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Why Time Series? :

e Biological processes are time evolving!
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Example Il: Breast Cancer Progression and
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Time Series of Gene Expression

|
e A sequence of gene expression measured at

successive time points at either uniform or uneven
time intervals.

e Reveal more information than static data as time
series data measure biological systems under
different yet related conditions.
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Yeast Cell Cycle ]

e Spellman et al. Mol. Bio. Cel. 98

Gene

© Eric Xing @ CMU, 2005-2009 6




[ X X J
0000
0000
. 3
Yeast Cell Cycle (cont'd) :
\
e Period pattern of expression
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Life Cycle of Drosophila i

Melanogaster ]

e Arbeitman et al. Nature 02
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Life Cycle of Drosophila
Melanogaster (cont'd)

e Muscle development, timing of transcriptional factors
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Spinal Cord Development of Rats |2

e Wen et al. PNAS 98
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The Objectives of Time Series
Analysis

e Interpretation
e.g. What are the genes that control the yeast cell cycle?
e Forecasting
e.g. Under stimuli A, what is the growth rate of yeast in 5 hours?
e Control
e.g. How to control the growth of cancerous cells?
e Hypothesis testing

e.g. Is gene A differentially expressed under two different conditions
at time point T?

e Simulation

e.g. Can we recreate in-silico model of the organism based on
parameters extracted from time series?
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Method of Time Series Analysis 4

e Cluster Analysis

e Spectrum Analysis

e Smoothing and Trend Analysis

e Dynamic system model

e Learning gene regulatory relations (dynamic networks)
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Cluster Analysis

e Treat each gene as a data point

e Treat time series X for a gene as a single vector

e Define similarity score or distance score between two time
series X and X'

e Apply any conventional clustering algorithm (hierarchical
clustering, k-means, etc.)

e E.g. useful for discovering functional modules
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Similarity Measures .
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Similarity Measures: Correlation "
Coefficient -
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Cluster Analysis

e Hierarchical Clustering
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Cluster Analysis

e Clustering genes by their wave patterns
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Spectrum Analysis -

e Transform gene expression from time domain to frequency
domain
e Discrete Fourier Transformation (DFT)
N—1 -
Xp= 3 ze PR k=0,....N—1.

n=>0
e Significant frequency components were those with large
amplitude, ie. [x,].

e E.g. useful for identifying cell cycle genes
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Spectrum Analysis

Time Domain Frequency Domain
Pericdogram Power Spectral Density Estimate
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Smoothing and Trend Analysis 4

e Eg. how does gene expression change in general?

Expression level
w w & &
(=] (%) (=] u

=]
un

205 10 20 30 40 50

Time/h

© Eric Xing @ CMU, 2005-2009 20




. o0
L, and L, Regularized Trend sece
Analysis o3
e Hodrick-Prescaott filtering: find time series x to smooth time‘
series y s.t. the following objective is minimized (O(N))
n n—1
¢ 2 ¢ 2
(1/2) Z(yt — )"+ A Z(I‘tfl — 27y + T4
t=1 t=2
¢ |,-trend analysis: slightly different in the regularization
(expected O(N), worse case O(N1-®))
n n—1
(1/2) Z(yt - It)g + A Z |71 — 20 + 441
t=1 t=2
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Dynamical System Model :
o Kalman filter for forecasting
e Estimate the state x of a discrete time controlled process
Xp = Axy _+Bu; _+w,_
e With measure process
Zp = Hxp+vy
e W Vi zero mean Gaussian noise
p(w)~N(0, Q)
p(v)~N(0O,R)
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Kalman Filter :

Measurement Update (“Correct™)

Ti Update (“Predict™ .
ime Update ("Predict™) (1) Compute the Kalman gain

K, = P,HT(HP,HT +R) '

(1) Project the state ahead
j.‘;{_ = Aj‘k— ] + B”.’\— ]
(2) Update estimate with measurement z;
(2) Project the error covariance ahead X = hS ! + K k(: — Hx X }
P.l' = AP;\. _ IAI + Q (3) Update the error covariance

Initial estimates for ¥, _; and P, _,
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Network Analysis

A DBN for E.coli Regulatory 3
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Temporal/Spatial-Specific
“Rewiring" Gene Networks

|, . e TV
EGFR-induced progression/reversion of breast epithelial cells
(X X
o000
o000
eo00
.. . . p
Rewiring Biological Networks .

e Networks rewire over discrete timesteps
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Rewiring Biological Networks sess
(cont.) o

|
e Networks rewire over epochs
T=1,2 T=345 T=6,7.8 T=9~15 ;
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Modeling Time-Varying Graphs H

e The temporal exponential graph models
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Results on Drosophila data

e The proposed model was applied to infer the muscle development
sub-network (Zhao et al., 2006) on Drosophila lifecycle gene
expression data (Albeitman et al., 2002).

e 11 genes, 66 timesteps over 4 development stages

e Further biological experiments are necessary for verification.

Network in Embryonic Pupal & Adult
(Zhao et al. 2006)
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Evolving Markov Random Fields | 22
(amr and Xing, 2009) °

e Assuming the graphs are continuously weighted, then for
each time point t, we have a MRF model for expression

P(x4|0") = (‘.Xl)(z Ol + Y Ol - A((—)*))
i€V (i.j)EE!
e Graphical lasso has been used to obtain a sparse estimate

of E with continuous X

e Assuming graphs are smoothly evolving over time
e Estimate E?, E?, ... via temporally smoothed graph lasso




TESLA: Temporally Smoothed
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(amr and Xing, 2009) °
T
;.. ., 0: = arg 9;1?_1_1133 ;Im.g(()ﬁ)
.
YD N h
t=1
T
Ao Yl l2,
t=2
where l,.,(0f) = M log P(al|x4 ;. 0%).
e Convex optimization
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Static Versus Dynamic

Degree Distribution

o + Dynamic
» Static
=6
2| Peaze,
o ole
=] .
g4 "
£
82 AR

10 20 30 40
Degree

Evolution of Network Signatures | ¢

Power Law Exponent

Evolution of Degree Distribution

E L P A

5 10 15 20
Time Point

o

Edge Number

Evalution of Edges
E L P

1 qu
800
B00)
400

200

;"v
il

#*Added
TB 0 15 20

Time Point

Evolution of Clustering
L |

Soazs
L&)
=
2 0.2
[&]
o5
&
=2 01
L]

005

57 20

10 1
Time Point




Transient Subgraph
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Future Work

e Analyzing time-space data in biological processes
e Drosophila life cycle
e Breast cancer progression and reversal

e Inflammatory response in endotoxinated mice

e Other dynamic behaviors of networks
e Differentiation: tree of networks
e Detection of sudden changes

e Active learning — when to get more samples

e Open theoretical issues
. Consistence (pattern, value, ...)
e  Confidence
. Stability

. Sample complexity




