

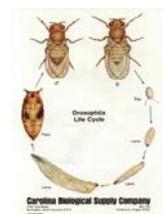
Computational Genomics

10-810/02-710, Spring 2009

Time Series Model for Gene Expression

Eric Xing

Lecture 18, March 25, 2009



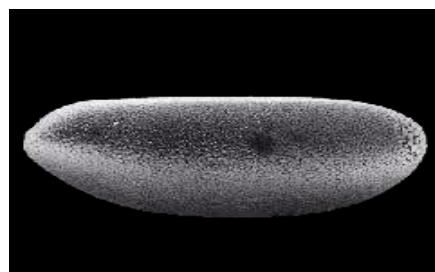
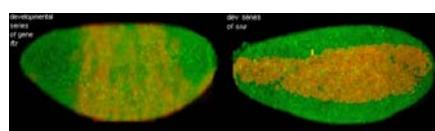
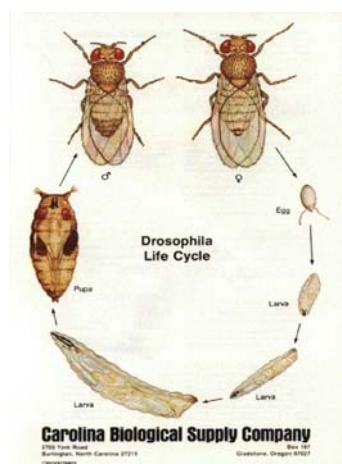
Reading: class assignment

© Eric Xing @ CMU, 2005-2009

1

Why Time Series?

- Biological processes are time evolving!

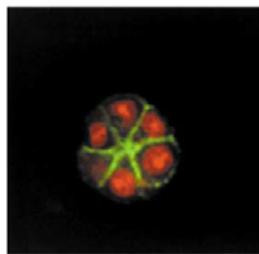


© Eric Xing @ CMU, 2005-2009

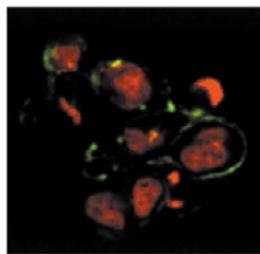
2

Example II: Breast Cancer Progression and Reversal in Organotypic Culture

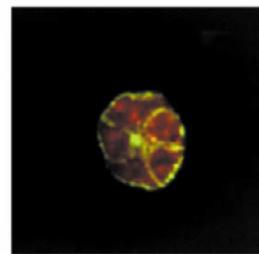
'Normal'



Tumor

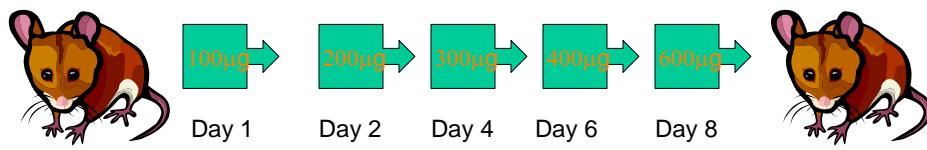
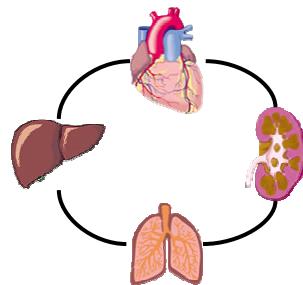


Reverted



Dr. Mina Bissell, Berkeley

Example III: Inflammatory Response in Endotoxinated Mice



Time Series of Gene Expression

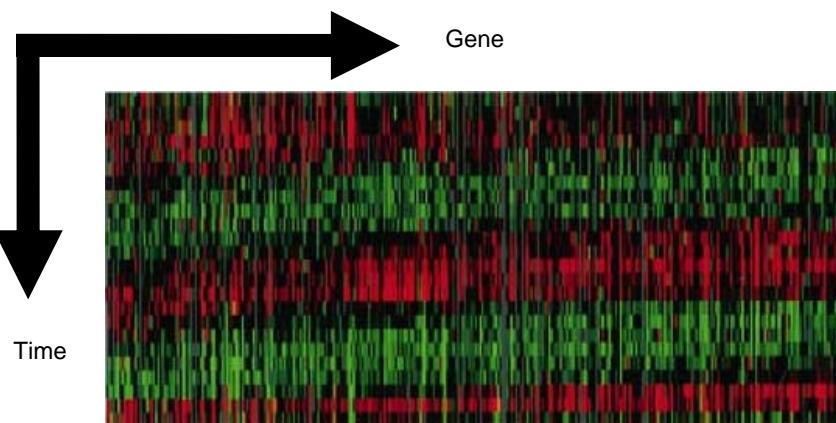
- A sequence of gene expression measured at successive time points at either uniform or uneven time intervals.
- Reveal more information than static data as time series data measure biological systems under different yet related conditions.

© Eric Xing @ CMU, 2005-2009

5

Yeast Cell Cycle

- Spellman et al. Mol. Bio. Cel. 98

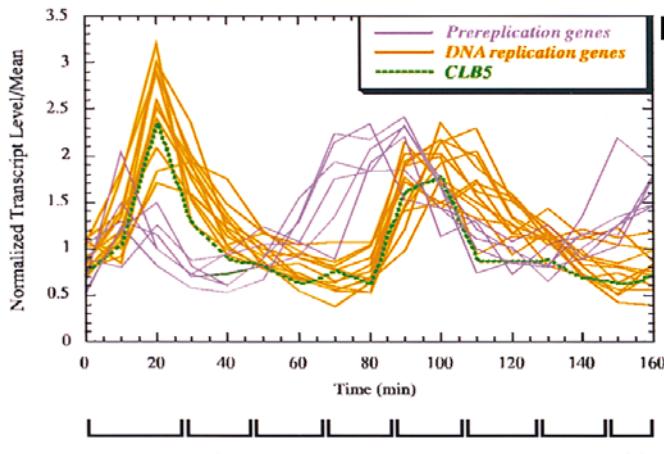


© Eric Xing @ CMU, 2005-2009

6

Yeast Cell Cycle (cont'd)

- Period pattern of expression

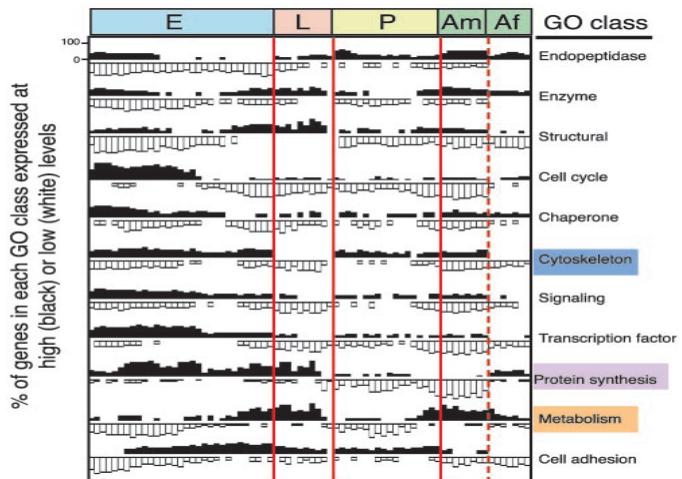


© Eric Xing @ CMU, 2005-2009

7

Life Cycle of *Drosophila Melanogaster*

- Arbeitman et al. Nature 02

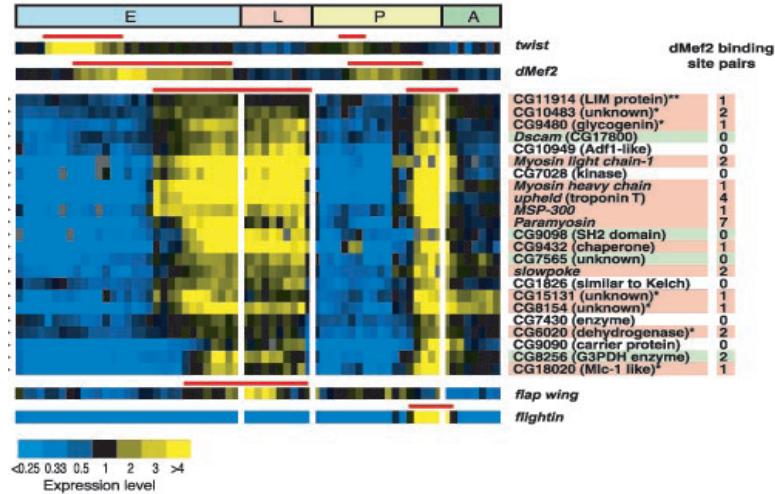


© Eric Xing @ CMU, 2005-2009

8

Life Cycle of Drosophila Melanogaster (cont'd)

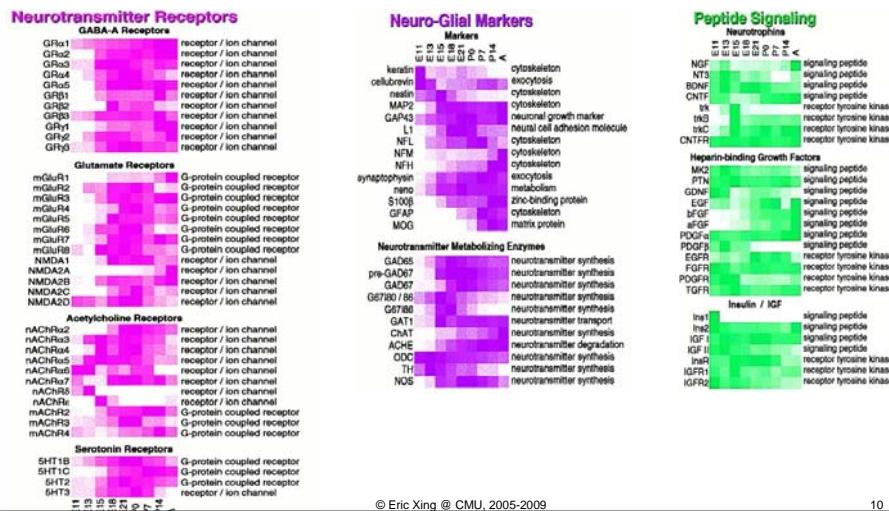
- Muscle development, timing of transcriptional factors



9

Spinal Cord Development of Rats

- Wen et al. PNAS 98



10

The Objectives of Time Series Analysis

- **Interpretation**

e.g. What are the genes that control the yeast cell cycle?

- **Forecasting**

e.g. Under stimuli A, what is the growth rate of yeast in 5 hours?

- **Control**

e.g. How to control the growth of cancerous cells?

- **Hypothesis testing**

e.g. Is gene A differentially expressed under two different conditions at time point T?

- **Simulation**

e.g. Can we recreate in-silico model of the organism based on parameters extracted from time series?

Method of Time Series Analysis

- Cluster Analysis

- Spectrum Analysis

- Smoothing and Trend Analysis

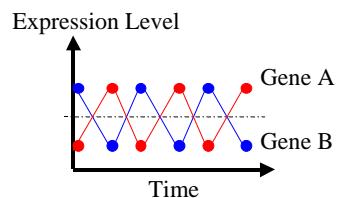
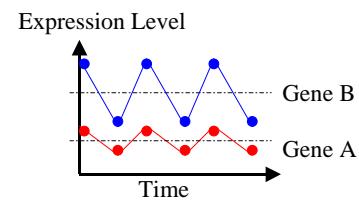
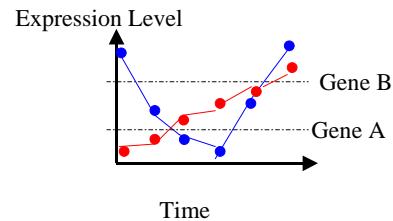
- Dynamic system model

- Learning gene regulatory relations (dynamic networks)

Cluster Analysis

- Treat each gene as a data point
- Treat time series X for a gene as a single vector
- Define similarity score or distance score between two time series X and X'
- Apply any conventional clustering algorithm (hierarchical clustering, k-means, etc.)
- E.g. useful for discovering functional modules

Similarity Measures



Similarity Measures: Correlation Coefficient

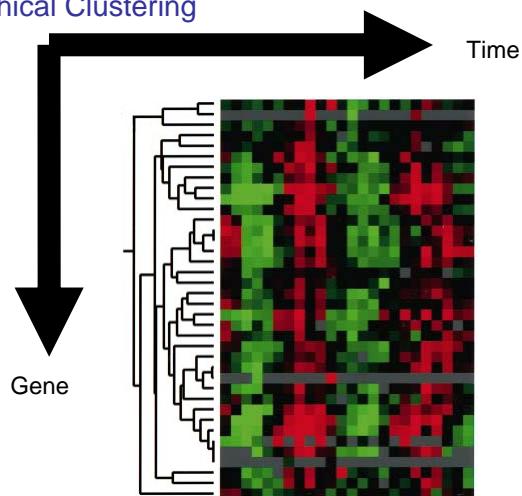
$$s(x, y) = \frac{\sum_{i=1}^p (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^p (x_i - \bar{x})^2 \times \sum_{i=1}^p (y_i - \bar{y})^2}}$$

where $\bar{x} = \frac{1}{p} \sum_{i=1}^p x_i$ and $\bar{y} = \frac{1}{p} \sum_{i=1}^p y_i$.

$$|s(x, y)| \leq 1$$

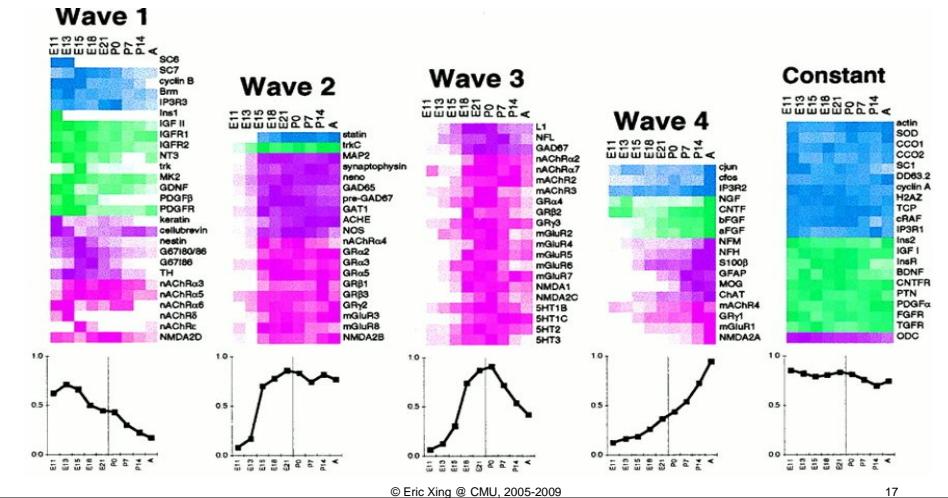
Cluster Analysis

- Hierarchical Clustering



Cluster Analysis

- Clustering genes by their wave patterns



Spectrum Analysis

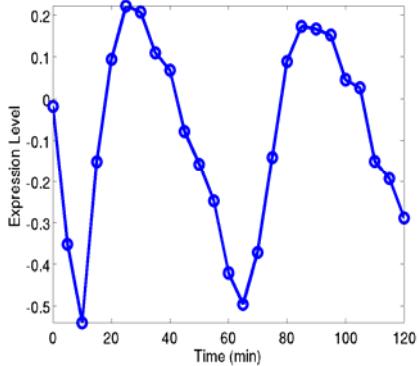
- Transform gene expression from time domain to frequency domain
- Discrete Fourier Transformation (DFT)

$$X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi k \frac{n}{N}} \quad k = 0, \dots, N-1.$$

- Significant frequency components were those with large amplitude, ie. $|x_k|$.
- E.g. useful for identifying cell cycle genes

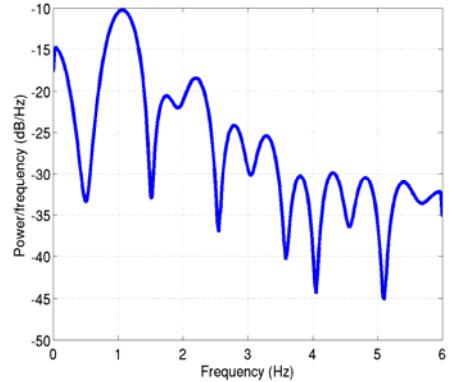
Spectrum Analysis

Time Domain



Frequency Domain

Periodogram Power Spectral Density Estimate

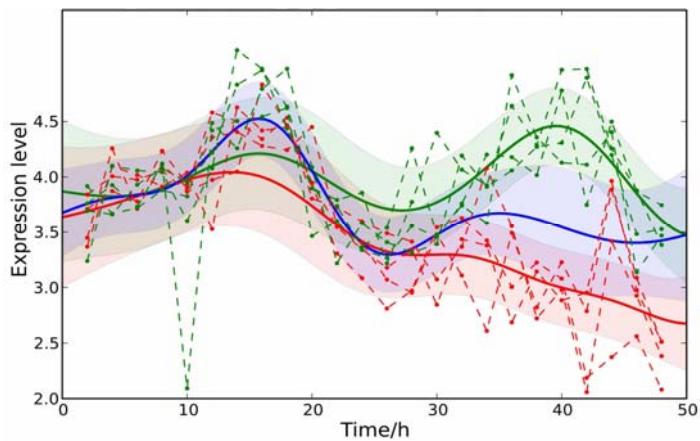


© Eric Xing @ CMU, 2005-2009

19

Smoothing and Trend Analysis

- Eg. how does gene expression change in general?



© Eric Xing @ CMU, 2005-2009

20

L₂ and L₁ Regularized Trend Analysis

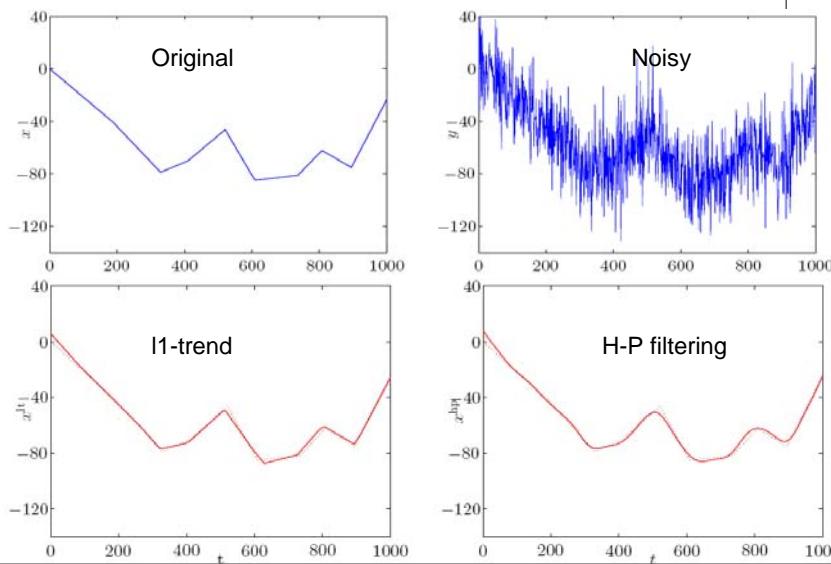
- Hodrick-Prescott filtering: find time series x to smooth time series y s.t. the following objective is minimized (O(N))

$$(1/2) \sum_{t=1}^n (y_t - x_t)^2 + \lambda \sum_{t=2}^{n-1} (x_{t-1} - 2x_t + x_{t+1})^2$$

- L₁-trend analysis: slightly different in the regularization (expected O(N), worse case O(N^{1.5}))

$$(1/2) \sum_{t=1}^n (y_t - x_t)^2 + \lambda \sum_{t=2}^{n-1} |x_{t-1} - 2x_t + x_{t+1}|$$

L₂ vs L₁



Dynamical System Model

- Kalman filter for forecasting
- Estimate the state x of a discrete time controlled process

$$x_k = Ax_{k-1} + Bu_{k-1} + w_{k-1}$$

- With measure process

$$z_k = Hx_k + v_k$$

- w_k, v_k zero mean Gaussian noise

$$p(w) \sim N(0, Q)$$

$$p(v) \sim N(0, R)$$

© Eric Xing @ CMU, 2005-2009

23

Kalman Filter

Measurement Update (“Correct”)

- (1) Compute the Kalman gain
- (2) Update estimate with measurement z_k
- (3) Update the error covariance

$$K_k = P_k^- H^T (H P_k^- H^T + R)^{-1}$$

$$\hat{x}_k = \hat{x}_k^- + K_k (z_k - H \hat{x}_k^-)$$

$$P_k = (I - K_k H) P_k^-$$

Time Update (“Predict”)

- (1) Project the state ahead

$$\hat{x}_k^- = A \hat{x}_{k-1} + B u_{k-1}$$

- (2) Project the error covariance ahead

$$P_k^- = A P_{k-1} A^T + Q$$

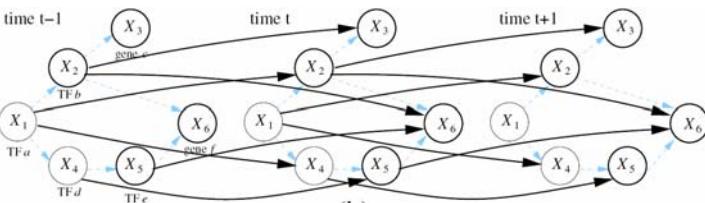
Initial estimates for \hat{x}_{k-1} and P_{k-1}

© Eric Xing @ CMU, 2005-2009

24

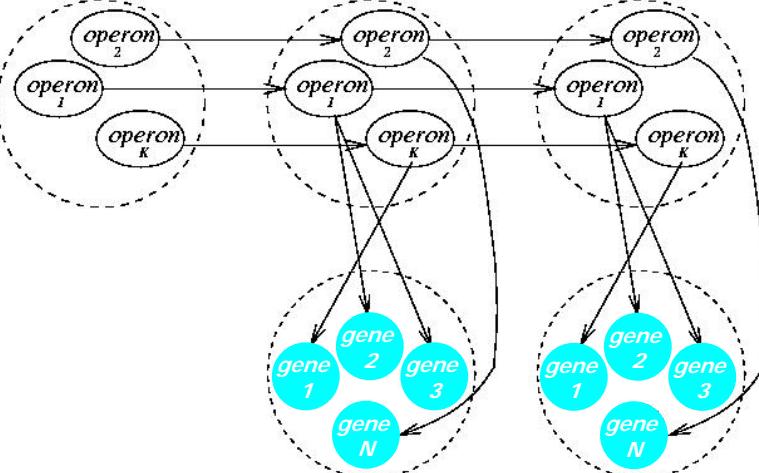
Network Analysis

$t=1$ 2 3 \dots T

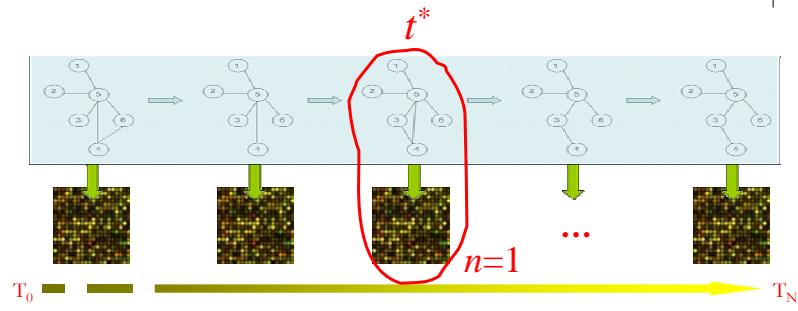


A DBN for E.coli Regulatory Pathways

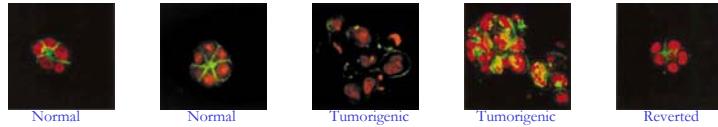
(Ong ISMB 2003)



Temporal/Spatial-Specific “Rewiring” Gene Networks

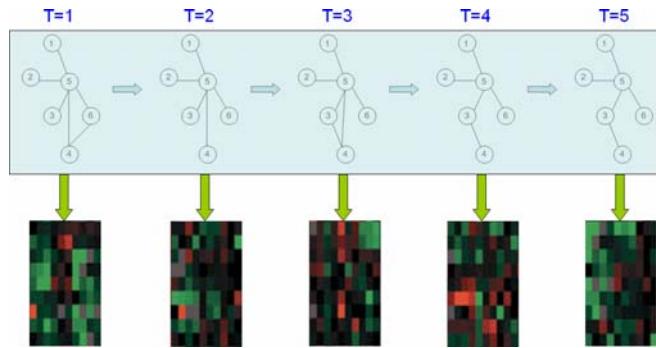


EGFR-induced progression/reversion of breast epithelial cells



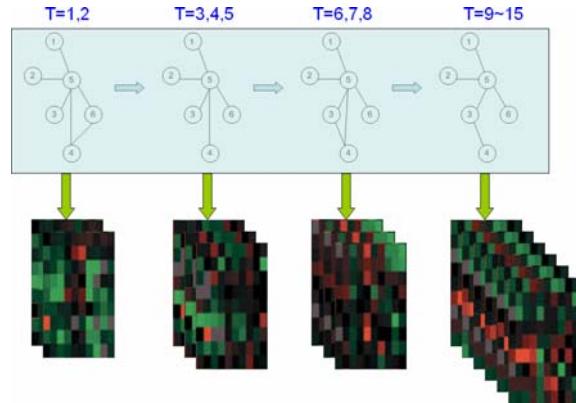
Rewiring Biological Networks

- Networks rewire over discrete timesteps



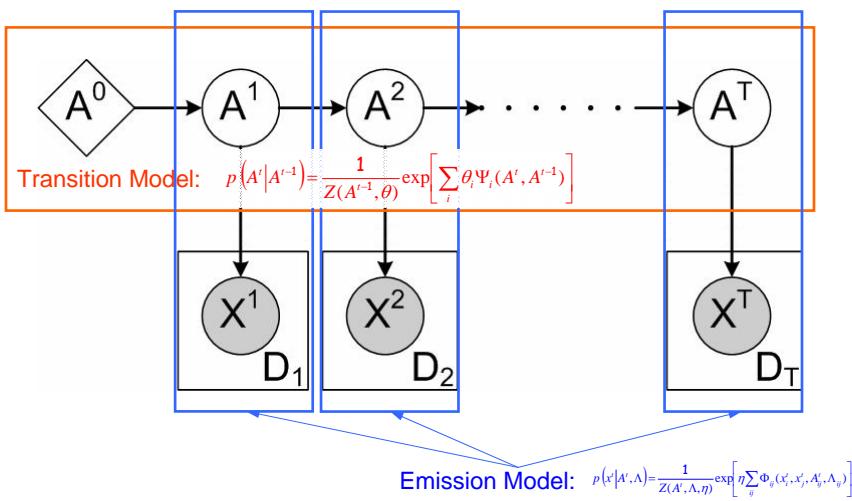
Rewiring Biological Networks (cont.)

- Networks rewire over epochs



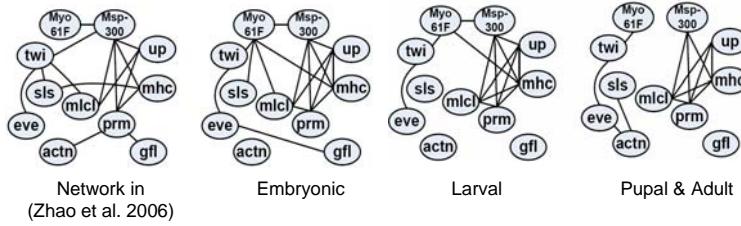
Modeling Time-Varying Graphs

- The temporal exponential graph models (Fan et al. ICML 2007)



Results on *Drosophila* data

- The proposed model was applied to infer the muscle development sub-network (Zhao et al., 2006) on *Drosophila* lifecycle gene expression data (Albeitman et al., 2002).
 - 11 genes, 66 timesteps over 4 development stages
 - Further biological experiments are necessary for verification.



Evolving Markov Random Fields

(amr and Xing, 2009)

- Assuming the graphs are continuously weighted, then for each time point t , we have a MRF model for expression

$$P(\mathbf{x}_d^t | \Theta^t) = \exp \left(\sum_{i \in V} \theta_{ii}^t x_{d,i}^t + \sum_{(i,j) \in E^t} \theta_{ij}^t x_{d,i}^t x_{d,j}^t - A(\Theta^t) \right)$$

- **Graphical lasso** has been used to obtain a sparse estimate of E with continuous X
- Assuming graphs are *smoothly evolving* over time
 - Estimate E^1, E^2, \dots via temporally smoothed graph lasso

TESLA: Temporally Smoothed L_1 -regularized logistic regression

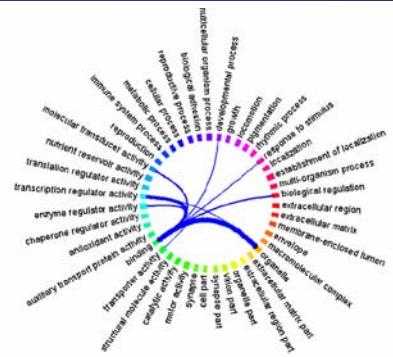
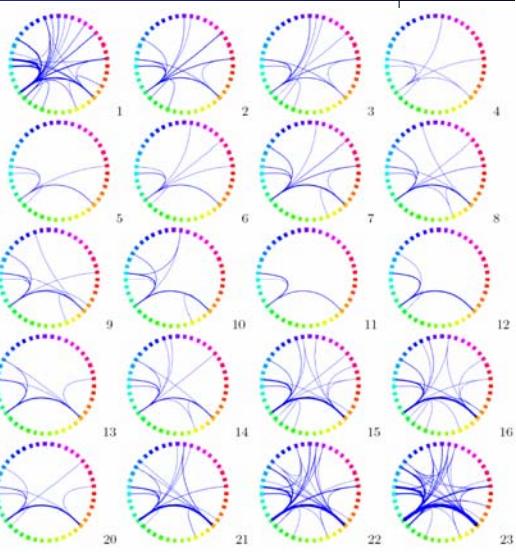
(amr and Xing, 2009)

$$\begin{aligned}\hat{\theta}_i^1, \dots, \hat{\theta}_i^T &= \arg \min_{\theta_i^1, \dots, \theta_i^T} \sum_{t=1}^T l_{avg}(\theta_i^t) \\ &\quad + \lambda_1 \sum_{t=1}^T \|\theta_{-i}^t\|_1 \\ &\quad + \lambda_2 \sum_{t=2}^T \|\theta_i^t - \theta_i^{t-1}\|_q^q,\end{aligned}$$

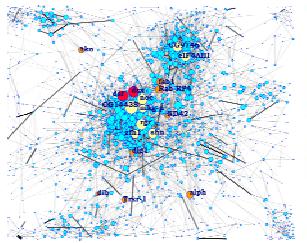
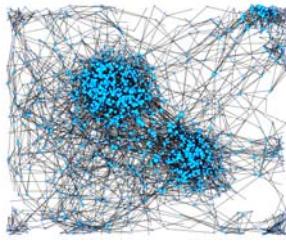
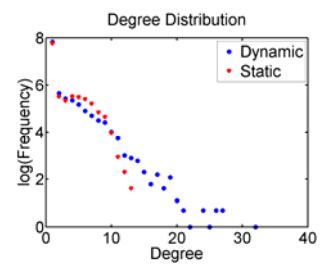
where $l_{avg}(\theta_i^t) = \frac{1}{N^t} \sum_{d=1}^{N^t} \log P(x_{d,i}^t | \mathbf{x}_{d,-i}^t, \theta_i^t)$.

- Convex optimization

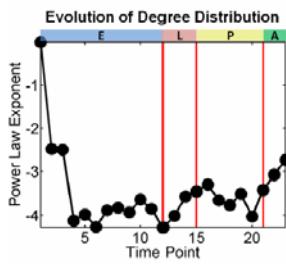
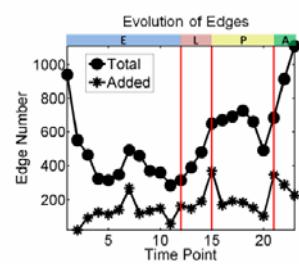
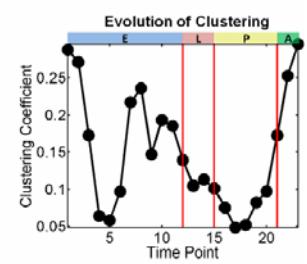
Transient Interaction



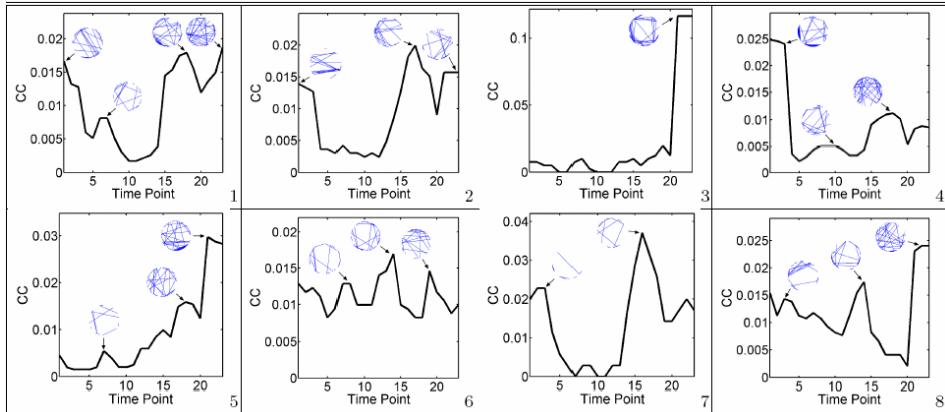
Static Versus Dynamic



Evolution of Network Signatures



Transient Subgraph



Future Work

- Analyzing time-space data in biological processes
 - Drosophila life cycle
 - Breast cancer progression and reversal
 - Inflammatory response in endotoxinated mice
- Other dynamic behaviors of networks
 - Differentiation: tree of networks
 - Detection of sudden changes
 - Active learning – when to get more samples
- Open theoretical issues
 - Consistency (pattern, value, ...)
 - Confidence
 - Stability
 - Sample complexity