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Reading: Chap. 1.3, 13.4 DTM book
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Source:
http://www.accessexcellence.org

Meiosis is a process which 
starts with

• a diploid cell having one set of 
maternal and one of paternal 
chromosomes,

• and ends up with four haploid
cells, each of which has a single 
set of chromosomes

• these being mosaics of the 
parental ones  

The action of interest to us 
happens around here :

• Chromosomes replicate, but 
stay joined at their centromeres

• Bivalents form 
• Chiasmata appear
• Bivalents separate by 

attachment of centromeres to 
spindles.

Meiosis
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sister
chromatids

sister
chromatids

4-strand bundle (bivalent)

Two exchanges 4 meiotic products

2 parental chromosomes

12

Four-strand bundle and 
exchanges
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Number of exchanges along the 4-strand bundle
Positions of the exchanges 
Strands involved in the exchanges
Spindle-centromere attachment at the 1st meiotic division
Spindle-centromere attachment at the 2nd meiotic division
Sampling of meiotic products

Deviations from randomness are called interference.

Chance aspects of meiosis
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A stochastic model for meiosis
A point process X for exchanges along the 4-strand bundle
A model for determining strand involvement in exchanges
A model for determining the outcomes of spindle-centromere
attachments at both meiotic divisions
A sampling model for meiotic products

Random at all stages defines the no-interference or Poisson
model.
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A model for strand involvement
The standard assumption here is

No Chromatid Interference (NCI):

each non-sister pair of chromatids is equally likely to be 
involved in each exchange, independently of the strands 
involved in other exchanges.  

NCI fits pretty well, but there are broader models.

Changes of parental origin along meiotic products are called 
crossovers. They form the crossover point process C along 
the single chromosomes.

Under NCI, C is a Bernoulli thinning of X with p=0.5.
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From exchanges to crossovers
Usually we can’t observe exchanges, but on suitably 
marked chromosomes we can track crossovers.

Call a meiotic product recombinant across an interval J, and write R(J),
if the parental origins of its endpoints differ, i.e. if an odd number of 
crossovers have occurred along J. Assays exist for determining 
whether this is so.

Mather's formular:
Under NCI we find that if n>0, pr(R(J) | X(J) = n ) = 1/2, 
so

pr(R(J))  =  1/2 × pr( X(J) > 0 )………(*) (Proof?)
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1 2 3r12 r23

r13

r13 ≠ r12 + r23

The recombination fraction pr(R(J)) gives an indication of the 
chromosomal length of the interval J: under NCI, it is monotone 
in |J|.

Sturtevant (1913) first used recombination fractions to order (i.e. 
map) genes. (How?)

Problem: the recombination fraction does not define a metric.

Put rij = pr(R(i--j)).

Recombination and mapping
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Map distance:  d12 = E{C(1--2)} = av # COs in 1--2
Unit: Morgan, or centiMorgan.

The expectation says nothing definitive about the relationship physical distance 
and genetic distance

Genetic mapping or applied meiosis: a BIG business
Placing genes and other markers along chromosomes;
Ordering them in relation to one another;
Assigning map distances to pairs, and then globally.

1 2 3d12 d23

d13

d13 = d12 + d23 (how to prove this?)

Map distance and mapping
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Haldane's model:

These crossovers occur as a Poisson process of rate d
(per Morgan). Then the probability of observing a 
recombination:

ρ(d) is an increasing function of d, ρ(d) → 1/2 as d → ∞, 
and ρ(d) ≈ d as d → 0. 
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Genetic linkage
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The program from now on

With these preliminaries, we turn now to the data and 
models in the literature which throw light on the chance 
aspects of meiosis.

Mendel’s law of segregation: a result of random 
sampling of meiotic products, with allele (variant) pairs 
generally segregating in precisely equal numbers.

As usual in biology, there are exceptions.
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Segregation
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In 300 meioses in an 
grasshopper  heterozygous 
for an inequality in the size 
of one of its chromosomes,
the  smaller of the two 
chromosomes moved with  
the single X 146 times, 
while the larger did so 154 
times.

Carothers, 1913.

Random spindle-centromere
attachment at 1st meiotic division
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Tetrads
In some organisms - fungi, molds, yeasts - all four products of 
an individual meiosis can be recovered together in what is 
known as an ascus. These are called tetrads. The four 
ascospores can be typed individually.

In some cases - e.g. N. crassa, the red bread mold - there has 
been one further mitotic division, but the resulting octads are 
ordered.
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Meiosis in N.crassa
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Using ordered tetrads to study 
meiosis

Data from ordered tetrads tell us a lot about meiosis. For 
example, we can see clear evidence of 1st and 2nd division 
segregation. 

We first learned definitively that normal exchanges occur at 
the 4-stand stage using data from N. crassa, and we can also 
see that random spindle-centromere attachment is the case 
for this organism.

Finally, aberrant segregations can occasionally be observed 
in octads.
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First-division segregation 
patterns

Separating the chromosomes

Separating the chromotids
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Second-division segregation 
patterns
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Under random spindle-centromere attachment, all four 
patterns should be equally frequent.

Different 2nd division 
segregation patterns
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Lindegren’s 1932 N. crassa data
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There is a nice connection 
between the frequencies 
of multiple exchanges 
between a locus and its 
centromere and the 
frequency of 2nd division 
segregations at that locus.

2-strand double exchanges lead 
to FDS
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k ex'sFk+1 Sk+1: ? (homework)

A simple calculation and result
Let Fk (resp. Sk ) denote the  number of strand-choice 
configurations for k exchanges leading to first (resp. second) 
division segregation at a segregating locus. By simple 
counting we find

F0  =1 and So = 0, 
while for k>0, 
Fk+1  = 2Sk ,  and  Sk+1  = 4Fk + 2Sk .
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Assuming NCI, the proportion Sk of second-division 
segregants among meioses having k exchanges between 
our locus and the centromere is

If the probabilities of the # of exchanges is (xk), then the 
frequency of SDSs is

If the distribution is Poisson (2d) then we find

This is a map-function: between the unobservable map distance d and the 
observable SDS frequency s.
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Map function from SDS
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Interference: the state of play
Total number of exchanges on an arm rarely Poisson
Positions of exchanges rarely Poisson in map distance (i.e. 
crossover interference is the norm)
Strand involvement generally random (i.e. chromatid
interference is rare) 
Spindle-centromere attachment generally random (non-
random attachments are quite rare)

The biological basis for crossover interference is only slowly 
becoming revealed; (See later slides, but we won't cover them 
in class.)
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1 2 3

pr(R(1--2)  &  R(2--3)) = pr(R(1--2)) × pr(R(2--3))

Proof?

Crossover interference

The Poisson model implies independence of 
recombination across disjoint intervals
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sc ec cv

I II

0: no recombination; 1: recombination
0 1

0 13670 824
1 1636 6*

* the number of double recombinants that we would expect if 
recombination events across the two  intervals were 
independent is 85

• Clearly there are many fewer double recombinants than the 
independence model would predict.

• This phenomenon is called crossover interference..

Morgan’s D. melanogaster data 
(1935)
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1 2 43

No crossover interference (for these intervals) if S4 = 1 
Positive interference (inhibition)  if S4 < 1.

The coincidence coefficient S4 for 1--2 & 3--4 is:

pr(R(1--2) &  R(3--4))
pr(R(1--2)) × pr(R(3--4))

=        pr(R(1--2) | R(3--4))
pr(R(1--2))

A measure of crossover 
interference
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Count-location models

Renewal process models

Other special models, including a 
polymerization model

Stochastic models for exchanges
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Barrett et al (1954),  Karlin & Liberman (1979) and Risch & Lange(1979)

Count-Location Models
These models recognize that interference influences 
distribution of the number of exchanges, but fail to recognize 
that the distance between them is relevant to interference, 
which limits their usefulness.

Let N = # exchanges along the bivalent. 

1. Count distribution: qn = P(N = n)
2. Location distribution: individual exchanges are located independently along the four-

strand bundle according to some common distribution F.

Map distance over [a, b] is d = λ[F(b) – F(a)]/2, where λ=E(N).
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Fisher et al (1947), Cobbs (1978), Stam (1979), Foss et al (1993), Zhao et al (1995)

X X X X X X
Cx Cx CxCo Co Co

C C C C C C

The Chi-Square Model
Modeling exchanges along the 4-strand bundle as events 
from a stationary renewal process whose inter-event 
distribution is χ2 with an even number of degrees of freedom. 
The x events are randomly distributed and every (m+1)st
gives an exchange: 

m=1:  

The chi-square model is denoted by Cx(Co)m. 
m = 0 corresponds to the Poisson model.
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Conversion vs. crossover 
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Biological interpretation of the 
chi-squared or  Cx(Co)m model

The biological interpretation of the chi-squared model 
given in Foss, Lande, Stahl, and Steinberg 1993, is 
embodied in the notation Cx(Co)m : 

The C events are crossover initiation events, and these 
resolve  into either reciprocal exchange events Cx, or 
gene conversions Co, in a fairly regular way: crossovers 
are separated by an organism-specific number m of 
conversions.
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Gamete data:
D. melanogaster:     m = 4
Mouse: m = 6

Tetrad data:
N. crassa: m = 2
S. cerevisiae: m = 0 - 3 (mostly 1)
S. pombe: m = 0

Pedigree data:
Human (CEPH): m = 4

The chi-square model has been extremely successful in 
fitting data from a wide variety of organisms rather well. 

Fitting the Chi-square Model to 
Various Organisms
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Failure of the Cx(Co)m model with 
yeast

The biological interpretation of the chi-squared model 
embodied in the notation Cx(Co)m is that crossovers are 
separated by an organism-specific number of potential 
conversion events without associated crossovers. 

It predicts that close double crossovers should be enriched 
with conversion events that themselves are not associated 
with crossovers.

With yeast, this prediction can be tested with suitably marked 
chromosomes.

It was so tested in Foss and Stahl,  1995 and failed.
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Challenges in the statistical 
study of meiosis

Understanding the underlying biology

Combinatorics: enumerating patterns

Devising models for the observed phenomena

Analysing single spore and tetrad data especially 
multilocus data

Analysing crossover data
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