

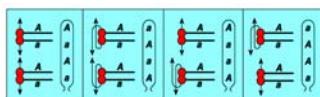
Computational Genomics

10-810/02-710, Spring 2009

Meiosis and Recombination

Eric Xing

Lecture 20, April 1, 2009

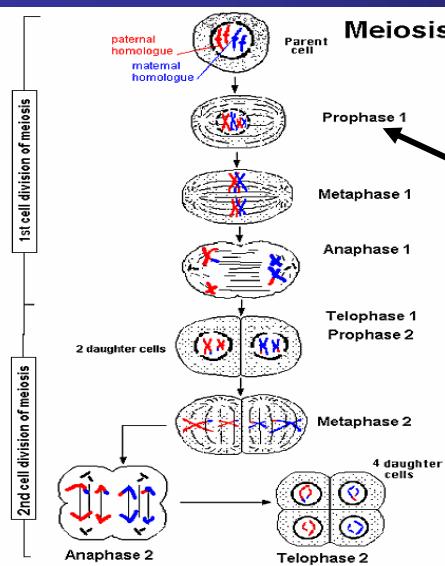


Reading: Chap. 1.3, 13.4 DTM book

© Eric Xing @ CMU, 2005-2009

1

Meiosis



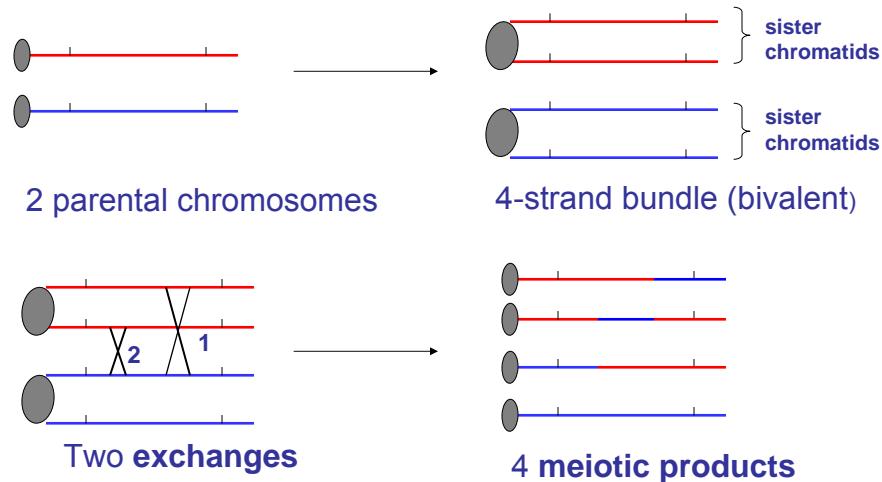
Meiosis is a process which starts with

The action of interest to us happens around here :

- Chromosomes **replicate**, but stay joined at their **centromeres**
- **Bivalents** form
- **Chiasmata** appear
- Bivalents separate by attachment of centromeres to **spindles**.

Source:
<http://www.accessexcellence.org>

Four-strand bundle and exchanges



© Eric Xing @ CMU, 2005-2009

3

Chance aspects of meiosis

- Number of exchanges along the 4-strand bundle
- Positions of the exchanges
- Strands involved in the exchanges
- Spindle-centromere attachment at the 1st meiotic division
- Spindle-centromere attachment at the 2nd meiotic division
- Sampling of meiotic products

Deviations from randomness are called **interference**.

© Eric Xing @ CMU, 2005-2009

4

A stochastic model for meiosis

- A point process X for exchanges along the 4-strand bundle
- A model for determining strand involvement in exchanges
- A model for determining the outcomes of spindle-centromere attachments at both meiotic divisions
- A sampling model for meiotic products

*Random at all stages defines the **no-interference** or **Poisson** model.*

© Eric Xing @ CMU, 2005-2009

5

A model for strand involvement

- The standard assumption here is

No Chromatid Interference (NCI):

each non-sister pair of chromatids is equally likely to be involved in each exchange, independently of the strands involved in other exchanges.

NCI fits pretty well, but there are broader models.

*Changes of parental origin along **meiotic products** are called **crossovers**. They form the crossover point process C along the single chromosomes.*

Under NCI, C is a Bernoulli *thinning* of X with $p=0.5$.

© Eric Xing @ CMU, 2005-2009

6

From exchanges to crossovers

- Usually we can't observe exchanges, but on suitably marked chromosomes we can track crossovers.

Call a meiotic product **recombinant** across an interval J , and write $R(J)$, if the parental origins of its endpoints differ, i.e. if an **odd number of crossovers** have occurred along J . Assays exist for determining whether this is so.

- **Mather's formula:**

Under NCI we find that if $n > 0$, $pr(R(J) | X(J) = n) = 1/2$, so

$$pr(R(J)) = 1/2 \times pr(X(J) > 0) \dots \dots \dots (*) \text{ (Proof?)}$$

© Eric Xing @ CMU, 2005-2009

7

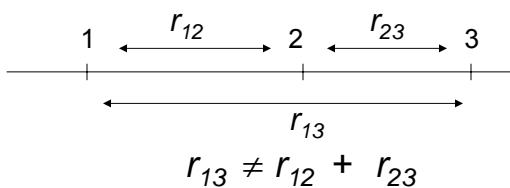
Recombination and mapping

The **recombination fraction** $pr(R(J))$ gives an indication of the chromosomal length of the interval J : under NCI, it is monotone in $|J|$.

Sturtevant (1913) first used recombination fractions to order (i.e. **map**) genes. (How?)

Problem: the recombination fraction does not define a metric.

Put $r_{ij} = pr(R(i-j))$.



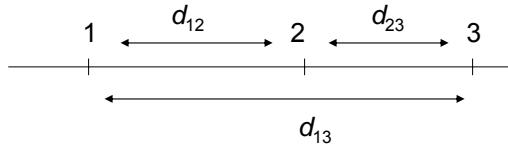
© Eric Xing @ CMU, 2005-2009

8

Map distance and mapping

- **Map distance:** $d_{12} = E\{C(1-2)\} = \text{av } \# \text{ COs in 1-2}$

- *Unit.* Morgan, or centiMorgan.



$$d_{13} = d_{12} + d_{23} \text{ (how to prove this?)}$$

- The expectation says *nothing definitive* about the relationship **physical** distance and **genetic** distance

- **Genetic mapping or applied meiosis:** a **BIG** business

- Placing genes and other markers along chromosomes;
- Ordering them in relation to one another;
- Assigning map distances to pairs, and then globally.

© Eric Xing @ CMU, 2005-2009

9

Genetic linkage

Haldane's model:

These crossovers occur as a Poisson process of rate d (per Morgan). Then the probability of **observing** a recombination:

$$\begin{aligned} \rho(d) &= \sum_{k \text{ odd}} e^{-d} \frac{d^k}{k!} = \frac{1}{2} e^{-d} \sum_{k=0}^{\infty} \left(\frac{d^k}{k!} - \frac{(-d)^k}{k!} \right) \\ &= \frac{1}{2} (1 - \exp(-2d)). \end{aligned}$$

$\rho(d)$ is an increasing function of d , $\rho(d) \rightarrow 1/2$ as $d \rightarrow \infty$, and $\rho(d) \approx d$ as $d \rightarrow 0$.

© Eric Xing @ CMU, 2005-2009

10

The program from now on

- With these preliminaries, we turn now to the **data** and models in the literature which throw light on the chance aspects of meiosis.
- Mendel's law of segregation:** a result of random sampling of meiotic products, with allele (variant) pairs generally segregating in precisely equal numbers.

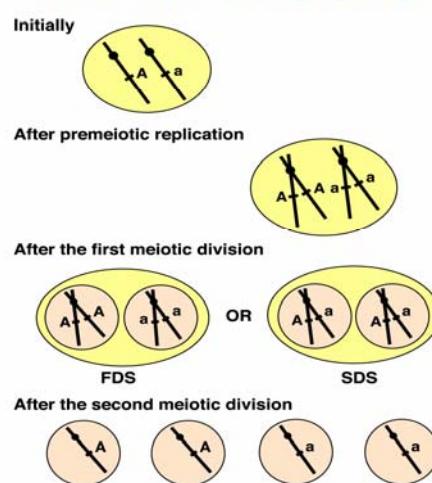
As usual in biology, there are exceptions.

© Eric Xing @ CMU, 2005-2009

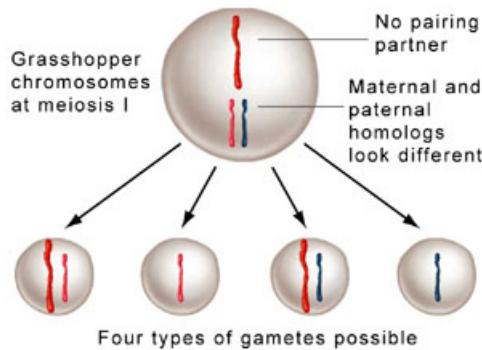
11

Segregation

When A and a are segregating



Random spindle-centromere attachment at 1st meiotic division



In 300 meioses in a grasshopper heterozygous for an inequality in the size of one of its chromosomes, the smaller of the two chromosomes moved with the single $\times 146$ times, while the larger did so 154 times.

Carothers, 1913.

© Eric Xing @ CMU, 2005-2009

13

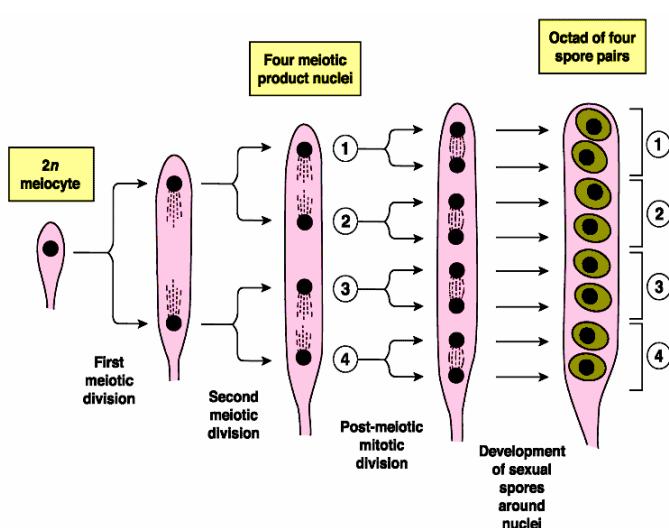
Tetrads

- In some organisms - fungi, molds, yeasts - all four products of an individual meiosis can be recovered together in what is known as an **ascus**. These are called **tetrads**. The four ascospores can be typed individually.
- In some cases - e.g. *N. crassa*, the red bread mold - there has been one further mitotic division, but the resulting **octads** are *ordered*.

© Eric Xing @ CMU, 2005-2009

14

Meiosis in *N.crassa*



© Eric Xing @ CMU, 2005-2009

15

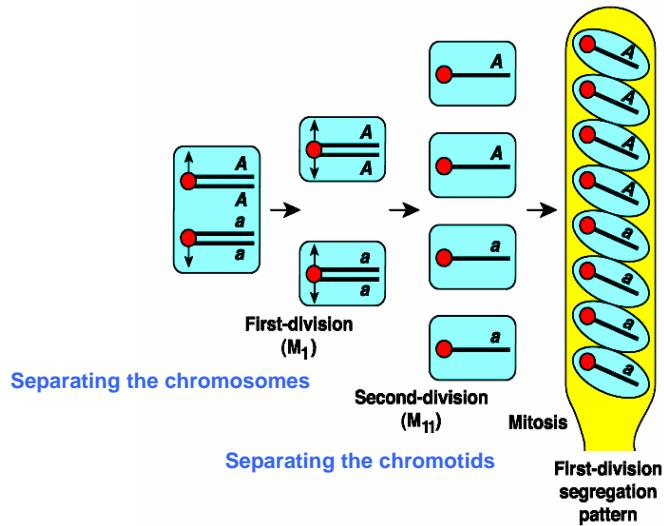
Using ordered tetrads to study meiosis

- Data from ordered tetrads tell us a lot about meiosis. For example, we can see clear evidence of 1st and 2nd division segregation.
- We first learned definitively that normal exchanges occur at the 4-stand stage using data from *N. crassa*, and we can also see that random spindle-centromere attachment is the case for this organism.
- Finally, aberrant segregations can occasionally be observed in octads.

© Eric Xing @ CMU, 2005-2009

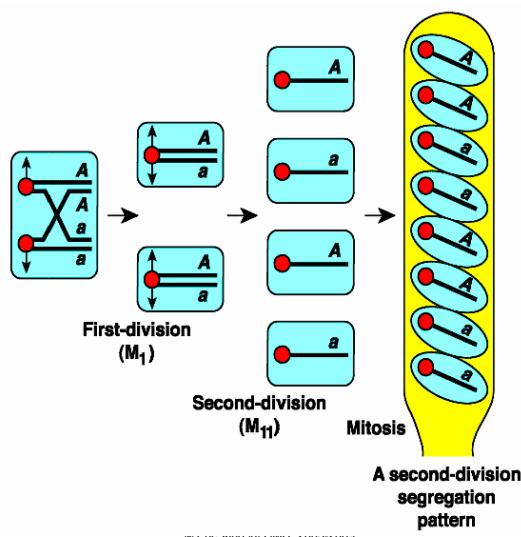
16

First-division segregation patterns



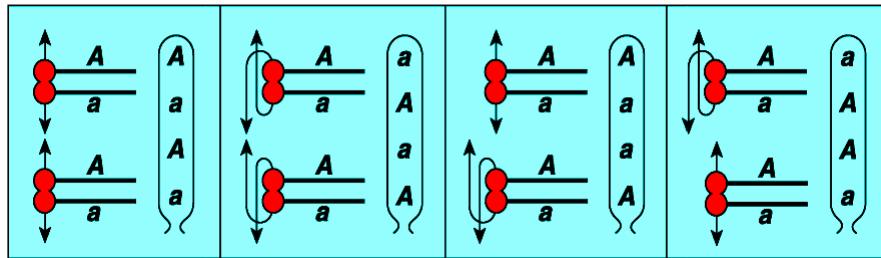
17

Second-division segregation patterns



18

Different 2nd division segregation patterns



Under random spindle-centromere attachment, all four patterns should be equally frequent.

© Eric Xing @ CMU, 2005-2009

19

Lindgren's 1932 *N. crassa* data

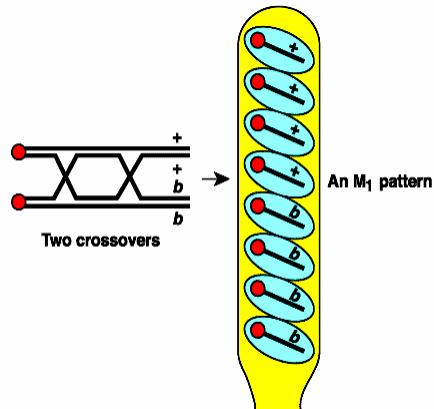
Class	Position of spore in ascus								Number
	1	2	3	4	5	6	7	8	
I	A	A	A	A	a	a	a	a	102 3 } 105
	A	A	A	a	A	a	a	a	
II	a	a	a	a	A	A	A	A	123 6 } 129
	a	a	a	A	a	A	A	A	
III	A	A	a	a	A	A	a	a	8 1 } 9
	A	a	A	a	A	A	a	a	
IV	a	a	A	A	a	a	A	A	5
V	A	A	a	a	a	a	A	A	10 1 } 11
	A	a	A	a	a	a	A	A	
VI	a	a	A	A	A	A	a	a	14
									Total
									273

© Eric Xing @ CMU, 2005-2009

20

2-strand double exchanges lead to FDS

There is a nice connection between the frequencies of multiple exchanges between a locus and its centromere and the frequency of 2nd division segregations at that locus.



© Eric Xing @ CMU, 2005-2009

21

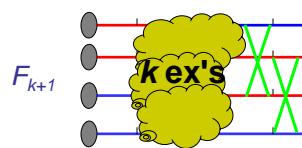
A simple calculation and result

- Let F_k (resp. S_k) denote the number of strand-choice configurations for k exchanges leading to *first* (resp. *second*) division segregation at a segregating locus. By simple counting we find

$$F_0 = 1 \text{ and } S_0 = 0,$$

while for $k > 0$,

$$F_{k+1} = 2S_k, \text{ and } S_{k+1} = 4F_k + 2S_k.$$



S_{k+1} : ? (homework)

© Eric Xing @ CMU, 2005-2009

22

Map function from SDS

- Assuming NCI, the proportion S_k of second-division segregants among meioses having k exchanges **between our locus and the centromere** is

$$S_k = \frac{2}{3} \left[1 - \left(-\frac{1}{2} \right)^k \right], \quad k > 0.$$

- If the probabilities of the # of exchanges is (x_k) , then the frequency of SDSs is

$$s = x_1 + \frac{1}{2} x_2 + \frac{3}{4} x_3 + \dots$$

- If the distribution is Poisson (2d) then we find

$$s = \frac{2}{3} (1 - e^{-3d}).$$

- This is a **map-function**: between the unobservable map distance d and the observable SDS frequency s .

© Eric Xing @ CMU, 2005-2009

23

Interference: the state of play

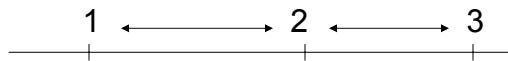
- Total number of exchanges on an arm rarely Poisson
- Positions of exchanges rarely Poisson in map distance (i.e. crossover interference is the norm)
- Strand involvement generally random (i.e. chromatid interference is rare)
- Spindle-centromere attachment generally random (non-random attachments are quite rare)
- The biological basis for crossover interference is only slowly becoming revealed; (See later slides, but we won't cover them in class.)

© Eric Xing @ CMU, 2005-2009

24

Crossover interference

- The Poisson model implies independence of recombination across disjoint intervals



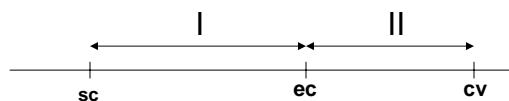
$$\text{pr}(R(1-2) \text{ & } R(2-3)) = \text{pr}(R(1-2)) \times \text{pr}(R(2-3))$$

Proof?

© Eric Xing @ CMU, 2005-2009

25

Morgan's *D. melanogaster* data (1935)



0: no recombination; 1: recombination

	0	1
0	13670	824
1	1636	6*

* the number of double recombinants that we would expect if recombination events across the two intervals were independent is 85

- Clearly there are many fewer double recombinants than the independence model would predict.
- This phenomenon is called **crossover interference**..

© Eric Xing @ CMU, 2005-2009

26

A measure of crossover interference

The **coincidence coefficient** S_4 for 1--2 & 3--4 is:

$$\begin{aligned} & \frac{\text{pr}(R(1--2) \& R(3--4))}{\text{pr}(R(1--2)) \times \text{pr}(R(3--4))} \\ & = \frac{\text{pr}(R(1--2) | R(3--4))}{\text{pr}(R(1--2))} \end{aligned}$$

No crossover interference (for these intervals) if $S_4 = 1$
Positive interference (inhibition) if $S_4 < 1$.

© Eric Xing @ CMU, 2005-2009

27

Stochastic models for exchanges

- Count-location models
- Renewal process models
- Other special models, including a polymerization model

© Eric Xing @ CMU, 2005-2009

28

Count-Location Models

- These models recognize that interference influences distribution of the **number of exchanges**, but fail to recognize that the **distance between them** is relevant to interference, which limits their usefulness.
- Let $N = \# \text{ exchanges}$ along the bivalent.
 1. *Count distribution:* $q_n = P(N = n)$
 2. *Location distribution:* individual exchanges are located independently along the four-strand bundle according to some common distribution F .
- *Map distance over $[a, b]$ is $d = \lambda[F(b) - F(a)]/2$, where $\lambda = E(N)$.*

Barrett *et al* (1954), Karlin & Liberman (1979) and Risch & Lange(1979)

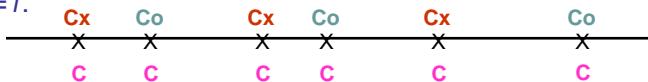
© Eric Xing @ CMU, 2005-2009

29

The Chi-Square Model

- Modeling exchanges along the 4-strand bundle as events from a **stationary renewal process** whose inter-event distribution is χ^2 with an even number of degrees of freedom. The x events are randomly distributed and every $(m+1)$ st gives an exchange:

- $m=1:$



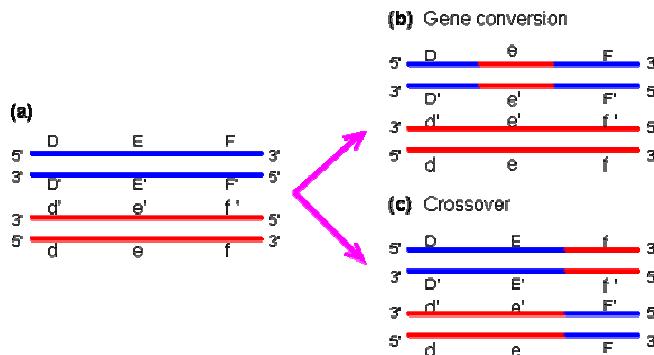
- The chi-square model is denoted by $Cx(Co)^m$.
 - $m = 0$ corresponds to the Poisson model.

Fisher *et al* (1947), Cobbs (1978), Stam (1979), Foss *et al* (1993), Zhao *et al* (1995)

© Eric Xing @ CMU, 2005-2009

30

Conversion vs. crossover



31

Biological interpretation of the chi-squared or $Cx(Co)^m$ model

- The biological interpretation of the chi-squared model given in Foss, Lande, Stahl, and Steinberg 1993, is embodied in the notation $Cx(Co)^m$:

The C events are crossover initiation events, and these resolve into either reciprocal exchange events **Cx**, or gene conversions **Co**, in a fairly regular way: crossovers are separated by an organism-specific number *m* of conversions.

© Eric Xing @ CMU, 2005-2009

32

Fitting the Chi-square Model to Various Organisms

Gamete data:

D. melanogaster: $m = 4$
Mouse: $m = 6$

Tetrad data:

N. crassa: $m = 2$
S. cerevisiae: $m = 0 - 3$ (mostly 1)
S. pombe: $m = 0$

Pedigree data:

Human (CEPH): $m = 4$

The chi-square model has been extremely successful in fitting data from a wide variety of organisms rather well.

© Eric Xing @ CMU, 2005-2009

33

Failure of the $Cx(Co)^m$ model with yeast

- The biological interpretation of the chi-squared model embodied in the notation $Cx(Co)^m$ is that crossovers are separated by an organism-specific number of potential conversion events without associated crossovers.
- *It predicts that close double crossovers should be enriched with conversion events that themselves are not associated with crossovers.*
- With yeast, this prediction can be tested with suitably marked chromosomes.

It was so tested in Foss and Stahl, 1995 and failed.

© Eric Xing @ CMU, 2005-2009

34

Challenges in the statistical study of meiosis

- Understanding the underlying biology
- Combinatorics: enumerating patterns
- Devising models for the observed phenomena
- Analysing single spore and tetrad data especially multilocus data
- Analysing crossover data

© Eric Xing @ CMU, 2005-2009

35

Acknowledgements

- Terry Speed, UC Berkeley
- Mary Sara McPeek, Chicago
- Hongyu Zhao, Yale
- Karl Broman, Johns Hopkins
- Franklin Stahl, Oregon

© Eric Xing @ CMU, 2005-2009

36

References

- www.netspace.org/MendelWeb
- HLK Whitehouse: **Towards an Understanding of the Mechanism of Heredity**, 3rd ed. 1973
- Kenneth Lange: **Mathematical and statistical methods for genetic analysis**, Springer 1997
- Elizabeth A Thompson **Statistical inference from genetic data on pedigrees**, CBMS, IMS, 2000.