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Why Time Series?
Biological processes are time evolving!



Dr. Mina Bissell, Berkeley

Example II: Breast Cancer Progression and 
Reversal in Organotypic Culture

Example III: Inflammatory Response 
in Endotoxinated Mice

100µg 300µg 400µg 600µg200µg

Day 1 Day 2 Day 4 Day 6 Day 8
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Time Series of Gene Expression

A sequence of gene expression measured at 
successive time points at either uniform or uneven 
time intervals.                                                

Reveal more information than static data as time 
series data measure biological systems under 
different yet related conditions.

© Eric Xing @ CMU, 2005-2009 6

Yeast Cell Cycle
Spellman et al. Mol. Bio. Cel. 98

Gene

Time



© Eric Xing @ CMU, 2005-2009 7

Yeast Cell Cycle (cont'd) 
Period pattern of expression
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Arbeitman et al. Nature 02

Life Cycle of Drosophila 
Melanogaster
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Life Cycle of Drosophila 
Melanogaster (cont'd) 

Muscle development, timing of transcriptional factors
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Spinal Cord Development of Rats
Wen et al. PNAS 98
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The Objectives of Time Series 
Analysis

Interpretation  
e.g. What are the genes that control the yeast cell cycle? 

Forecasting
e.g. Under stimuli A, what is the growth rate of yeast in 5 hours? 

Control
e.g. How to control the growth of cancerous cells?

Hypothesis testing
e.g. Is gene A differentially expressed under two different conditions 
at time point T?

Simulation 
e.g. Can we recreate in-silico model of the organism based on 
parameters extracted from time series?
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Cluster Analysis

Spectrum Analysis

Smoothing and Trend Analysis

Dynamic system model

Learning gene regulatory relations (dynamic networks)

Method of Time Series Analysis
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Cluster Analysis
Treat each gene as a data point

Treat time series X for a gene as a single vector

Define similarity score or distance score between two time 
series X and X'

Apply any conventional clustering algorithm (hierarchical 
clustering, k-means, etc.) 

E.g. useful for discovering functional modules

Time

Gene A

Gene B Gene A

Time

Gene B

Expression LevelExpression Level

Expression Level

Time

Gene A

Gene B

Similarity Measures
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Similarity Measures: Correlation 
Coefficient
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Time

Gene

Cluster Analysis
Hierarchical Clustering
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Cluster Analysis
Clustering genes by their wave patterns
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Spectrum Analysis
Transform gene expression from time domain to frequency 
domain

Discrete Fourier Transformation (DFT)

Significant frequency components were those with large 
amplitude, ie. |xk|. 

E.g. useful for identifying cell cycle genes
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Time Domain Frequency Domain

Normalized frequence: 1Hz <=> 1 cell cycle60 min <=> 1 cell cycle

Spectrum Analysis

© Eric Xing @ CMU, 2005-2009 20

Smoothing and Trend Analysis
Eg. how does gene expression change in general? 
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L2 and L1 Regularized Trend 
Analysis

Hodrick-Prescott filtering: find time series x to smooth time 
series y s.t. the following objective is minimized (O(N)) 

l1-trend analysis: slightly different in the regularization 
(expected O(N), worse case O(N1.5)) 
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Original Noisy

l1-trend H-P filtering

L2 vs L1
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Dynamical System Model
Kalman filter for forecasting

Estimate the state x of a discrete time controlled process

With measure process

zero mean Gaussian noise
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Kalman Filter
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Network Analysis
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A DBN for E.coli Regulatory 
Pathways (Ong ISMB 2003)
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Drosophila developmentDrosophila development

Temporal/Spatial-Specific 
“Rewiring" Gene Networks

EGFREGFR--induced progression/reversion of breast epithelial cellsinduced progression/reversion of breast epithelial cells

TumorigenicNormal Normal RevertedTumorigenic

t*

n=1

Rewiring Biological Networks

Networks rewire over discrete timesteps



Networks rewire over epochs

Rewiring Biological Networks 
(cont.)

Modeling Time-Varying Graphs

The temporal exponential graph models (Fan et al. ICML 2007)

Transition Model:

Emission Model:
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Results on Drosophila data

The proposed model was applied to infer the muscle development 
sub-network (Zhao et al., 2006) on Drosophila lifecycle gene 
expression data (Albeitman et al., 2002).

11 genes, 66 timesteps over 4 development stages

Further biological experiments are necessary for verification.

Network in 
(Zhao et al. 2006)

Embryonic Larval Pupal & Adult

Evolving Markov Random Fields
(amr and Xing, 2009)

Assuming the graphs are continuously weighted, then for 
each time point t, we have a MRF model for expression

Graphical lasso has been used to obtain a sparse estimate 
of E with continuous X

Assuming graphs are smoothly evolving over time
Estimate E1, E2, … via temporally smoothed graph lasso



TESLA: Temporally Smoothed 
L1-regularized logistic regression 
(amr and Xing, 2009)

Convex optimization

Transient Interaction



Static Versus Dynamic

Evolution of Network Signatures



Transient Subgraph

Analyzing time-space data in biological processes
Drosophila life cycle

Breast cancer progression and reversal

Inflammatory response in endotoxinated mice

Other dynamic behaviors of networks
Differentiation: tree of networks

Detection of sudden changes

Active learning – when to get more samples 

Open theoretical issues
Consistence (pattern, value, …)

Confidence

Stability

Sample complexity

Future Work


