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Many microarray experiments are carried out to find genes 
which are differentially expressed between two (or more) 
samples of cells:

cells (from the liver, say), in a mouse with a gene knocked out,
compared  with liver cells in a normal mouse of the same strain
cells in one region of the brain (say cerebellum), compared with cells in 
a different region (say the anterior cingulate region)
tumor cells in some organ (say the liver), compared with normal cells 
from the same organ
cells from an organism (say yeast) after a treatment (say by heat, or 
cold, or a drug) compared with cells of the same kind in the untreated 
state
cells from some part of a developing organ or organism at one time, 
compare with cells of the same kind at a later time, and so on
…

Introduction
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Motivation
SCIENTIFIC: To determine which genes are differentially 
expressed between two sources of mRNA (trt, ctl).

STATISTICAL: To assign appropriately adjusted p-values to 
thousands of genes, and/or make statements about false 
discovery rates.

We will discuss the issues in the context of two experiments, 
one which fits the aims above, and one which doesn’t, but 
helps make a number of points.
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Compare all samples to a common 
reference sample

Multiple direct comparisons between 
different samples
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The simplest cDNA microarray data analysis problem is identifying 
differentially expressed genes using one slide

This is a common enough hope
Efforts are frequently successful
It is not hard to do by eye
The problem is probably beyond formal statistical inference (valid p-values, etc) 
for the foreseeable future….why?

In the next two panels, genes found to be up- or down-regulated in 
an 8 treatment (Srb1 over-expression)  versus 8 control comparison 
are indicated in red and green, respectively, on plots of the data 
from single hybridizations. 
Also depicted are “confidence lines” determined by different 
methods and/or different “confidence” levels, which claim to be able 
to delineate differentially expressed genes using just one 
hybridization (slide).

Preliminary: differential analysis 
with one slide
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Matt Callow’s Srb1 dataset (#5).  
Newton’s and Chen’s single slide method
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Matt Callow’s Srb1 dataset (#8).  
Newton’s, Sapir & Churchill’s and Chen’s single slide method
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The second simplest cDNA microarray data analysis problem 
is identifying differentially expressed genes using replicated 
hybridizations

There are a number of different aspects:
First, between-slide normalization; 
Then, what should we look at: averages, SDs, t-statistics, other 
summaries?
How should we look at them?
Can we make valid probability statements?

We will discuss the issues in the context of two experiments, 
one which fits the aims above, and one which doesn’t, but 
helps make a number of points.

Differential analysis with 
replicated hybridizations
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Apo AI experiment: (Matt Callow)

Goal: To identify genes with altered expression in the livers of 
Apo AI knock-out mice (T) compared to inbred C57Bl/6 
control mice (C).

8 treatment mice and 8 control mice
16 hybridizations: liver mRNA from each of the 16 mice (Ti , Ci ) is 
labelled with Cy5, while pooled liver mRNA from the control mice (C*) is 
labelled with Cy3.
Probes: ~ 6,000 cDNAs (genes), including 200 related to lipid 
metabolism.
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Golub et al (1999) experiments
Goal. To identify genes which are differentially expressed in 
acute lymphoblastic leukemia (ALL) tumors  in comparison 
with acute myeloid leukemia (AML) tumors.

38 tumor samples:  27 ALL, 11 AML.
Data from Affymetrix chips, some pre-processing.
Originally 6,817 genes; 3,051 after reduction.
Data therefore a 3,051 × 38 array of expression values. 

Comment: this wasn’t really the goal of Golub et al.
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The gene expression data can be summarized as follows

Here xi,j is the (relative) expression value of gene i in sample j. 
The first n1 columns are from the treatment (T); the remaining 
n2 = n - n1 columns are from the control (C).

treatment                       control

X  =

Data
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Which genes have changed? When permutation testing 
possible.

1. For each gene and each hybridization (8 ko + 8 ctl), use 
M=log2(R/G).

2. For each gene form the t-statistic:

average of 8 ko Ms - average of 8 ctl Ms
sqrt(1/8 (SD of 8 ko Ms)2 + 1/8 (SD of 8 ctl Ms)2)

3. Form a histogram of 6,000 t-values.  
4. Do a normal qq-plot; look for values “off the line”.
5. Compute the raw p-values for each gene by permutation 

procedures or from distribution models.
6. Adjust for multiple testing.

Test strategy
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Univariate hypothesis testing
Initially, focus on one gene only.

We wish to test the null hypothesis H that the gene is not 
differentially expressed.

In order to do so, we use a two sample t-statistic:



8

© Eric Xing @ CMU, 2005-2009 15

ApoA1

Histogram & normal qq-plot of t-
statistics
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What is a normal qq-plot?
We have a random sample, say ti, i=1, …,n, which we believe might come 
from a normal distribution. If it did, then for suitable  µ and σ,  Φ((ti-µ)/σ), 
i=1,…n would be uniformly distributed on [0,1](why?), where  Φ is the 
standard normal c.d.f.. Denoting the order statistics of the t-sample by t(1)
,t(2) ,….,t(n) we can then see that  Φ((t(i) -µ)/σ) should be approximately i/n
(why?). With this in mind, we’d expect t(i) to be about  σΦ-1(i/n) + µ (why?).  

Thus if we plot t(i) against Φ-1((i+1/2/(n+1)), we might expect to see a straight 
line of slope about σ with intercept about µ. (The 1/2 and 1 in numerator and 
denominator of the i/n are to avoid problems at the extremes.)                        
This is our normal quantile-quantile plot, the i/n being a quantile of the 
uniform, and the Φ-1 being that of the normal.
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Why do a normal q-q plot?
One of the things we want to do with our t-statistics is roughly speaking, to 
identify the extreme ones. 

It is natural to rank them, but how extreme is extreme? Since the sample 
sizes here are not too small ( two samples of 8 each gives 16 terms in the 
difference of the means), approximate normality is not an unreasonable 
expectation for  the null marginal distribution. 

Converting ranked t’s into a normal qq-plot is a great way to see the 
extremes: they are the ones that are “off the line”, at one end or another. 
This technique is particularly helpful when we have thousands of values. Of 
course we can’t expect all differentially expressed genes to stand out as 
extremes: many will be masked by more extreme random variation, which is 
a big problem in this context. See later in the class for a discussion of these 
issues.
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Useful plots of t-statistics
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p-value

The p-values for two sample t-stat
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p-values
The p-value or observed significance level p is the chance 
of getting a test statistic as or more extreme than the 
observed one, under the null hypothesis H of no differential 
expression.

Although the previous test statistic is denoted by t, it would be 
unwise to assume that its null distribution is that of Student’s t.  
We have another way to assign p-values which is more or 
less valid: using permutations.
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Example
Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

t-test: 1045 genes with p < 0.05.
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With all permutations in the Apo AI data, B = n!/n1! n2! = 12,870;

for the leukemia data, B = 1.2×109 .

Computing p-values by 
permutations

We focus on one gene only. For the bth iteration, b = 1, ⋅⋅⋅ , B;
Permute the n data points for the gene (x). The first n1 are 
referred to as  “treatments”, the second n2 as “controls”.
For each gene, calculate the corresponding two sample         
t-statistic, tb.
After all the B permutations are done;
Put p = #{b: |tb| ≥ |t|}/B (plower if we use >).
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Many tests: a simulation study

Simulation of this process for 6,000 genes with 8 
treatments and 8 controls. 

All the gene expression values were simulated i.i.d
from a N (0,1) distribution, i.e. NOTHING is 
differentially expressed in our simulation.

We now present the 10 smallest raw (unadjusted) 
permutation p-values.
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(unadj.)valueindex

1.7×10-3-3.885694

1.6×10-3-3.902427

1.6×10-33.915930

1.4×10-3-3.982164

7×10-4-4.295898

7×10-4-4.313156

7×10-44.344521

4×10-4-4.625622

3×10-44.825709

2×10-44.932271

p-valuetgene

Clearly we can’t just use standard p-value thresholds of 05 or .01.

Unadjusted p-values
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Discussion
What assumptions on the null distributions of the gene expression values   
xi = (xi,1 , xi,2 , …xi,n) are necessary or sufficient for the permutation-based p-
values just described to be valid? And, are they applicable in our examples?

First, p-values are valid if their distribution is uniform(0,1) under the null hypothesis.  
Secondly, if the null distribution of xi is exchangeable, i.e. invariant under permutations 
of 1,…,n, then, we could reasonably hope (and actually prove) that the distribution of 
the permutation-based p-values is indeed uniform on 1,…,n. 
We also noted that having the joint distribution i.i.d. would be sufficient, as this implied 
exchangeability.

Considered the ApoAI experiment. 
Because the 16 log-ratios for each gene involved a term from the pooled control 
mRNA, called C* above, it seems clear that an i.i.d. assumption is unreasonable. 
Had the experiment been carried out by using pooled control mRNA from mice other 
than the controls in the experiment,  an exchangeability assumption under the null 
hypothesis would have been quite reasonable. 
Unfortunately, C* did come from the same mice as the Ci, so exchangeability is 
violated, and the assumption is at best an approximation. 
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Multiple testing: the problem
Multiplicity problem: thousands of hypotheses are tested 
simultaneously.

Increased chance of false positives.
E.g. suppose you have 10,000 genes on a chip and not a 
single one is differentially expressed. You would expect 
10000x0.01 = 100 of them to have a p-value < 0.01.
Individual p–values of e.g. 0.01 no longer correspond to 
significant findings.

Need to adjust for multiple testing when assessing the 
statistical significance of findings.
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Assume we are testing H1, H2, ⋅⋅⋅, Hm .

m0 = # of true hypotheses   R = # of rejected hypotheses

m-m0m0

RSV# rejected

m - RTU# accepted

null hypo.null hypo.

# false# true

V  =  # Type I errors [false positives]

T =  # Type II errors [false negatives]

Multiple testing: Counting errors
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Type I error rates
Per comparison error rate (PCER): the expected value of the number of 
Type I errors over the number of hypotheses,             

PCER = E(V)/m.

Per-family error rate (PFER): the expected number of Type I errors,  
PFER = E(V).

Family-wise error rate: the probability of at least one type I error
FEWR = pr(V ≥ 1)

False discovery rate (FDR) is the expected proportion of Type I errors 
among the rejected hypotheses

FDR = E(V/R; R>0) = E(V/R | R>0)pr(R>0).

Positive false discovery rate (pFDR): the rate that discoveries are false 
pFDR = E(V/R | R>0).
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Multiple testing: Controlling a 
type I error rate

Aim: 
For a given type I error rate, use a procedure to select a set of 
“significant” genes that guarantees a type I error rate ≤ α.
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FWER  =  Pr(# of false discoveries >0)

=  Pr(V>0)
Bonferroni (1936)
Tukey (1949)
Westfall and Young (1993) discussed resampling
……

Multiple testing
Family-wise error rates

Definition:

FWER and microarrays
maxT step-down procedure

Dudoit et al (2002)
Westfall et al (2001) 

minP step-down procedure
Ge et al (2003), a novel fast algorithm
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Multiple testing
False discovery rates

Definition:

Q is set to be  0  when R=0
FDR = expectation of Q = E(V/R; R>0)

Seeger (1968) 
Benjamini and Hochberg (1995)

Caution with FDR
Cheating: 

Adding known diff. expressed genes reduces FDR 
Interpreting: 

FDR applies to a set of genes in a global sense, not to individual gene
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Types of control of Type I error
strong control: control of the Type I error whatever the true 
and false null hypotheses. For FWER, strong control means 
controlling

where M0 = the set of true hypotheses (note |M0| = m0);

exact control: under M0, even though this is usually 
unknown.
weak control: control of the Type I error only under the 
complete null hypothesis H0

C = ∩iHi, For FWER, this is 
control of pr( V ≥ 1 | H0

C ).
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Adjustments to p-values
For strong control of the FWER at some level α, there are 
procedures which will take m unadjusted p-values and modify 
them separately, so-called single step procedures, the 
Bonferroni adjustment or correction being the simplest and 
most well known. Another is due to Sidák.

Other, more powerful procedures, adjust sequentially, from the 
smallest to the largest, or vice versa. These are the step-up and 
step-down methods, and we’ll meet a number of these, usually 
variations on single-step procedures.

In all cases, we’ll denote adjusted p-values by π, usually with 
subscripts, and let the context define what type of adjustment 
has been made. Unadjusted p-values are denoted by p
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p-value adjustments: single-step
Suppose we conduct a hypothesis test for each gene g = 1, . . . ,m, 
producing

an observed test statistic: Ti

an unadjusted p–value: pi.

Define adjusted p-values π, such that the FWER is controlled at 
level α where Hi is rejected when πi ≤ α.

Bonferroni: πi = min (mpi, 1)

Bonferroni always gives strong control.
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Proof for Bonferroni
(single-step adjustment)

pr (reject at least one Hi at level α | H0
C)

= pr (at least one Πi≤ α | H0
C)

≤ ∑ 1
m pr (Πi≤ α | H0

C) , by Boole’s inequality
= ∑ 1

m pr (Pi≤ α/m | H0
C), by definiton of Πi

= m × α /m ,   assuming Pi ~ U[0,1])
= α.

Notes:
1. We are testing m genes, H0

C is the complete null hypothesis, that no gene 
is differentially expressed.

2. Pi is the unadjusted p-value for gene i , while Πi here is the Bonferroni
adjusted p-value.

3. We use lower case letters for observed p-values, and upper case for the 
corresponding random variables.
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Example
Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

98 genes with Bonferroni-adjusted πi < 0.05 ⇔ pi < 0.000016 (t-test)
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More is not always better
Suppose you produce a small array with 500 genes you are 
particularly interested in.

If a gene on this array has an unadjusted p-value of 0.0001, 
the Bonferroni-adjusted p-value is still 0.05.

If instead you use a genome-wide array with, say, 50,000 
genes, this gene would be much harder to detect, because 
roughly 5 genes can be expected to have such a low p-value 
by chance.
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p-value adjustments: single-step
Suppose we conduct a hypothesis test for each gene g = 1, . . . ,m, 
producing

an observed test statistic: Ti

an unadjusted p–value: pi.

Define adjusted p-values π, such that the FWER is controlled at 
level α where Hi is rejected when πi ≤ α.

Sidák: πi = 1 - (1 - pi)m

Sidák is less conservative than Bonferroni. When the genes are 
independent, it gives strong control exactly (FWER= α), proof later. 
It controls FWER in many other cases, but is still conservative.
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Proof for Sidák’s method
(single-step adjustment)

pr(reject at least one Hi | H0
C)

= pr(at least one Πi≤ α | H0
C)

= 1 - pr(all Πi > α | H0
C)

= 1-∏i=1
m pr(Πi > α | H0

C) assuming independence

Here Πi is the Sidák adjusted p-value, and so Πi > α if and only if 
Pi > 1-(1- α)1/m (check), giving

1-∏i=1
m pr(Πi > α | H0

C)
= 1-∏i=1

m pr(Pi > 1-(1- α)1/m | H0
C)

= 1- { (1- α)1/m }m since all Pi ~ U[0,1],
= α 



21

© Eric Xing @ CMU, 2005-2009 41

Single-step adjustments (ctd)
FWER: Improvements to Bonferroni
The  minP method  of Westfall and Young:

Πi = pr( min   PI ≤ pi | H)
1≤I≤m

Based on the joint distribution of the p-values  {PI }.  This is 
the most powerful of the three single-step adjustments.
If Pi ∼ U [0,1], it  gives a FWER exactly = α (see next page).
It always confers weak control, and gives strong control under 
subset pivotality (definition next but one slide).
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Proof for (single-step) minP
adjustment

Given level α, let cα be such that 
pr(min1 ≤ i ≤ m Pi≤ cα | H0

C) =α .

Note that {Πi≤ α } ≡ {Pi ≤ cα} for any i.

pr(reject at least one Hi at level α | H0
C)

= pr (at least one Πi≤ α | H0
C)

= pr (min1 ≤ i ≤ m Πi≤ α | H0
C)

= pr (min1 ≤ i ≤ m Pi≤ α | H0
C)

= α. 
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Strong control and subset 
pivotality

The above proofs are under H0
C, which is what we term weak control

In order to get strong control, we need the condition of subset pivotality.

The distribution of the unadjusted p-values (P1, P2, …Pm) is said to have the 
subset pivotality property if for all subsets L⊆ {1,…,m} the distribution of the 
subvector {Pi: i ∈ L} is identical under the restrictions ∩{Hi: i∈ L} and H0

C .

Using the property, we can prove that for each adjustment under their conditions, 
we have

pr (reject at least one Hi at level α, i ∈ M0 | ΗΜ0}

= pr (reject at least one Hi at level α, i ∈ M0 | Η0
C }

≤ pr (reject at least one Hi at level α, for all i | Η0
C }

≤ α .

Τherefore, we have proved strong control for the previous three adjustments, 
assuming subset pivotality.
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Permutation-based single-step 
minP adjustment of p-values

For the bth iteration, b = 1, ⋅⋅⋅ , B;
Permute the n columns of the data matrix X, obtaining a 
matrix Xb. The first n1 columns are referred to as 
“treatments”, the second n2 columns as “controls”.
For each gene, calculate the corresponding unadjusted           
p-values, pi,b , i= 1,2, ⋅⋅⋅ m, (e.g. by further permutations)   
based on the permuted matrix Xb.
After all the B permutations are done.
Compute the adjusted p-values πi = #{b: minl pI,b ≤ pi}/B.
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Example
Suppose pmin = 0.0003 (the minimal unadjusted p-value).
Among the randomized data sets (permuted sample labels), 
count how often the minimal p-value is smaller than 0.0003. If 
this appears e.g. in 4% of all cases, πmin = 0.04.
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The computing challenge: 
iterated permutations

The procedure is quite computationally intensive if B is very  
large (typically at least 10,000) and we estimate all 
unadjusted p-values by further permutations.

Typical numbers: 

To compute one unadjusted p-value B = 10,000
# unadjusted p-values needed  B = 10,000
# of genes m = 6,000.  In general run time is O(mB2).

How to avoid computational difficulty?
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Single-step minP adjustment
maxT method: (Chapter 4 of Westfall and Young)

πi = Pr(  max   |Tl | ≥ | ti | | H0
C )

1≤l≤m

needs B = 10,000 permutations only.
However, if the distributions of the test statistics are not 
identical, it will give more weight to genes with heavy tailed 
distributions (which tend to have larger t-values)
There is a fast algorithm which does the minP adjustment in 
O(mBlogB+mlogm) time.
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Proof for the single-step maxT
adjustment

Given level α, let cα such that pr(max1 ≤ i ≤ m |Ti |≤ cα | H0
C) = α.

Note the { Pi ≤ α } ≡ { |Ti | ≤ cα} for any i.  Then we have (cf. min P)

pr(reject at least one Hi at level α | H0
C)

=pr (at least one Pi≤ α | H0
C)

=pr ( min1 ≤ i ≤ m Pi≤ α | H0
C)

=pr (max1 ≤ i ≤ m |Ti | ≤ ca | H0
C)

= α .

To simplify the notation we assumed a two sided test by using the 
statistic Ti .We also assume Pi ~ U[0,1].
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The idea: S Holm’s modification of Bonferroni.

Also applies to Sidák,  maxT, and minP. 

More powerful methods: 
step-down adjustments
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S Holm’s modification of 
Bonferroni

Order the unadjusted p-values such that  pr1≤ pr2≤ ⋅⋅⋅≤ prm.
The indices r1, r2, r3,.. are fixed for given data.  

For control of  the FWER at level, the step-down Holm adjusted p-
values are 

πrj = maxk ∈ {1,…,j} {min((m-k+1)prk, 1)}. 

The point here is that we don’t multiply every prk by the same factor m, but only 
the smallest. The others are multiplied by successively smaller factors:   m-1, m-
2, ..,. down  to multiplying prm by 1.
By taking successive maxima of the first terms in the brackets, we can get 
monotonicity of these adjusted p-values.
Holm’s adjusted p-values deliver strong control.
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Step-down adjustment of minP
• Order the unadjusted p-values such that  pr1≤ pr2≤ ⋅⋅⋅≤ prm. 

• Step-down adjustment: it has a complicated formula, see below,  
but in effect is

1.Compare min{Pr1, ⋅⋅⋅ , Prm} with pr1 ;

2.Compare min{Pr2, ⋅⋅⋅ , Prm} with pr2 ;

3Compare min{Pr3 ⋅⋅⋅ , Prm} with pri3    …….

m.Compare Prm with prm .                                                     

• Enforce monotonicity on the adjusted pri .  The formula is

πrj = maxk∈{1,,…,j} {pr(minl∈{rk,…rm} Pl≤ prk | H0
C )}.
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FWER: Comparison of different 
methods

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

The FWER is a conservative criterion: many interesting genes may
be missed.
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False Discovery Rate
FDR: = E(V/R)

= E(F/S|S>0)P(S>0) 

In case R=0, define F/R=0 if R=0. 

Alternatively, define pFDR=E(V/R|R>0). 
When m is large, P(S>=0) is approx. 1 and FDR is approx. equal to 
pFDR.

FDR is a measure of the overall accuracy of a set of 
significant features.  
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False discovery rate
(Benjamini and Hochberg 1995)

Steps:
Select desired limit α on E(FDR)
Rank the p-values pr1 ≤ pr2≤…≤ prm.
The adjusted p-values are to control FDR when Pi are independently
distributed are given by the step-up formula:

πri= mink∈ {i…m} { min (mprk/k ,1) }.

We use this as follows: reject Hr1 ,Hr2 ,…, ,Hrk*  where k* is the 
largest k such that prk≤ (k/m)α . This keeps the FDR ≤α under 
independence

Thus the FDR Adjusted p-value = lowest level of FDR for which the hypothesis is 
first included in the set of rejected hypothesis
Compare the above with Holm’s adjustment to control FWE, the step-down 
version of Bonferroni, which is πi = maxk∈ {1,…i} { min (kprk ,1) }.
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Positive false discovery rate 
(Storey, 2001, independent case)

A new definition of FDR, called positive false discovery rate (pFDR)
pFDR= E(V/R | R >0)

The logic behind this is that in practice, at lease one gene should be 
expected to be differentially expressed.

The adjusted p-value (called q-value in Storey’s paper) are to control  
pFDR.

                   Πi= mink ∈ {1..,i} {(mpk / k) π0}

Note π0 = m0 /m can be estimated by the following formula for 
suitable β

π0= #{pi>β}/ {(1-β) m}.
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Estimation of the FDR
Idea: Depending on the chosen cutoff-value(s) for the test 
statistic Ti, estimate the expected proportion of false positives 
in the resulting gene list through a permutation scheme.

Estimate the number m0 of non-diff. genes: m0= #{pi>β}/(1-β).

Compute the average number of significant genes under permutations of 
the sample labels.

For b = 1, . . . ,B, (randomly) permute the sample labels – this 
corresponds to the complete null hypothesis. Compute test statistics Tib
for each gene.
For any threshold t0 of the test statistic, compute the numbers Vb of 
genes with Tib > t0 (numbers of false positives).
compute the mean of the Vb.

Estimate the FDR
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FWER or FDR?
Chose control of the FWER if high confidence in all selected 
genes is desired. Loss of power due to large number of tests: 
many differentially expressed genes may not appear as 
significant.

If a certain proportion of false positives is tolerable: 
Procedures based on FDR are more flexible; the researcher 
can decide how many genes to select, based on practical 
considerations.
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Results: random data
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Results: Apo AI data
Histogram & normal q-q plot of t-statistics

ApoA1
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Callow’s Al ko data – complete 
permutation
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Callow data with some FDR 
values included
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Comparison
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0.740.93.9912-4.55577

0.660.93.967.8-4.7948

0.610.87.936.2+4.84608

0.900.54.763.1-4.25867

1.008 × 10-5.531.5+3.12000

0.658 × 10-5.531.5-4.7941

8 × 10-38 × 10-5.531.5-7.74916
3 × 10-38 × 10-5.531.5-8.32526
1 × 10-38 × 10-5.531.5-9.11489

5 × 10-48 × 10-5.531.5-11538
5 × 10-48 × 10-5.531.5-111731
5 × 10-48 × 10-5.531.5-125330

5 × 10-48 × 10-5.531.5-134117
2 × 10-48 × 10-5.531.5-222139

adjust.adjust.(×104)statisticindex
maxTplowerminPunadj. ptgene

Comparison
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The gene names
Index Name

2139 Apo AI
4117 EST, weakly sim. to STEROL DESATURASE
5330 CATECHOL O-METHYLTRANSFERASE
1731 Apo CIII
538 EST, highly sim. to Apo AI
1489 EST
2526 Highly sim. to Apo CIII precursor
4916 similar to yeast sterol desaturase
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Golub’s data --- 10K simulations
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Golub’s data --- 100K simulations
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Golub’s data --- 1M simulations
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Golub data with minP
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Golub data with maxT
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Comparisons
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What should one look for in a
multiple testing procedure?

There is a bewildering variety of multiple testing procedures. 
How can we choose which to use? There is no simple answer 
here, but each can be judged according to a number of 
criteria:

Interpretation: does the procedure answer a relevant question for you?
Type of control: strong, exact or weak?
Validity: are the assumptions under which the procedure applies clear 
and definitely or plausibly true, or are they unclear and most probably 
not true?
Computability: are the procedure’s calculations straightforward to 
calculate accurately, or is there possibly numerical or simulation 
uncertainty, or discreteness?
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Discussion
The minP adjustment seems more conservative than the maxT
adjustment, but is essentially model-free.
With the Callow data, we see that the adjusted minP values are 
very discrete; it seems that 12,870 permutations are not enough 
for 6,000 tests. 
With the Golub data, we see that the number of permutations 
matters. Discreteness is a real issue here to, but we do have 
enough permutations.

The same ideas extend to other statistics: Wilcoxon, paired t, F, 
blocked F.
Same speed-up works with the bootstrap.
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