


Clustering and Discrimination

cluster analysis — does not know the # of groups in advance
but wishes to establish groups and then analyze group
membership.

Discriminant function analysis — analyzes group membership
for known groups (pre-specified).

They differ according to their aims, which in turn depend on
the availability of a pre-existing basis for the grouping.

Alternative terminology

— Computer science: unsupervised and supervised
learning.

— Microarray literature: class discovery and class
prediction.



Eg: Tumor classification

A reliable and precise classification of tumors is essential for
successful diagnosis and treatment of cancer.

Current methods for classifying human malignancies rely on a
variety of morphological, clinical, and molecular variables.

In spite of recent progress, there are still uncertainties in
diagnosis. Also, it is likely that the existing classes are
heterogeneous.

DNA microarrays may be used to characterize the molecular
variations among tumors by monitoring gene expression on a
genomic scale. This may lead to a more reliable classification
of tumors.



Clusters on both genesA

and arrays
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Clustering microarray data
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We can cluster genes (rows), mRNA
samples (cols), or both at once.

ereadily interpretable figures.

sidentifying patterns in time or
space.

*seeking new subclasses of cell
samples (tumors, etc).
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*Three subtypes of lymphoma (FL, CLL
and DLBCL) have different genetic
signatures. (81 cases total)

*DLBCL group can be partitioned into
two subgroups with significantly
different survival. (39 DLBCL cases)




Basic principles of clustering

Aim: to group observations that are “similar” based on
predefined criteria.

Issues: Which genes / arrays to use?
Which similarity or dissimilarity measure?
Which clustering algorithm?

 Itis advisable to reduce the number of genes from
the full set to some more manageable number,
before clustering. The basis for this reduction is
usually quite context specific, see LDA later (another
popular one is PCA/SVD).



Minkowski metric, with EUC and MAN as special cases:
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EUC Euclidean metric
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Distance between Clusters

Distance between centroids Single-link
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wo basic types of clustering methods

Partitioning Hiel‘aI’Chical
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Partitioning methods

Partition the data into a prespecified number k of
mutually exclusive and exhaustive groups.

Iteratively reallocate the observations to clusters
until some criterion is met, e.g. minimize within
cluster sums of squares.

Examples:
— k-means, self-organizing maps (SOM), PAM, etc.;

— Fuzzy: needs stochastic model, e.g. Gaussian
mixtures.



K-Means Clustering

e © \

: Select k initial seed

/ K is pre-determined




K-Means Clustering

-
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Self Organizing Maps (SOM)

2-D square grid (for microarrays) or 1-D of nodes.

Inputs are n-dimensional vectors (e.g, <255,0,0> for
red)

SOM converges so that similar features (e.g; colors)
are grouped together.

a) Input space
b) Initial weights
c) Final weights




The Basic Process

1)

2)

3)

4)

5)

6)

Initialize each node’s weights.

Choose a random vector from
training data and present it to the
SOM.

Every node is examined to find the
Best Matching Unit (BMU).

The radius of the neighborhood
around the BMU is calculated. The
size of the neighborhood decreases
with each iteration.

Each node in the BMU'’s
neighborhood has its weights
adjusted to become more like the
BMU. Nodes closest to the BMU are
altered more than the nodes furthest
away in the neighborhood.

Repeat from step 2 for enough
iterations for convergence.

OO0\ 000000

bigure

(a) Hexagonal grid

000000000
000 000|000
00|00 00|00 O
O|/0]0 @ O]0|0]0 O
0|0]0 O O]0|0]0 O
000 000|000
000000000

(b) Rectangular gnid
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Calculating the Best Matching Unit
(BMU)

e Calculating the BMU Is done according to the
Euclidean distance among the node’s weights
(W, W, ..., W,) and the input vector’s
values (V,, V,, ..., V,).

Dist = \/Z(\/ ~W,)?



Determining the BMU Neighborhood

Size of the neighborhood: an exponential decay function
that shrinks on each iteration until eventually the
neighborhood is just the BMU itself.

o(t) = ao(t)exp(—%

Effect of location within the neighborhood: so that nodes
that are closer are influenced more than farther nodes.

dist?
)

O(t) = exp(— 202(1)




Modifying Weights of Nodes

The new weight for a node is the old weight, plus a fraction (L) of the
difference between the old weight and the input vector... adjusted (theta)
based on distance from the BMU.

W (t +1) =W (t) + O(t).L(t).(V (1) =W (1))

The learning rate, L, is also an exponential decay function.
— This ensures that the SOM will converge.

L(t) = L, exp(- %)

The lambda represents a time constant, and t is the time step



Hierarchical methods — we already saw
this in phylogeny

Hierarchical clustering methods produce a tree or dendrogram.

They avoid specifying how many clusters are appropriate by
providing a partition for each k obtained from cutting the tree at

some level.

The tree can be built in two distinct ways bottom-up:
agglomerative clustering;top-down: divisive clustering.



Agglomerative methods

e Start with n clusters.

At each step, merge the two closest clusters using a measure
of between-cluster dissimilarity, which reflects the shape of the
clusters.

* Between-cluster dissimilarity measures
— Mean-link: average of pairwise dissimilarities
— Single-link: minimum of pairwise dissimilarities - Avoid.
— Complete-link: maximumé& of pairwise dissimilarities —
pretty good.
— Distance between centroids



lllustration of points
In two dimensional
space

_______________________________




Divisive methods

Start with only one cluster.
At each step, split clusters into two parts.

Split to give greatest distance between two new
clusters

Advantages.

e Obtain the main structure of the data, i.e. focus
on upper levels of dendogram.

Disadvantages.

— Computational difficulties when considering all
possible divisions into two groups.



Hybrid Methods

« Mix elements of Partitioning and Hierarchical
methods
— Bagging
* Dudoit & Fridlyand (2002)

— HOPACH
e van der Laan & Pollard (2001)



Predefine
classes
Clinical

outcome

Objects
Array

Feature vectors

Gene
expression

Reference

earning set

{ Bad prognosis J [Good Prognosis}
S

recurrence < Syr recurrence > Syrs

AN AN
' N

Good Prognosis
Recurrence > 5

~

new
array

o [

L van’t Veer et al (2002) Gene expression \ Classification

profiling predicts clinical outcome of breast
cancer. Nature, Jan.



Intro to Decision Theory

classification as statistical decision theory: must
decide which of the classes an object belongs to

Use the observed feature vector X to aid In
decision making

Denote population proportion of objects of class k
as p, = p(Y =Kk)

Assume objects In class k have feature vectors
with class conditional density p,(X) = p(X|Y = k)



Intro to Decision Theory — Cont'd

* One criterion for assessing classifier quality is the
misclassification rate,

p(C(X)=Y)

* A loss function L(i,J) quantifies the loss incurred by
erroneously classifying a member of class | as
class |

* The risk function R(C) for a classifier is the
expected (average) loss:

R(C) = E[L(Y,C(X))]



Overview of popular classifiers —
Bayes and Nalve Bayes

In the unlikely situation that the class conditional densities

pr(x) = p(x|Y = k) and class priors m; are known, let

p(k | x) = TePk(X) | can simplify by Naive
| > mp(x) [ Bayes

denote the posterior probability of class k given feature vector
X.

The Bayes rule predicts the class of an observation x by that with

highest posterior probability
Cp(x) = argmax, p(k | x).

The Bayes rule minimizes the total risk under a symmetric loss

. " - K
function — Bayes risk. argmin, (Z L(h,1)p(h | x)) — BayesRisk
h=1



Classifiers- Cont'd
Maximum likelihood discriminant rule

« A maximum likelihood estimator (MLE) chooses the
parameter value that makes the chance of the
observations the highest.

* For known class conditional densities p,(X), the maximum

likelihood (ML) discriminant rule predicts the class of an
observation X by

C(X) = argmax, p,(X)= argmax, p(X|Y = k)

Compared to argmax, p(k | X) for Bayes



A, =diag(oy,...op), C(X)=argmin,

Gaussian ML discriminant

For multivariate Gaussian (normal) class densities X|Y=k ~ N(z, ),
the ML classifier is

C(X) = argmin, {(X - z4) 2 (X - 1)’ + log| 2 [}
z, =%Z(xi - X)(X —Y)T‘

In practice, population mean vectors g and covariance matrices 2,
are estimated by corresponding sample quantities

This is a Quadratic discriminant analysis, or QDA

If class densities have same diagonal covariance matrix

e 2
p (x_ — ”k')

j=1 Oy



ML discriminant rules - special
cases

1. Linear discriminant analysis, LDA. When the class densities

have the same covariance matrix, 2, = 2, the discriminant
rule is based on the square of the Mahalanobis distance and

Is linear and given by
C(x) = arg min , (x-p)’2 “1(x - p)

2. Diagonal linear discriminant analysis, DLDA. In this simplest
case, when the class densities have the same diagonal
covariance matrix V= diag(s,?, ..., sp2)2

Clx) = argrmin, 3 2

=1 o
] j




Fisher’'s linear Discriminant Analysis
FLDA

m The objective of LDA is to Serfurm dimensionality reduction while
preserving as much of the class discriminatory information as
possible

» Assume we have a set of D-dimensional samples {x', x© __ x™} N, of which

belong to class m,, and N to class @,. We seek to obtain a scalar y by projecting

the samples x onto a line

y=w'X

¢ Of all the possible lines we would like to select the one that maximizes the
separability of the scalars

m This is lllustrated for the two-dimensional case in the following figures
:-:21' le




L DA for two classes — Cont’'d

= In order to find a good projection vector, we need to define a measure
of separation between the projections
m The mean vector of each class in x and y feature space is

H

KL

1 - 1
—>» % and u=N—‘£y=

v S W A=W

N

YL

m We could then choose the distance between the projected means as our objective

functicn

Jiw) =| i, - i;

=| 'n'-'_':l..l. _IJ::1

m However, the distance between the projected means is nof a very good measure since it
does not take into account the standard deviation within the classes

-

This axis yields belter ciass separabilify —= 1

LS

'

&
Thiz axis has 2 larger disfance belwsen means



L DA for two classes — Cont’'d

s The solution proposed by Fisher is to maximize a function that represents the
difference between the means, normalized by a measure of the within-class
scatter

» For each class we define the scatter, an equivalent of the vanance, as

E}- = er'.'lr_ﬁf

m where the quaniity IFS'.l2 - "E'.Ell iz called the within-class scatlter of the projecied examples

o The Fisher linear discnminant is defined as the inear function wTx that maximizes the
criterion function

-~ P
oy P
3 15
¢ Therefore, we will be looking for a projection "
where examples from the same class are | '|I : I I
projected very close fo each other and, at the L JI__-.-;;_,-_.--'-“uF — S |
same time, the projected means are as farther . _f'%__,.fi_':::fff.f i {f,}:-:_}j, LS
LIRSS ( o

apart as possible |
-*- II

|

|
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L DA for two classes — Cont’'d

In order to find the optimum projection w*, we need to express Jiw) as an explicit function of w
We define a measure of the scatter in multivariate feature space x, which are scafter matrices

S =5 le—p Jx—p)

LE_TH

S, +3, =5,
m where 5, iz called the within-class scatter matrix

The scafter of the projection y can then be expressed as a function of the scatter matrix in
feature space x

S =2 ly-0f = Zlwhe-wip] = Twhe-plx-p ) w=wSw
Vel el Kl

5S4 5. =W SyW

Similarly, the difference between the projected means can be expressed in terms of the means
in the original feature space

-

5= = (W7~ = W (= N~ ) = WS

=
=N

m  The matrix 5; is called the between-class scatter. Mote that, since 5S¢ is the outer product of two vectors,
ts rank iz at most one

We can finally express the Fisher criterion in terms of 5,, and 5; as
W Sgw
WS, W

Jiw)



L DA for two classes — Cont’'d

¢ To find the maximum of J{w) we derive and equate to zero

d d [ w'S,w |
EDI{WH: dw | w'S,w | =0=
= [WTEWW]dIWJiEWI - :w—an]d[w;liwwl =0 =

= [WTS-_-.I.'-ﬁ-'];'_EEW - [W_E-E_'-ﬁ-']EEWW =0

T . T
WS W W SgW

—A 5 w1 —Ft =5 w=0=
WS, W WS W

= S;w-J5,w=0 =

o Dividing by wTs,,w

= SuSgw—Jw=0

* Solving the generalized eigenvalue problem (5,5 w=Jw) yields

w* = argmax-
"

(W'S

m  This ig know a= Fisher's Linear Discriminant {1928}, although it iz not a dizcnmimnant but rathera
apecific choice of direction for the projection of the data down 1o one dimenzion
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were oblained by finding linear boundaries in
the five-dimensional space X1, Xo, X192, X7, X3 . Linear inequalities in this space
are quadratic inequalities in the original space.



SVM: Large-margin Decision Boundary

 The decision boundary should be as far away from the data of
both classes as possible

— We should maximize the margin, m

— Distance between the origin and the line wTx=k is K/||w|]|

Class 1

wlix+b=0



Finding the Decision Boundary

e Let{xy, ..., X,} be our data set and lety, € {1,-1} be the class

label of x. yi (VVTXi n b) >1

 The decision boundary should classify all points correctly =

Minimize ||W ||> subjecttoy (W 'x +b)>1

e This is a constrained optimization problem. Can be solved using

Lagrangian

* Popular program SVMLight

http://svmlight.joachims.org/



Nearest Neighbor Classifiers

« Basic idea:
— If it walks like a duck, quacks like a duck, then it's
pr/c/),bably a duck Compute
/ Distance Test
Record
?tﬁb
NS
O
SIINT) — =2
. = ,
Training .~ N ~ ' Choose k of the

Records — .~ “nearest” records

S~o P



Nearest neighbor classification (k-NN)

e Requires three things
— The set of stored records -

— Distance metric to compute 0
distance between records

ry— O
1w
225
r

— The value of k, the number of
nearest neighbors to retrieve 0

e To classify an unknown record:

— Compute distance to other I 4 2
training records |

Sene 2
\
A
/

2
— ldentify k nearest neighbors \ ! 2

— Use class labels of nearest ~
neighbors to determine the 1
class label of unknown record e 0
(e.g., by taking majority vote)




Classification and regression trees
(CART)

o Partition the feature space into a set of rectangles,
then fit a simple model in each one

* Binary tree structured classifiers are constructed by
repeated splits of subsets (nodes) of the
measurement space X into two descendant subsets
(starting with X itself)

 Each terminal subset is assigned a class label; the
resulting partition of X corresponds to the classifier



Classification trees

%




Comparison study datasets

e Leukemia — Golub et al. (1999)
n =72 samples, G = 3,571 genes
3 classes (B-cell ALL, T-cell ALL, AML)
 Lymphoma — Alizadeh et al. (2000)
n = 81 samples, G = 4,682 genes
3 classes (B-CLL, FL, DLBCL)
« NCI 60 — Ross et al. (2000)
N = 64 samples, p = 5,244 genes
8 classes



Discriminant analysis Main comparison: NN, best DA, best CART
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Discriminant analysis Main compariscn: NN, best DA, best CART
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Discriminant analysis Main comparison: NN, best DA, best CART
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Discriminant analysis Main comparison: NN, best DA, best CART
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Results

* In the main comparison, NN and DLDA had the smallest error
rates, FLDA had the highest

« For the lymphoma and leukemia datasets, increasing the
number of genes to G=200 didn't greatly affect the
performance of the various classifiers; there was an
Improvement for the NCI 60 dataset.

* More careful selection of a small number of genes (10)
Improved the performance of FLDA dramatically.



Softwares

NAME COMPANY FEATURE
dChip Harvard Model based analysis, clustering, and loads of other uses
ImaGene Biodiscovery gg?rr;gﬂsg:iigg of gene expression value, constant-factor
GeneSight Biodiscovery background adjustment, clustering(hierarchical, SOM)
GeneSpring Silicqn normalization, clustering(hierarchical, SOM), fold-change
Genetics
Spotfire Spotfire PCA, clustering, fold-change
Resolver Rosetta clustering, PCA, fold-change, plots
LifeArray Incyte clustering, PCA, fold-change
Expressionist GeneData clust, PCA, fold-change
GeneExpress Gene Logic clustering, PCA, fold-change
Micrc!ilr_gk;/ Suit Scanalytics clustering, image, fold-changes
J-Express U Bergen clustering, PCA
UCI/NCGR UCI/NCGR t-test for fold-change
Treeview Stanford ((:sl,:Jritlgrllr][)g/ gﬁj?t’;rL?V\?rzgigsBI:rkeley Lab, Eisen Lab)
EPCLUST EBI clustering
SOM Whitehead Inst. | SOM




