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Meiosis and Recombination
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Reading: Chap. 1.3, 13.4 DTM book
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The action of interest to us
happens around here :

» Chromosomes replicate, but
stay joined at their centromeres

* Bivalents form
» Chiasmata appear

* Bivalents separate by
attachment of centromeres to
spindles.
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Four-strand bundle and
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Chance aspects of meiosis

e Number of exchanges along the 4-strand bundle

e Positions of the exchanges

e Strands involved in the exchanges

e Spindle-centromere attachment at the 1st meiotic division
e Spindle-centromere attachment at the 2nd meiotic division
e Sampling of meiotic products

Deviations from randomness are called interference.
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A stochastic model for meiosis

\
e A point process X for exchanges along the 4-strand bundle

e A model for determining strand involvement in exchanges

e A model for determining the outcomes of spindle-centromere
attachments at both meiotic divisions

e A sampling model for meiotic products

Random at all stages defines the no-interference or Poisson
model.
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A model for strand involvement el

e The standard assumption here is
No Chromatid Interference (NCI):
each non-sister pair of chromatids is equally likely to be

involved in each exchange, independently of the strands
involved in other exchanges.

NCI fits pretty well, but there are broader models.

Changes of parental origin along meiotic products are called
crossovers. They form the crossover point process C along
the single chromosomes.

Under NCI, C is a Bernoulli thinning of X with p=0.5.

© Eric Xing @ CMU, 2005-2009 6




From exchanges to crossovers

\
e Usually we can’t observe exchanges, but on suitably

marked chromosomes we can track crossovers.

Call a meiotic product recombinant across an interval J, and write R(J),
if the parental origins of its endpoints differ, i.e. if an odd number of
crossovers have occurred along J. Assays exist for determining
whether this is so.

e Mather's formular:
Under NCI we find that if n>0, pr(R(J) | X(J) =n) = 1/2,

SO
pr(R(J) = 1/2 xpr(X(J)>0)......... (*) (Proof?)
Recombination and mapping o

The recombination fraction pr(R(J)) gives an indication of the
chromosomal length of the interval J: under NCI, it is monotone
in |J].

Sturtevant (1913) first used recombination fractions to order (i.e.
map) genes. (How?)

Problem: the recombination fraction does not define a metric.

Put r; = pr(R(i--})).

rg # o + Ty3
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Map distance and mapping

e Map distance: d,, = E{C(1--2)} =av# COs in 1--2

e Unit: Morgan, or centiMorgan.

d12

(how to prove this?)
e The expectation says not:?nng c}eflnltlve about the relationship physical distance

and genetic distance
e Genetic mapping or applied meiosis: a BIG business
e Placing genes and other markers along chromosomes;
e Ordering them in relation to one another;
e Assigning map distances to pairs, and then globally.
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Genetic linkage s

Haldane's model:

These crossovers occur as a Poisson process of rate d
(per Morgan). Then the probability of observing a
recombination:

g d 1 d“ (-d)*
- 23

k odd
1
= 5 (1-exp(-2d)).

p(d) is an increasing function of d, p(d) — 1/2 as d — ,
and p(d)=dasd — 0.
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The program from now on

\
e With these preliminaries, we turn now to the data and

models in the literature which throw light on the chance
aspects of meiosis.

e Mendel’s law of segregation: a result of random
sampling of meiotic products, with allele (variant) pairs
generally segregating in precisely equal numbers.

As usual in biology, there are exceptions.
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Segregation
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Random spindle-centromere
attachment at 1st meiotic division
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In 300 meioses in an
grasshopper heterozygous
for an inequality in the size
of one of its chromosomes,
the smaller of the two
chromosomes moved with
the single X 146 times,
while the larger did so 154
times.

Carothers, 1913.

Tetrads

e In some organisms - fungi, molds, yeasts - all four products of
an individual meiosis can be recovered together in what is
known as an ascus. These are called tetrads. The four

ascospores can be typed individually.

e |n some cases - e.g. N. crassa, the red bread mold - there has
been one further mitotic division, but the resulting octads are

ordered.
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Meiosis in N.crassa o2
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Using ordered tetrads to study sels
meiosis HH

e Data from ordered tetrads tell us a lot about meiosis. For
example, we can see clear evidence of 1st and 2nd division
segregation.

e We first learned definitively that normal exchanges occur at
the 4-stand stage using data from N. crassa, and we can also
see that random spindle-centromere attachment is the case
for this organism.

e Finally, aberrant segregations can occasionally be observed
in octads.

© Eric Xing @ CMU, 2005-2009 16




First-division segregation
patterns
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Different 2nd division
segregation patterns
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Under random spindle-centromere attachment, all four
patterns should be equally frequent.
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Lindegren’s 1932 N. crassa data

Position of spore in ascus

Class Number
1 2 3 4 5 6 7 8
A A A A a a a a 102
! A A A a A a a a 31105
a a a a A A A A 123
I a a a A a A A A o120
A A a a A A a a s}g
m A a A a A A a a 1
v a a A A a a A A 5
= A A a a a a A A 10
¥ A a A a a a A A 1}11
VI a a A A A A a a 14
Total 273
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2-strand double exchanges lead
to FDS

N
There is a nice connection %
between the frequencies %
of multiple exchanges : %
between a locus and its g g b > % An My pattern
centromere and the 7 | &
frequency of 2nd division 03
segregations at that locus. %
S
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A simple calculation and result o

o LetF, (resp.S, )denote the number of strand-choice
configurations for k exchanges leading to first (resp. second)
division segregation at a segregating locus. By simple
counting we find

Fo, =1and S, =0,
while for k>0,
Fier = 2S¢, and S, =4F, +2S, .

Sy.1: 7 (homework)

© Eric Xing @ CMU, 2005-2009 22

11



Map function from SDS

\
e Assuming NCI, the proportion S, of second-division

segregants among meioses having A exchanges between
our locus and the centromere is
2 1
5, =—[1-(-2)*1, k>0.
% 3[ ( 2) ] >

e If the probabilities of the # of exchanges is (x,), then the
frequency of SDSs is

e If the distribution is Poisson (2d) then we find

2 B
s=—(1-e*).
e Thisisa rr?ap—function: between the unobservable map distance d and the
observable SDS frequency s.
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Interference: the state of play o

e Total number of exchanges on an arm rarely Poisson

e Positions of exchanges rarely Poisson in map distance (i.e.
crossover interference is the norm)

e Strand involvement generally random (i.e. chromatid
interference is rare)

e Spindle-centromere attachment generally random (non-
random attachments are quite rare)

e The biological basis for crossover interference is only slowly
becoming revealed; (See later slides, but we won't cover them
in class.)
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Crossover interference

e The Poisson model implies independence of
recombination across disjoint intervals

pr(R(1--2) & R(2--3)) = pr(R(1--2)) x pr(R(2--3))

Proof?
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Morgan’s D. melanogaster data sels
[ J
(1935) 3
I Il
s ec cv
0: no recombination; 1: recombination
0 1
0 13670 824
1 1636 6*

* the number of double recombinants that we would expect if
recombination events across the two intervals were
independent is 85

 Clearly there are many fewer double recombinants than the
independence model would predict.
» This phenomenon is called crossover interference..
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A measure of crossover
interference oo
|
1 2 3 4
In— n—

The coincidence coefficient S, for 1--2 & 3--4 is:

pr(R(1--2) & R(3--4))
pr(R(1--2)) x pr(R(3--4))

= pr(R(1--2) | R(3--4))
pr(R(1--2))

No crossover interference (for these intervals) if S, = 1
Positive interference (inhibition) if S, < 1.
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Stochastic models for exchanges | ¢
e Count-location models
e Renewal process models
e Other special models, including a
polymerization model
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Count-Location Models

e These models recognize that interference influences
distribution of the number of exchanges, but fail to recognize
that the is relevant to interference,
which limits their usefulness.

e Let N =# exchanges along the bivalent.

1. Count distribution: g, = P(N = n)

2. Location distribution: individual exchanges are located independently along the four-
strand bundle according to some common distribution F.

e Map distance over [a, b] is d = A[F(b) — F(a)]/2, where A=E(N).

Barrett et al (1954), Karlin & Liberman (1979) and Risch & Lange(1979)
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The Chi-Square Model o

e Modeling exchanges along the 4-strand bundle as events
from a stationary renewal process whose inter-event
distribution is %2 with an even number of degrees of freedom.
The x events are randomly distributed and every (m+1)st
gives an exchange:

e m=1 Cx Co Cx Co Cx Co
A VaY VaY VaY VaY VaY
C C C C C C

e The chi-square model is denoted by Cx(Co)™.
e m =0 corresponds to the Poisson model.

Fisher et al (1947), Cobbs (1978),©§_taxm (23728)2,2059053 et al (1993), Zhao et al (193%5)
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Conversion vs. crossover o
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Biological interpretation of the sess
chi-squared or Cx(Co)™ model o

e The biological interpretation of the chi-squared model
given in Foss, Lande, Stahl, and Steinberg 1993, is
embodied in the notation Cx(Co)™ :

The C events are crossover initiation events, and these
resolve into either reciprocal exchange events Cx, or
gene conversions Co, in a fairly regular way: crossovers
are separated by an organism-specific number m of
conversions.
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Fitting the Chi-square Model to
Various Organisms

Gamete data:

D. melanogaster: m=4
Mouse: m=6
Tetrad data:
N. crassa: m=2
S. cerevisiae: m =0 -3 (mostly 1)
S. pombe: m=0
Pedigree data:
Human (CEPH): m=4

The chi-square model has been extremely successful in
fitting data from a wide variety of organisms rather well.
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Failure of the Cx(Co)™ model with | 832¢
yeast .o

e The biological interpretation of the chi-squared model
embodied in the notation Cx(Co)™ is that crossovers are
separated by an organism-specific number of potential
conversion events without associated crossovers.

e |t predicts that close double crossovers should be enriched
with conversion events that themselves are not associated
with crossovers.

e With yeast, this prediction can be tested with suitably marked
chromosomes.

It was so tested in Foss and Stahl, 1995 and failed.
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Challenges in the statistical sels
study of meiosis '
e Understanding the underlying biology
e Combinatorics: enumerating patterns
e Devising models for the observed phenomena
e Analysing single spore and tetrad data especially
multilocus data
e Analysing crossover data
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