 01
01 1 111 00
00 1 111 11
01 1 111 00
11 0 000 01
00 1 111 11
01 1 111 00
11 0 000 01

11 0 000 01
|| | ||| || 

11 0 010 01
|| | ||| ||

11 1 000 01
|| | ||| ||

11 0 000 11
|| | ||| ||

01 1 111 00
|| | ||| ||

01 1 101 00
|| | ||| ||

01 0 111 00
|| | ||| ||

00 1 111 11
|| | ||| ||

00 1 111 01
|| | ||| ||

8

1

1

1

8

1

1

6

1

01 1 101 00
11 0 010 01
01 1 111 00
00 1 111 11
11 0 000 01
11 0 000 01
01 1 111 00
00 1 111 11
01 0 111 00
11 1 000 01
00 1 111 11
01 1 111 00
11 0 000 01
11 0 000 01
01 1 111 00
00 1 111 11
01 1 111 00
11 0 000 01
00 1 111 11
11 0 000 01
11 1 000 01
01 1 111 00
00 1 111 11
01 1 111 00
11 0 000 11
00 1 111 01
01 1 111 00
11 0 000 01

??
Parsimonious solution

Identifiability
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Three Problems

Frequency estimation of all possible haplotypes
Haplotype reconstruction for individuals
How many out of all possible haplotypes are plausible in 
a population

Given a random sample of multilocus genotypes at a set 
of SNPs
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Haplotype reconstruction:
Clark (1990)

Choose individuals that are homozygous at every locus (e.g. TT//AA//CC)
Haplotype: TAC

Choose individuals that are heterozygous at just one locus (e.g.
TT//AA//CG)

Haplotypes: TAC or TAG

Tally the resulting known haplotypes.
For each known haplotype, look at all remaining unresolved cases: is there 
a combination to make this haplotype?

Known haplotype: TAC
Unresolved pattern: AT//AA//CG
Inferred haplotype: TAC/AAG. Add to list.

Known haplotype: TAC and TAG
Unresolved pattern: AT//AA//CG
Inferred haplotypes: TAC and TAG. Add both to list.

Continue until all haplotypes have been recovered or no new haplotypes
can be found this way.
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Problems: Clark (1990)
No homozygotes or single SNP heterozygotes in the sample
Many unresolved haplotypes at the end
Error in haplotype inference if a crossover of two actual 
haplotypes is identical to another true haplotype
Frequency of these problems depend on avg. heterozygosity
of the SNPs, number of loci, recombination rate, sample size.
Clark (1990): algorithm "performs well" even with small 
sample sizes.
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The probability of a genotype g:

Standard settings:
p(g|h1,h2)=1(h1⊕h1=g) noiseless genotyping
p(h1,h2)= p(h1)p(h2)=f1f2 Hardy-Weinberg equilibrium, multinomial
|H| = K fixed-sized population haplotype pool 

∑
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Genotyping
model

Haplotype
model

Population haplotype
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,

21

21
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)(
ghh

hh

ffgp
H

Finite mixture model
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EM algorithm: 
Excoffier and Slatkin (1995)

Numerical method of finding maximum likelihood estimates 
for parameters given incomplete data.

1. Initial parameter values: Haplotype frequencies: f1,…,fh
2. Expectation step: compute expected values of missing data 

based on initial data
3. Maximization step: compute MLE for parameters from the 

complete data
4. Repeat with new set of parameters until changes in the 

parameter estimates are negligible.

Beware: local maxima.
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EM algorithm efficiency

Heavy computational burden with large number of loci? 
(2L possible haplotypes for L SNPs)
Accuracy and departures from HWE?
Error between EM-based frequency estimates and their 
true frequencies
Sampling error vs. error from EM estimation process
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Bayesian Haplotype 
reconstruction

Bayesian model to approximate the posterior distribution 
of haplotype configurations for each phase-unknown 
genotype.
G = (G1, …, Gn) observed multilocus genotype 
frequencies
H = (H1, …, Hn) corresponding unknown haplotype pairs
F = (F1, …, FM) M unkown population haplotype 
frequencies
EM algorithm: Find F that maximizes P(G|F). Choose H 
that maximizes P(H|FEM, G).
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Gibbs sampler

Initial haplotype reconstruction H(0).

Choose and individual i, uniformly and at random from all 
ambiguous individuals.
Sample Hi

(t+1) from P(Hi|G,H-I
(t)), where H-i is the set of 

haplotypes excluding individual i.
Set Hj

(t+1) = Hj
(t) for j=1,…,i-1,i+1,…,n.
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HAPLOTYPER: 
Bayesian Haplotype Inference (Niu et al.2002)

Bayesian model to approximate the posterior distribution of 
haplotype configurations for each phase-unknown genotype.
Dirichlet priors β=(β1,…, βM) for the haplotype frequencies 
F=(f1,…,fM). 
Multinomial model (as in EM algorithm) for individual 
haplotypes: 
product over n individuals, 
and multilocus genotype probabilities are sums of products of 
pairs of haplotype probabilities.
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Haplotypes H are “missing:”

Sample hi1 and hi2 for individual i: 

Sample H given Hupdated Improving efficiency (Niu et al.)
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Gibbs sampler
Predictive updating (Gibbs sampling): 
– (N(H)=vector of haplotype counts) 

P(G,H) ~ Γ(|β+N(H)|)/ Γ(β+N(H)) 

– Pick an individual i, update haplotype hi: 

P(hi =(g,h)|H-i,G) ~ (ng+ βg)(nh+ βh)

(ng =count of g in H-i)
– Prior Annealing: 

– use high pseudo counts at the beginning of the iteration and 
progressively reduce them at a fixed rate as the sampler continues.
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HAPLOTYPER Discussions
Missing marker data:

PCR dropouts->absence of both alleles,
one allele is unscored
Gibbs sampler adapts nicely

Ligation
Problem: large number of loci.
Partition L loci into blocks of 8 and carry out block level haplotype reconstruction.
Record the B most probable (partial) haplotypes for each block and join them

Progressive ligation.
Hierarchical ligation.
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Phase
Coalescence-based Bayesian Haplotype inference: Stephens et al (2001)

What is P(Hi |G,H-i
(t) )?

For a haplotype Hi=(hi1,hi2) consistent with genotypes Gi: 
P(Hi|G,H-i)~P(Hi|H-i )~π(hi1|H-i) π(hi2|hi1,H-i)
π(.|H)=conditional distribution of a future sampled haplotype 
given previously sampled haplotypes H.
r=total number of haplotypes, rα=number of haplotypes of type 
α, θ=mutation rate, then a choice for 

π(α |H)= (rα + θ µα)/(r+ θ), 

where µα=prob. of type α.
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The PAC Model

The joint probability of all haplotypes h1, h2, … hn:

Problem: 
Ordering?
Ancestor? 

),,|(),|()|()(),,,( 1121312121 −= nnn hhhphhhphhphphhhp LLL

Gn

H1,1 H1,2

Gn

H2,1 H2,2

Gn

Hn,1 Hn,2
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PHASE, details
This is not working when the number of possible values Hi is too 
large: 2J-1, J=number of loci at which individual i is heterozygous. 
Alternatively,

where E=set of types for a general mutation model, P=reversible mutation matrix.

I.e. future haplotype h is obtained by applying a random number of 
mutations, s (sampled from geometric distribution), to a randomly 
chosen existing haplotype, rα (coalescent).
Problems: estimation of θ, dimensionality of P (dim P = M, the 
number of possible haplotypes).
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PHASE Discussion
Key: unresolved haplotypes are similar to known haplotypes
HWE assumption, but robust to “moderate” levels of 
recombinations
More accurate than EM,Clark’s and Haplotyper algorithms
Provides estimates of the uncertainty associated with each 
phase call
Problem (of both Bayesian model): dimensionality
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A Hierarchical Bayesian Infinite Allele model

DP

infinite mixture components
(for population haplotypes)

Likelihood model
(for individual 

haplotypes and genotypes)

Dirichlet Process Mixture of 
Haplotypes (Xing et al. ICML 2004)

Gn

Hn1 Hn2

Ak θk

∞

G

α G0
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Single-locus mutation model

Noisy observation model

Inheritance and Observation 
Models
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Chinese Restaurant Process

CRP defines an exchangeable distribution on partitions over an (infinite) sequence 
of samples, such a distribution is formally known as the Dirichlet Process (DP)
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{A,θ} {A,θ} {A,θ} {A,θ} {A,θ} {A,θ} ……
3

1
2 4

5 6 7

8 9

The DP Mixture of Ancestral 
Haplotypes

The customers around a table form a cluster
associate a mixture component (i.e., a population haplotype) with a table 

sample {a, θ} at each table from a base measure G0 to obtain the 
population haplotype and nucleotide substitution frequency for that 
component

With p(h|{Α, θ}) and p(g|h1,h2), the CRP yields a posterior distribution on 
the number of population haplotypes (and on the haplotype 
configurations and the nucleotide substitution frequencies)
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Gibbs sampling for exploring the posterior distribution under 
the proposed model

Integrate out the parameters such as    or    , and sample 
and  

Gibbs sampling algorithm: draw samples of each random variable to be 
sampled given values of all the remaining variables

MCMC for Haplotype Inference

θ λ ki ac
e
,

eih

),|()|(),,|( ][,][][ chcahc
eeeeee ikiiiii ahpkcpkcp −−− =∝=

Posterior                           Prior           x      Likelihood

CRP 
M
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Convergence of Ancestral 
Inference
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Results - HapMap Data
DP vs. Finite Mixture via EM
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Hierarchical DP Mixture

GG11

GG22

GG44

GG33

....

γγHH

α2

α1

α3

α4
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Results - International HapMap
DB

Different sample sizes, and different # of sub-populations
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Summary: Algorithms
Clark’s parsimony algorithm:

simple, effective,
depends on order of individuals in the data set,
need sufficient number of homozygous individuals,
Disadvantage: individuals may remain phase indeterminate, biased estimates of 
haplotype frequencies

EM algorithm:
accurate in the inference of common haplotypes
Allows for possible haplotype configurations that could contribute to a phase-
unknown genotype.
Cannot handle a large number of SNPs.
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Summary: Algorithms
Haplotyper:

Bayesian model to approximate the posterior distribution of 
haplotype configurations
Prior annealing helps to escape from local maximum
Partitions long haplotypes into small segments: block-by-block 
strategy
Gibbs sampler to reconstruct haplotypes within each 
segment. Assembly of segments.
http://www.people.fas.harvard.edu/~junliu/index1.html#Comp
utationalBiology
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Summary: Algorithms
PHASE:

Bayesian model to approximate the posterior distribution of 
haplotype configurations
based on the coalescence theory to assign prior predictions 
about the distributions of haplotypes in natural populations,
may depend on the order of the individuals,
pseudo posterior probabilities (-> pseudo Gibbs sampler),
lacks a measure of overall goodness.
http://www.hgmp.mrc.ac.uk/Registered/Option/phase.html
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Summary: Algorithms
DP-haplotyper
A non-parametric Bayesian model for SNP Analysis

Finite mixture model of haplotypes
infinite mixture of ancestors: alternative to model selection 
hierarchical infinite mixture
infinite hidden Markov model

Naturally handles open-state-space inheritance, recombination, missing 
data and errors 

More application in statistical genetics: 
unified statistical framework for joint inference of haplotype, 
recombination hotspots, linkage disequilibrium and population structure 
…
Leads to competitive Haplotyper, Recombination hotspotter, and 
Structure mapper
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