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Genome Polymorphisms
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Type of polymorphisms
Insertion/deletion of a section of DNA

Minisatellites: repeated base patterns (several hundred base pairs)
Microsatellites: 2-4 nucleotides repeated
Presence or absence of Alu segments

Single base mutation (SNP)
Restriction fragment length (RFLP)
Creating restriction sites via PCR primer
Direct sequencing

Frequency of SNPs greater than that of any other type of polymorphism
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Variable Number of Tandem Repeats 
(VNTR) Polymorphism  
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Measure against Reference 
Ladder
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Fingerprints: Nuclear DNA 
standard

FBI CODIS (Combined DNA Index System) standard for nuclear DNA 
utilizes 13 highly-variable tetramer STR sites.
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Restriction Fragment Length 
Polymorphism (RFLP)  
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Single Nucleotide Polymorphism 
(SNP)

– Each variant is called an “alleleallele”
– Almost always bibi--allelicallelic
– Account for most of the genetic diversity 

among different (normal) individuals, e.g. 
drug response, disease susceptibility

DNA sequence variation due to differences of a single nucleotide 
- A, T, C, or G - among members of the species
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Exploiting Genetic Variations
Population Evolution: the majority of human sequence 
variation is due to substitutions that have occurred once in 
the history of mankind at individual base pairs

There can be big differences between populations!

Markers for pinpointing a disease: certain polymorphisms 
are in "Linkage Disequilibrium" with disease phenotypes

Association study: check for differences in SNP patterns between cases and 
controls  

Forensic analysis: the polymorphisms provide individual and 
familiar signatures
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Migration of human variation

http://info.med.yale.edu/genetics/kkidd/point.html
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Migration of human variation

http://info.med.yale.edu/genetics/kkidd/point.html
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Migration of human variation

http://info.med.yale.edu/genetics/kkidd/point.html
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Why humans are so similar and 
polymorphic patterns are regional

Population bottleneck: a small population 
that interbred reduced the genetic 
variation
Out of Africa ~ 100,000 years ago

Out of Africa
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Genetic Inference

Structure 2.1

Genetic structure of Human Populations (Rosenberg et al. 2002)

Structure 2.1

Structure 2.1

Genetic structure of Human Populations (Rosenberg et al. 2002)

Structure 2.1

Deconvolve population structure
Ancestral spectrum analysis

Reveal genome inheritance events
Recombination hotspot identification

Determine genetic markers
Haplotype inference
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Inferring population genetics
Size of ancestral pool
The timings of bottlenecks and migrations
Selections?
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Sir John Kingman, 
Head of the Isaac Newton Institute of 
Mathematical Sciences

The coalescent
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Coalescent Theory

how we can build up a genealogical tree to relate a 
sample of n haploid individuals, collected in the 
present day?

The following series of slides shows how you can build up a genealogical tree to 
relate a sample of 22 individuals, collected in the present day, at a single
haplotype locus (e.g. the non-recombining Y chromosome).
Because (for the Y chromosome) one son has only one father, but one father can 
have more than one son, coalescent events occur in the genealogy which 
inevitably result in a reduction of ancestors. Eventually, one ancestor remains –
the Most Recent Common Ancestor (MRCA).

Present

Time

22 individuals
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Present

Time

Most recent common ancestor
(MRCA)

40

Mutational events can now be added to the genealogical tree, 
resulting in polymorphic sites.  If these sites are typed in the 
modern sample, they can be used to split the sample into 
sub-clades (represented by different colors)
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Present

Time

Most recent common ancestor
(MRCA)

TCGAGGTATTAAC
TCTAGGTATTAAC
TCGAGGCATTAAC
TCTAGGTGTTAAC
TCGAGGTATTAGC
TCTAGGTATCAAC
*   ** * *
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The Statistical Models
To move beyond mere description, and to attempt such things 
as estimating the TMRCA (Time to Most Recent Common 
Ancestor) of the tree, it is necessary to adopt certain modeling
assumptions.

For now lets forget about mutations, but just concern 
ourselves with the coalescence
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Kingman's coalescent process
Random collision of lineages as go back in time
Collision is faster the smaller the effective population size

In a haplotype population of effective population size N,

Average time for k 
copies to coalesce to 
k-1 copies:

generations

)( 1
2
−

=
kk

N

Average time for two 
copies to coalesce:

= N generations

Average time for n 
copies to coalesce:

generations

⎟
⎠
⎞

⎜
⎝
⎛ −=

n
N 112

Derivation? ---- Hw!
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Hint of the derivation
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The Wright-Fisher (WF) model
The coalescent is descriptive, but not generative!

A classic generative model is the Wright-Fisher model.  This 
is the canonical model of genetic drift in populations. It was 
invented in 1932 and 1930 by Sewall Wright and R. A. Fisher.

It starts with the following assumptions:
random mating and a random number of offspring (strictly, following a Poisson 
distribution)
no recombination (i.e. a single locus), 
constant population size, 
no selection, 
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The Wright-Fisher (WF) model

It is a forwards-in-time model of a neutral locus in a 
constant-size, random-mating, haploid population 
evolving in discrete generations.

Each individual in generation t has a random number 
(possibly 0) of offspring in generation t+1.  Each is:

identical to the parent with probability 1-µ;
otherwise a mutation occurs.

With WF, one can attempt such things as estimating the 
TMRCA (Time to Most Recent Common Ancestor) of the tree, 
etc.
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generation 0

generation 1

generation 2

generation 3

generation 4

generation 5

generation 6
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Coalescent theory
When we consider the same set of assumptions but now 
simulate going “backwards in time”, we arrive at the 
standard coalescent model with infinite-allele-mutations.

A coalescent is the backwards-in-time “cousin” of the WF 
model: similar assumptions, but traces the ancestry of n 
observed alleles.

Ancestry is represented via a genealogical tree: leaves are 
observed alleles, root is the most recent common ancestor 
(MRCA).
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t0 = present

t2 = 2nd coalescence

t1 = 1st coalescence

t3 = TMRCA (Time
since Most Recent
Common Ancestor)

Time is measured in units of N generations: 1 coalescent time 
unit = NG years, where G is generation time in years.

Time back to the next coalescence when there are k lineages has 
the exponential distribution with mean and standard deviation both 
2/k(k-1); 

mean = sd = 1

mean = sd = 1/3
mean = sd = 1/6

Height of tree: mean = 3/2  sd = 1·07
Total branch length: mean =11/3 sd = 2·33

e.g. k = 4:
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The TMRCA under the coalescent
The TMRCA (height of the genealogical tree) is on average 
2(n-1)/n; the average time in which there are just two 
ancestral lineages is 1.

the number of ancestors of a sample drops rapidly (backwards in time);
for more than half its history, on average, a sample has only two ancestors;
data often clustered.

When we simulate from the standard coalescent, we find that there 
is considerable variation in the TMRCA from one simulation to the 
next.

Most coalescent event occur in the recent past (at the tips of the tree)
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Coalescent with variable 
population size

The situation changes if we expand the coalescent model to 
incorporate a factor of exponential population growth.
Now there is less variation in the TMRCA between 
simulations, and more coalescent events occur in the more 
distant past (near the root of the tree).
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Generalisations of the standard 
coalescent model

Variable population size: coalescences occur more rapidly when the 
population size is small.
Population subdivision with migration.
Some forms of selection.
Recombination: the ancestral recombination graph (ARG)
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A recombining coalescent

Different markers have 
slightly different 
coalescent trees
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Coalescents in related species

Consistency of 
gene tree with 
species tree
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How to approximate a 
coalescent?

Kingman coalescent process with binary lineage merging 

New population haplotype alleles emerge along all branches 
of the coalescence tree at rate a/2 per unit length

This can be approximated by an infinite mixture model (aks, 
Dirichlet process mixture)

 ≈

Natural genealogy

N

∞

Infinite mixturesCoalescent with mutation

⇒ ⇒
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TCGAGGTATTAAC
The ancestral chromosome

TCGAGGTATTAAC
TCTAGGTATTAAC
TCGAGGCATTAAC
TCTAGGTGTTAAC
TCGAGGTATTAGC
TCTAGGTATCAAC

*   ** * *
The SNPsThe SNPs
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TCTCGGAGGAGGTATATTTTAAAACC
TCTCTTAGGAGGTATATTTTAAAACC
TCTCGGAGGAGGCACATTTTAAAACC
TCTCTTAGGAGGTGTGTTTTAAAACC
TCTCGGAGGAGGTATATTTTAAGGCC
TCTCTTAGGAGGTATATTCCAAAACC

useful markers for studyinguseful markers for studying disease associationdisease association or or genome evolution:genome evolution:
---- landmarks, indicators, colandmarks, indicators, co--variates, causes variates, causes ……

TCTC██AGGAGG████TT██AA██CC
TCTC██AGGAGG████TT██AA██CC
TCTC██AGGAGG████TT██AA██CC
TCTC██AGGAGG████TT██AA██CC
TCTC██AGGAGG████TT██AA██CC
TCTC██AGGAGG████TT██AA██CC

The haplotypesThe haplotypes

Present

Time

TCGAGGTATTAAC
TCTAGGTATTAAC
TCGAGGCATTAAC
TCTAGGTGTTAAC
TCGAGGTATTAGC
TCTAGGTATCAAC
*   ** * *

Assuming there are presently k 
active lineages:

The probability of coalescence:

The probability of mutation (killing a 
lineage): 

α+−
−
1

1
k

k

α
α
+−1k

How to derive? ---HW!
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Genetic Demography

Are there genetic prototypes among them ?
What are they ?
How many ? (how many ancestors do we have ?) 

74

Clustering

How to label them ?
inference

How many clusters ???
model selection ?
or inference ?
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Random Partition of Probability 
Space

. (event, pevent) 

centroid :=φ

ancester :=(a,θ){ }11 πφ ,
{ }22 πφ ,

{ }55 πφ ,

{ }66 πφ ,

{ }33 πφ ,

{ }44 πφ ,

…
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Dirichlet Process
A CDF, G, on possible worlds 
of random partitions follows a 
Dirichlet Process if for any 
measurable finite partition
(φ1,φ2, .., φm):

(G(φ1), G(φ2), …, G(φm) ) ~ 
Dirichlet( αG0(φ1), …., αG0(φm) )

where G0 is the base measure
and α is the scale parameter

1φ
2φ

5φ
6φ

3φ
4φ

Thus a Dirichlet Process G defines a distribution of distribution 

Possible worlds of partitions
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DP as a Stick-breaking Process
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Chinese Restaurant Process

CRP defines an exchangeable distribution on partitions over an (infinite) sequence 
of samples, such a distribution is formally known as the Dirichlet Process (DP)
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{A,θ} {A,θ} {A,θ} {A,θ} {A,θ} {A,θ} ……
3

1
2 4

5 6 7

8 9

The DP Mixture of Ancestral 
Haplotypes

The customers around a table form a cluster
associate a mixture component (i.e., a population haplotype) with a table 

sample {a, θ} at each table from a base measure G0 to obtain the population 
haplotype and nucleotide substitution frequency for that component

With p(h|{Α, θ}) and p(g|h1,h2), the CRP yields a posterior distribution on the 
number of population haplotypes (and on the haplotype configurations and the 
nucleotide substitution frequencies)
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A Hierarchical Bayesian Infinite 
Allele model

).},{|(~ kahph θ

•• Assume anAssume an individual haplotypeindividual haplotype hh is stochastically is stochastically 
derived from aderived from a population haplotypepopulation haplotype ak withwith
nucleotidenucleotide--substitution frequencysubstitution frequency θk: : 

•• Not knowing the correspondences between individual  Not knowing the correspondences between individual  
and population haplotypes, each individual haplotype and population haplotypes, each individual haplotype 
is a mixture of  population haplotypesis a mixture of  population haplotypes..

•• The number and identity of the population haplotypes are unknownThe number and identity of the population haplotypes are unknown

−− use ause a DirichletDirichlet Process Process to construct a priorto construct a prior distributiondistribution GG on on HH´́××RRJJ..

Gn

Hn1 Hn2

Ak θk

∞

G

τ G0
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DP-haplotyper

Inference: Markov Chain Monte Carlo (MCMC)
Gibbs sampling
Metropolis Hasting

Gn

Hn1 Hn2

A θ

N

K

G

α G0 DP

infinite mixture components
(for population haplotypes)

Likelihood model
(for individual 

haplotypes and genotypes)

© Eric Xing @ CMU, 2005-2009 82

Multi-population Genetic 
Gemography

Pool everything together and solve 1 hap problem? 
--- ignore population structures

Solve 4 hap problems separately?
--- data fragmentation

Co-clustering … solve 4 coupled hap problems jointly
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Each population can be associated with a unique DP 
capturing population-specific genetic demography 

Different population may have unique haplotypes

Different population may share 
common haplotypes

Thus Population specific DPs
are marginally dependent

Population Specific DPs

GG11

GG22

GG44

GG33
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Hierarchical DP Mixture

GG11

GG22

GG44

GG33

....

γγHH

α2

α1

α3

α4
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