Computational Genomics

10-810/02-710, Spring 2009

SNPS Haplotype Inference

Eric Xing

Lecture 21, Apr 6, 2009

Reading: handouts
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The SNPs

The haplotypes

useful markers for studying disease association or genome evolution:
-- landmarks, indicators, co-variates, causes ...
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Single Nucleotide Polymorphism sels
(SNP) 2

GATCTTCGTACTGAGT
GATCTTCGTACTGAGT
GATTTTCGTACGGAAT
GATTITCGTACTGAGT
GATZTTCGTACTGAA
GATTTTCGTACGGAAT
GAXTTTTCGTACGGAAT
ATCTTCGTACTGAAT
chromosome ;:/—
= “Binary” nt-substitutions at a single locus on a chromosome
— each variant is called an "allele”
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Some Facts About SNPs .

e More than 5 million common SNPs each with frequency 10-
50% account for the bulk of human DNA sequence difference

e About 1 in every 600 base pairs

e |t is estimated that ~60,000 SNPs occur within exons; 85% of
exons within 5 kb of nearest SNP
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What is a haplotype? sse?
--amore discriminative state of a chromosomal region °
!
raplotpe
GATTTTCGTACTGAGT CTC 3/8 healthy
GATCTTCGTACTGAAT TGA 3/8 healthy
GATTTTCGTACGGAAT CTA 2/8 disease X
GATTTTCGTACGGAAT
GATCTTCGTACTGAAT
chromosome ;:‘;
= Consider J binary markers in a genomic region
= There are 2J possible haplotypes
— butin fact, far fewer are seen in human population
= Good genetic marker for population, evolution and hereditary diseases ...
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Haplotype and Genotype :

e A collection of alleles derived from the same chromosome

Genotypes Haplotypes
2 2 @ [ ]
6 c @ [ ]
9 9 @ [}
17 17 ® [ )
1 1 ® [ ]
6 6 ® [ ]
9 I—— g ® [ ]
2 [ ) [ ]
12 122 ) ®
14 17 ® ®
7 7 [ ] [ ]
18 18 @ ®
1 1 @ ®
10 0 ® [}
Chromosome phase is unknown Chromosome phase is known
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Linkage Disequilibrium

\
e LD reflects the relationship between alleles at different loci.

e Alleles at locus A: frequencies p;,..., p,
e Alleles at locus B: frequencies ¢;,...,q,
e Haplotype frequency for AB;:
equilibrium value: p;g;
Observed value: A
Linkage disequilibrium: /7// Piq;
e Linkage disequilibrium is an allelic association measure (difference between the
actual haplotype frequency and the equilibrium value)

e More precisely: gametic association

e Association studies.

e [Ifinheriting a certain allele at the disease locus increases the chance of getting
the disease, and the disease and marker loci are in LD, then the frequencies of
the marker alleles will differ between diseased and non-diseased individuals.
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Use of Polymorphism in Gene sels
Mapping -

e 1980s — RFLP marker maps
e 1990s — microsatellite marker maps

nz
I

nz

T,

E [LLE]

Chromogomes 21
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Advantages of SNPs in genetic
analysis of complex traits

e Abundance: high frequency on the genome

e Position: throughout the genome (level of influence of
type of SNP, e.g. coding region, promoter site, on
phenotypic expression?)

e Ease of genotyping

e Less mutable than other forms or polymorphisms
e Allele frequency drift (different populations)

e Haplotypic patterns

© Eric Xing @ CMU, 2005-2009 15
[ X X ]
esce
[

Haplotype analyses '

e Haplotype analyses
e Linkage disequilibrium assessment
e Disease-gene discovery
e Genetic demography
e Chromosomal evolution studies

e Why Haplotypes

e Haplotypes are more powerful discriminators between cases and controls in
disease association studies

e Use of haplotypes in disease association studies reduces the number of tests to
be carried out.

e With haplotypes we can conduct evolutionary studies
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Phase ambiguity sece
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-- haplotype reconstruction for individuals °
\
ATGC
% sequencing
Heterozygous
diploid individual A A L \
TC — TG —
Genotype g T—
pairs of alleles with association of E__\ ~2A"
alleles to chromosomes unknown - T2~

0 922

/T’\T\__ _
haplotype h=(h, h,)
possible associations of alleles to
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Inferring Haplotypes o

e Genotype: AT//AA/ICG
e Maternal genotype: TA//AA//ICC
e Paternal genotype: TT//AA//ICG
e Then the haplotype is AAC/TAG.

e Genotype: AT//AA/ICG
e Maternal genotype: AT//AA/ICG
e Paternal genotype: AT//AA/ICG
e Cannot determine unique haplotype

e Problem: determine Haplotypes without parental genotypes
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Haplotype Inference

The Rationale: parsimony
e Many haplotypes are shared in a population
e Data for many individuals allows phasing SNP genetypes

I

[1/0 0/1 1/1 0/1 0/1 | [1/1 0o/1 0/1 0/1 1/1 |

s it

This solution seems ‘better’
since it uses fewer haplotypes
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Genotypes of
14 individual

21 2 222 02
02 1 111 22
Genotype 11 0 000 01
representations 02 1 111 22
21 2 222 02
0/0 2> 0 02 1 111 22
1/1 > 1 11 0 000 01
0/1 > 2 02 1 111 22
21 2 222 02
22 2 222 21
21 1 222 02
02 1 111 22
22 2 222 21
21 2 222 02
[N N
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01 1 111 00 01 1 101 00
11 0 000 01 11 0 010 01 11 0 000 01
01 1 111 00 01 1 111 00 (AN 8
00 1 111 11 00 1 111 11
11 0 000 01 11 0 000 01 11 0 010 01
11 0 000 01 110000 01 SN O A 0 P |
01 1 111 00 01 1 111 00
00 1 111 11 00 1 111 11 11 1 000 01
01 1 111 00 11 0 000 01 01 0 111 00 U T Y Y R |
11 0 000 01 11 11 1 000 01
00 1 111 11 ? 00 1 111 11 11 0 000 11
01 1 111 00 01 1 111 00 | |
or 3 oo o1 1 000 00 or o0 Aldedldl 1
11 0 000 01 - 10 [} 11 0 000 01 - 01 1 111 00
01 1 111 00 01 1 111 00 L 8
00 1 111 11 00 1 111 11
01 1 111 00 00 1111 11 01 1 111 00 01 1 101 00
11 0 000 01 11 0 000 01 Ll de L)Ll 1
00 1 111 11 00 1 111 11
11 0 000 01 11 0 000 01 01 0 111 00
11 1 000 01 imoni i 11 1 000 01 Attt 1
o1 1 111 00 Parsimonious solution 01 1 111 00
00 1 111 11 00 1 111 11 00 1 111 11
01 1 111 00 01 1 111 00 6
11 0 000 01 11 0 000 11
00 1 111 11 00 1 111 01 00 1 111 01
01 1 111 00 01 1 111 00 chledo L Lol 1
11 0 000 01 11 0 000 01
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Frequency estimation of all possible haplotypes

Haplotype reconstruction for individuals

How many out of all possible haplotypes are plausible in
a population

Given a random sample of multilocus genotypes at a set
of SNPs

© Eric Xing @ CMU, 2005-2009
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Haplotype reconstruction:
Clark (1990)

|
e Choose individuals that are homozygous at every locus (e.g. TT//AA//CC)

e Haplotype: TAC

e Choose individuals that are heterozygous at just one locus (e.g.
TT//AA/ICG)
e Haplotypes: TAC or TAG

e Tally the resulting known haplotypes.

e For each known haplotype, look at all remaining unresolved cases: is there
a combination to make this haplotype?
e Known haplotype: TAC
Unresolved pattern: AT//AA/ICG
Inferred haplotype: TAC/AAG. Add to list.
e Known haplotype: TAC and TAG
Unresolved pattern: AT//AA//ICG
Inferred haplotypes: TAC and TAG. Add both to list.
e Continue until all haplotypes have been recovered or no new haplotypes
can be found this way.

Problems: Clark (1990) G

e No homozygotes or single SNP heterozygotes in the sample
e Many unresolved haplotypes at the end

e Errorin haplotype inference if a crossover of two actual
haplotypes is identical to another true haplotype

e Frequency of these problems depend on avg. heterozygosity
of the SNPs, number of loci, recombination rate, sample size.

e Clark (1990): algorithm "performs well" even with small
sample sizes.
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Finite mixture model 5
e The probability of a genotype g:
p(9)= > p(h.h)p(g|h,h,)
hy hyedw |
Population haplotype jHapIotype \_ Genotyping
pool model model
e Standard settings:
e p(glhy,h,)=1(h,®h;=0) noiseless genotyping
e p(h;,hy)=p(h)p(hy)=ff, Hardy-Weinberg equilibrium, multinomial
o |H=K fixed-sized population haplotype pool
p(g)= > fif,
b, her
h®h,=g
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EM algorithm: oo
Excoffier and Slatkin (1995) °

e Numerical method of finding maximum likelihood estimates
for parameters given incomplete data.

1. Initial parameter values: Haplotype frequencies: f,,...,f,

2. : compute expected values of missing data
based on initial data

3. : compute MLE for parameters from the
complete data

4. Repeat with new set of parameters until changes in the
parameter estimates are negligible.

e Beware: local maxima.

© Eric Xing @ CMU, 2005-2009 26
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EM algorithm efficiency

!
e Heavy computational burden with large number of loci?

(2L possible haplotypes for L SNPs)
e Accuracy and departures from HWE?

e Error between EM-based frequency estimates and their
true frequencies

e Sampling error vs. error from EM estimation process

© Eric Xing @ CMU, 2005-2009 27
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Bayesian Haplotype sels
reconstruction '

e Bayesian model to approximate the posterior distribution
of haplotype configurations for each phase-unknown
genotype.

e G=(G,, ..., G,) observed multilocus genotype
frequencies

e H=(H,, ..., H,) corresponding unknown haplotype pairs

e F=(F,, ..., Fyy) M unkown population haplotype
frequencies

e EM algorithm: Find F that maximizes P(G|F). Choose H
that maximizes P(H|FEM, G).

© Eric Xing @ CMU, 2005-2009 28
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Gibbs sampler

e Initial haplotype reconstruction H(©).

e Choose and individual i, uniformly and at random from all
ambiguous individuals.

e Sample H " from P(H,|G,H_ ), where H; is the set of
haplotypes excluding individual i.

e Set Hj(t”)= Hj(t) forj=1,...,i-1,i+1,...,n.

© Eric Xing @ CMU, 2005-2009 29
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HAPLOTYPER: S
Bayesian Haplotype Inference (Niu et al.2002) °

e Bayesian model to approximate the posterior distribution of
haplotype configurations for each phase-unknown genotype.

e Dirichlet priors B=(B,,..., By) for the haplotype frequencies
F=(f,,....fu)-

e Multinomial model (as in EM algorithm) for individual
haplotypes:

e product over n individuals,

e and multilocus genotype probabilities are sums of products of
pairs of haplotype probabilities.

© Eric Xing @ CMU, 2005-2009 30
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Gibbs sampler

e Haplotypes H are “missing:”

PG.HIF)~ []f,f, [T

1,..,n j=1,...,n

e Sample h;, and h;, for individual /:
f, f

P(hy =g,h, =h]| FiGi):gih

Z f.fi

g'On'=G,

e Sample H given Hurdated Improving efficiency (Niu et al.)

© Eric Xing @ CMU, 2005-2009 31
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Gibbs sampler HH

e Predictive updating (Gibbs sampling):
— (N(H)=vector of haplotype counts)
P(G,H) ~ T(IB+N(H))/ T(B+N(H))
— Pick an individual i, update haplotype h;:
P(hi =(g,h)IH..G) ~ (ng+ By)(ny+ Br)

(ng =count of g in H)

— Prior Annealing:

— use high pseudo counts at the beginning of the iteration and
progressively reduce them at a fixed rate as the sampler continues.

© Eric Xing @ CMU, 2005-2009 32
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HAPLOTYPER Discussions

e Missing marker data:
e PCR dropouts->absence of both alleles,
e one allele is unscored
e Gibbs sampler adapts nicely

e Ligation
e Problem: large number of loci.
e Partition L loci into blocks of 8 and carry out block level haplotype reconstruction.
e Record the B most probable (partial) haplotypes for each block and join them
Progressive ligation.
Hierarchical ligation.

_ L 3 i
— Level 3
— — L
-
. o Level 2

Level 1

S . B
Eﬁlﬁ:\mﬁ\—n—_‘/—u* Level 0
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Coalescence-based Bayesian Haplotype inference: Stephens et al (2001) °

e Whatis P(H, |G,H, ®)?

e For a haplotype H;=(h;;,h;,) consistent with genotypes G;:
P(HIG,H)~P(H{|H )~1r(hy,|H_) T(hi[hiy,H)

e T17(.|H)=conditional distribution of a future sampled haplotype
given previously sampled haplotypes H.

¢ r=total number of haplotypes, r,=number of haplotypes of type
a, 6=mutation rate, then a choice for

n(a [H)= (1 + 8 p)/(r+ 8),

where p =prob. of type a.

© Eric Xing @ CMU, 2005-2009 34
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The PAC Model

e The joint probability of all haplotypes h,, h,, ... h,:

n

p(h;, hy,---,h)) = p(h)p(h, [ h)p(hy [ hy,hy)---p(h, [ hy,--- 0 )

e Problem:
Ordering?
Ancestor?

© Eric Xing @ CMU, 2005-2009 35
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PHASE, details °e

e This is not working when the number of possible values H; is too
large: 2*-1, J=number of loci at which individual i is heterozygous.
Alternatively,

© 0 PN

”(MH):ZZ&Q— —(P")a
aeE 5=0 e +9 r+o '

e where E=set of types for a general mutation model, P=reversible mutation matrix.

e |.e. future haplotype h is obtained by applying a random number of
mutations, s (sampled from geometric distribution), to a randomly
chosen existing haplotype, r, (coalescent).

e Problems: estimation of 8, dimensionality of P (dim P = M, the
number of possible haplotypes).

© Eric Xing @ CMU, 2005-2009 36
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PHASE Discussion

!
e Key: unresolved haplotypes are similar to known haplotypes

e HWE assumption, but robust to “moderate” levels of
recombinations

e More accurate than EM,Clark’s and Haplotyper algorithms

e Provides estimates of the uncertainty associated with each
phase call

e Problem (of both Bayesian model): dimensionality

© Eric Xing @ CMU, 2005-2009 37
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Dirichlet Process Mixture of seco
[ X ]
H ap | Oty pes (Xing et al. ICML 2004) °
e A Hierarchical Bayesian Infinite Allele model
Q ! @ } DP
e8] P .
infinite mixture components
m a (for population haplotypes)
Hny Likelihood model
(for individual
haplotypes and genotypes)
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19



. . [ X X ]
Inheritance and Observation sess
[ X J
Models s
\
e Single-locus mutation model A
c | Ay Ancestral
i | A A A A pool
[ for h, =g, f/ e
PH(hxlaug): 1-¢ for h =a ?‘iz
|B|—1 t t E\
— h,=a, with prob. & 0
\‘\ Hil 4 ]
\ Haplotypes
o Noisy observation model Hi, 44— }
s
A
Pe(glhy,hy): [ Gi h A A } Genotype

g, =h, @h,, with prob. 4

© Eric Xing @ CMU, 2005-2009
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Chinese Restaurant Process

P(c; =k|c;) = 1
1 a
l+a l+a
1 1
m 2+a
1 2
3+a 3ta
ml mZ
i+a-1 i+a-1

R O O

2+a

3+ta
a
i+ta-1

CRP defines an exchangeable distribution on partitions over an (infinite) sequence
of samples, such a distribution is formally known as the Dirichlet Process (DP)

© Eric Xing @ CMU, 2005-2009
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The DP Mixture of Ancestral
Haplotypes

e The customers around a table form a cluster
e associate a mixture component (i.e., a population haplotype) with a table

e sample {a, 6} at each table from a base measure G, to obtain the
population haplotype and nucleotide substitution frequency for that

component
L PY 'Y ® o
{Ag {Ag {Adg {Ad {Ag {AG
e ® 6 *

o With p(h|{A, 6}) and p(g|h,,h,), the CRP yields a posterior distribution on
the number of population haplotypes (and on the haplotype
configurations and the nucleotide substitution frequencies)

MCMC for Haplotype Inference G

e Gibbs sampling for exploring the posterior distribution under
the proposed model

e Integrate out the parameters such as @or 4, and sample Cj_» 8k
and h.
'e

p(ci, =k|[cpiy.ha) < p(c; =klcp ) ph [aghpi;.©)

Posterior Prior X Likelihood
. CRP

e Gibbs sampling algorithm: draw samples of each random variable to be
sampled given values of all the remaining variables

© Eric Xing @ CMU, 2005-2009 42
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Convergence of Ancestral sels
Inference '

1000 2000 m#of;:::lplesm 6000 7000 8000
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Results - HapMap Data '

e DP vs. Finite Mixture via EM

0.45

<o
~

o
©
w &

o
SN
[N IR

individual error

o
[N
- O

o DP
B EM

1 2 3 4 5

o

data sets
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Hierarchical DP Mixture

© Eric Xing @ CMU, 2005-2009 45
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Results - International HapMap sels
DB o
e Different sample sizes, and different # of sub-populations
I:Fnur pops [_]Two pops [l One pop
ench = 60 each = 20 each = 10
© Eric Xing @ CMU, 2005-2009 46
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Summary: Algorithms

Clark’s parsimony algorithm:

e simple, effective,

e depends on order of individuals in the data set,

e need sufficient number of homozygous individuals,

e Disadvantage: individuals may remain phase indeterminate, biased estimates of
haplotype frequencies

EM algorithm:

e accurate in the inference of common haplotypes

e Allows for possible haplotype configurations that could contribute to a phase-
unknown genotype.

e Cannot handle a large number of SNPs.

© Eric Xing @ CMU, 2005-2009 47
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Summary: Algorithms -

Haplotyper:

Bayesian model to approximate the posterior distribution of
haplotype configurations

Prior annealing helps to escape from local maximum

Partitions long haplotypes into small segments: block-by-block
strategy

Gibbs sampler to reconstruct haplotypes within each
segment. Assembly of segments.

http://www.people.fas.harvard.edu/~junliu/index1.htmi#Comp
utationalBiology
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Summary: Algorithms

PHASE:

e Bayesian model to approximate the posterior distribution of
haplotype configurations

e based on the coalescence theory to assign prior predictions
about the distributions of haplotypes in natural populations,

e may depend on the order of the individuals,

e pseudo posterior probabilities (-> pseudo Gibbs sampler),
e lacks a measure of overall goodness.

e http://www.hgmp.mrc.ac.uk/Registered/Option/phase.html
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Summary: Algorithms -

DP-haplotyper

e A non-parametric Bayesian model for SNP Analysis

e Finite mixture model of haplotypes
- infinite mixture of ancestors: alternative to model selection
- hierarchical infinite mixture
- infinite hidden Markov model

e Naturally handles open-state-space inheritance, recombination, missing
data and errors

e More application in statistical genetics:

e unified statistical framework for joint inference of haplotype,
recombination hotspots, linkage disequilibrium and population structure

e Leads to competitive Haplotyper, Recombination hotspotter, and
Structure mapper
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