Computational Genomics

10-810/02-710, Spring 2009

000
Differential Analysis of Microarray Gene | 00 @®@®
Expression Data 00060
P 000
o0
[
—/ - “— | Reading: class assignment
© Eric Xing @ CMU, 2005-2009 1
[ X X ]
0000
[ X XX
. ::O
Outline :

e Motivation & examples

e Univariate hypothesis testing
e Multiple hypothesis testing

e Results for the two examples
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Introduction

e Many microarray experiments are carried out to find genes

which are differentially expressed between two (or more)
samples of cells:

e cells (from the liver, say), in a mouse with a gene knocked out,
compared with liver cells in a normal mouse of the same strain

e cells in one region of the brain (say cerebellum), compared with cells in
a different region (say the anterior cingulate region)

e tumor cells in some organ (say the liver), compared with normal cells
from the same organ
e cells from an organism (say yeast) after a treatment (say by heat, or

cold, or a drug) compared with cells of the same kind in the untreated
state

e cells from some part of a developing organ or organism at one time,
compare with cells of the same kind at a later time, and so on

© Eric MU 2005-2009 3
000
0000
L HE:
Motivation o2

e SCIENTIFIC: To determine which genes are differentially

expressed between two sources of mMRNA (trt, ctl).

STATISTICAL: To assign appropriately adjusted p-values to
thousands of genes, and/or make statements about false
discovery rates.

We will discuss the issues in the context of two experiments,
one which fits the aims above, and one which doesn’t, but
helps make a number of points.
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e Comparisons
-
e Two Ways to Do the Comparisons
A M A M
D R ! D !
L P L P
Compare all samples to a common Multiple direct comparisons between
reference sample different samples
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Preliminary: differential analysis | 832¢
with one slide o

e The simplest cDNA microarray data analysis problem is identifying
differentially expressed genes using one slide
e This is a common enough hope
e Efforts are frequently successful
e ltis not hard to do by eye

e The problem is probably beyond formal statistical inference (valid p-values, etc)
for the foreseeable future....why?

e In the next two panels, genes found to be up- or down-regulated in
an 8 treatment (Srb1 over-expression) versus 8 control comparison
are indicated in red and green, respectively, on plots of the data
from single hybridizations.

e Also depicted are “confidence lines” determined by different
methods and/or different “confidence” levels, which claim to be able
to delineate differentially expressed genes using just one
hybridization (slide).
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Matt Callow’s Srb1 dataset (#5). see
Newton’s and Chen’s single slide method °
o
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A
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Matt Callow’s Srb1 dataset (#8). b
Newton’s, Sapir & Churchill’s and Chen’s single slide method °
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Differential analysis with
replicated hybridizations

\
e The second simplest cDNA microarray data analysis problem

is identifying differentially expressed genes using replicated
hybridizations

e There are a number of different aspects:
e First, between-slide normalization;

e Then, what should we look at: averages, SDs, t-statistics, other
summaries?

e How should we look at them?
e Can we make valid probability statements?

o We will discuss the issues in the context of two experiments,
one which fits the aims above, and one which doesn’t, but
helps make a number of points.

Apo Al experiment: (Matt Callow) o

e Goal: To identify genes with altered expression in the livers of
Apo Al knock-out mice (T) compared to inbred C57BI/6
control mice (C).

e 8 treatment mice and 8 control mice

e 16 hybridizations: liver mRNA from each of the 16 mice (Ti, Ci) is
labelled with Cy5, while pooled liver mRNA from the control mice (C*) is
labelled with Cy3.

e Probes: ~ 6,000 cDNAs (genes), including 200 related to lipid
metabolism.

Cl G2 63 £4 €5 2§ €7 L8 Tl T2 T3 T4 T5 TG T7 Ts

C* C* C* C* C* C* C* C* Cx C* C* C* C* C* C* C
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Golub et al (1999) experiments

\
e Goal. To identify genes which are differentially expressed in

acute lymphoblastic leukemia (ALL) tumors in comparison
with acute myeloid leukemia (AML) tumors.

e 38 tumor samples: 27 ALL, 11 AML.

e Data from Affymetrix chips, some pre-processing.

e Originally 6,817 genes; 3,051 after reduction.

e Data therefore a 3,051 x 38 array of expression values.

e Comment: this wasn’t really the goal of Golub et al.
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Data

e The gene expression data can be summarized as follows

treatment control
X o Npmy Xl +1 0 KXim
KXo g - 3:2,111 X2rn1 +1 7 Naa
X1 0 Kiay Kirmg + 1 v Xinm
Ker, L 7 K, Kpry + 1 777 Yomm

e Here x;; is the (relative) expression value of gene i in sample ;.
The first n, columns are from the treatment (T); the remaining
n, = n - n, columns are from the control (C).
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Test strategy °
\
e Which genes have changed? When permutation testing
possible.
1. For each gene and each hybridization (8 ko + 8 ctl), use
M=log,(R/G).
2. For each gene form the t-statistic:
average of 8 ko Ms - average of 8 ctl Ms
sqrt(1/8 (SD of 8 ko Ms)2 + 1/8 (SD of 8 ctl Ms)?)
3. Form a histogram of 6,000 t-values.
4. Do a normal qqg-plot; look for values “off the line”.
5.  Compute the raw p-values for each gene by permutation
procedures or from distribution models.
6. Adjust for multiple testing.
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Univariate hypothesis testing o

¢ Initially, focus on one gene only.

e We wish to test the null hypothesis H that the gene is not
differentially expressed.

e In order to do so, we use a two sample f-statistic:

averof n trtx—averof n,ctlx

N : (SDof nltrtx)2+§ (SDof n,ctIx)’]

1 1

t =

© Eric Xing @ CMU, 2005-2009 14




. [ X X ]
Hlst.og.ram & normal qq-plot of t- | 3322
statistics &

ﬁ I
f i ...|I||||||| |||I|I||..._
° W/,
-4 .\ -2 [s] 2 4
ApOA1 Quantiles of standard normal
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What is a normal qqg-plot? o

We have a random sample, say t, i=1, ...,n, which we believe might come
from a normal distribution. If it did, then for suitable xand o, @((t-1)/0),
i=1,...n would be uniformly distributed on [0,1](why?), where @is the
standard normal c.d.f.. Denoting the order statistics of the t-sample by ¢,
A sty We can then see that &((t, -4)/0) should be approximately i/n
(why?). With this in mind, we'd expect {; to be about o@(i/n) + u (why?).

Thus if we plot ¢, against @'((i+1/2/(n+1)), we might expect to see a straight
line of slope about o with intercept about 4. (The 7/2 and 1 in numerator and
denominator of the i/n are to avoid problems at the extremes.)

This is our normal quantile-quantile plot, the i/n being a quantile of the
uniform, and the @ being that of the normal.
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Why do a normal g-q plot?

One of the things we want to do with our t-statistics is roughly speaking, to
identify the extreme ones.

It is natural to rank them, but how extreme is extreme? Since the sample
sizes here are not too small ( two samples of 8 each gives 16 terms in the
difference of the means), approximate normality is not an unreasonable
expectation for the null marginal distribution.

Converting ranked t’s into a normal qg-plot is a great way to see the
extremes: they are the ones that are “off the line”, at one end or another.
This technique is particularly helpful when we have thousands of values. Of
course we can’'t expect all differentially expressed genes to stand out as
extremes: many will be masked by more extreme random variation, which is
a big problem in this context. See later in the class for a discussion of these

issues.
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p-values

\
e The p-value or observed significance level p is the chance

of getting a test statistic as or more extreme than the
observed one, under the null hypothesis H of no differential
expression.

e Although the previous test statistic is denoted by ¢, it would be
unwise to assume that its null distribution is that of Student’s t.
We have another way to assign p-values which is more or
less valid: using permutations.
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e Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

Histogram of t histogram of p—values
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t-test: 1045 genes with p < 0.05.
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permutations o
\

e We focus on one gene only. For the bth iteration, b=1, -+, B;

e Permute the n data points for the gene (x). The first n, are

referred to as “treatments”, the second n, as “controls”.

e For each gene, calculate the corresponding two sample

t-statistic, t,.
e After all the B permutations are done;
o Putp=#b:|t)| = |f|}/B (plower if we use >).
With all permutations in the Apo Al data, B = nl/n,!n,! = 12,870;
for the leukemia data, B = 1.2x10°.
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Many tests: a simulation study &

e Simulation of this process for 6,000 genes with 8
treatments and 8 controls.

e Allthe gene expression values were simulated i.i.d
from a N (0,1) distribution, i.e. NOTHING is
differentially expressed in our simulation.

e We now present the 10 smallest raw (unadjusted)
permutation p-values.

© Eric Xing @ CMU, 2005-2009 24
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Unadjusted p-values

gene t p-value
index value (unadj.)
2271 4.93 2x10
5709 4.82 3x10*
5622 -4.62 410
4521 4.34 7x104
3156 -4.31 7x104
5898 -4.29 7x104
2164 -3.98 1.4x103
5930 3.91 1.6x103
2427 -3.90 1.6x103
5694 -3.88 1.7x103

Clearly we can’t just use standard p-value thresholds of 05 or .01.
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Discussion

e What assumptions on the null distributions of the gene expression values
X = (X1, X5, ---X;,,) @re necessary or sufficient for the permutation-based p-
values just described to be valid? And, are they applicable in our examples?
e First, p-values are valid if their distribution is uniform(0,1) under the null hypothesis.

e Secondly, if the null distribution of x;is exchangeable, i.e. invariant under permutations
of 1,...,n, then, we could reasonably hope (and actually prove) that the distribution of
the permutation-based p-values is indeed uniform on 1,...,n.

e We also noted that having the joint distribution i.i.d. would be sufficient, as this implied
exchangeability.

e Considered the ApoAl experiment.

e Because the 16 log-ratios for each gene involved a term from the pooled control
mRNA, called C* above, it seems clear that an i.i.d. assumption is unreasonable.

e Had the experiment been carried out by using pooled control mMRNA from mice other
than the controls in the experiment, an exchangeability assumption under the null
hypothesis would have been quite reasonable.

e Unfortunately, C* did come from the same mice as the C;, so exchangeability is
violated, and the assumption is at best an approximation.
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Multiple testing: the problem

\
Multiplicity problem: thousands of hypotheses are tested

simultaneously.

e Increased chance of false positives.

e E.g. suppose you have 10,000 genes on a chip and not a
single one is differentially expressed. You would expect
10000x0.01 = 100 of them to have a p-value < 0.01.

e Individual p—values of e.g. 0.01 no longer correspond to
significant findings.

Need to adjust for multiple testing when assessing the
statistical significance of findings.
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Multiple testing: Counting errors | ¢

Assume we are testing H', H?, ---, H™.

m, = # of true hypotheses R = # of rejected hypotheses

#true # false
null hypo. null hypo.
# accepted U m - R
# rejected \% S R
my m-my

V' = # Type | errors [false positives]

# Type |l errors [false |

© Eric Xing @ CMU, 2005-2009 28
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Type | error rates

e Per comparison error rate (PCER): the expected value of the number of
Type | errors over the number of hypotheses,

PCER = E(V)/m.

e Per-family error rate (PFER): the expected number of Type | errors,
PFER = E(V).

e Family-wise error rate: the probability of at least one type | error
FEWR =pr(V = 1)
e False discovery rate (FDR) is the expected proportion of Type | errors
among the rejected hypotheses
FDR = E(V/R; R>0) = E(V/R | R>0)pr(R>0).

e Positive false discovery rate (pFDR): the rate that discoveries are false
pFDR = E(V/R | R>0).

© Eric Xing @ CMU, 2005-2009 29
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Multiple testing: Controlling a sess
type | error rate .o

e Aim:

For a given type | error rate, use a procedure to select a set of
“significant” genes that guarantees a type | error rate < a.

© Eric Xing @ CMU, 2005-2009 30
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Multiple testing

Family-wise error rates

e Definition:
FWER

Pr(# of false discoveries >0)
Pr(vV>0)

Bonferroni (1936)
Tukey (1949)
Westfall and Young (1993) discussed resampling

e FWER and microarrays

e maxT step-down procedure
Dudoit et al (2002)
Westfall et al (2001)
e minP step-down procedure
Ge et al (2003), a novel fast algorithm

© Eric Xing @ CMU, 2005-2009 31
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False discovery rates o
e Definition:
# of false discoveries v
(2 e T 0 0 —_ =
# ot discoveries R
e Qissettobe 0 when R=0
e FDR = expectation of Q = E(V/R; R>0)
Seeger (1968)
Benjamini and Hochberg (1995)
e Caution with FDR
e Cheating:
Adding known diff. expressed genes reduces FDR
e Interpreting:
FDR applies to a set of genes in a global sense, not to individual gene
© Eric Xing @ CMU, 2005-2009 32
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Types of control of Type | error

\
e strong control: control of the Type | error whatever the true

and false null hypotheses. For FWER, strong control means
controlling

max pr(V > 1 H/“)
,\f{](:!f[fjl

where M, = the set of true hypotheses (note |M,| = my);

e exact control: under M,, even though this is usually
unknown.

e weak control: control of the Type | error only under the
complete null hypothesis H,° = nH,, For FWER, this is
control of pr(V 21| H,®).

© Eric Xing @ CMU, 2005-2009 33
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Adjustments to p-values -

e For strong control of the FWER at some level o, there are
procedures which will take m unadjusted p-values and modify
them separately, so-called single step procedures, the
Bonferroni adjustment or correction being the simplest and
most well known. Another is due to Sidék.

e Other, more powerful procedures, adjust sequentially, from the
smallest to the largest, or vice versa. These are the step-up and
step-down methods, and we’ll meet a number of these, usually
variations on single-step procedures.

e In all cases, we'll denote adjusted p-values by &, usually with
subscripts, and let the context define what type of adjustment
has been made. Unadjusted p-values are denoted by p

© Eric Xing @ CMU, 2005-2009 34
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p-value adjustments: single-step | :¢
e Suppose we conduct a hypothesis test for each geneg=1, .. .‘ ,m,

producing
e an observed test statistic: T;
e an unadjusted p—value: p;.

e Define adjusted p-values m, such that the FWER is controlled at
level o where Hi;is rejected when 11, < a.

Bonferroni: m; = min (mp, 1)

e Bonferroni always gives strong control.

© Eric Xing @ CMU, 2005-2009 35

Proof for Bonferroni §§:
(single-step adjustment) o

pr (reject at least one H; at level a. | H,°)
= pr (at least one 77 < o | H,°)

< Xmpr(/Z < o|HyN), by Boole’s inequality
=2 mpr (P, < o/m| H,°), by definiton of 77,
=mxa/m, assuming P; ~ U[0,1])
= Q.

Notes:

1. We are testing m genes, H,C is the complete null hypothesis, that no gene
is differentially expressed.

2. P; is the unadjusted p-value for gene i, while /7 here is the Bonferroni
adjusted p-value.

3. We use lower case letters for observed p-values, and upper case for the
corresponding random variables.
© Eric Xing @ CMU, 2005-2009 36
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Example :
!
e Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.
Histogram of t histogram of p—values
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98 genes with Bonferroni-adjusted ;< 0.05 < p; < 0.000016 (t-test)
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More is not always better -

e Suppose you produce a small array with 500 genes you are
particularly interested in.

e [f a gene on this array has an unadjusted p-value of 0.0001,
the Bonferroni-adjusted p-value is still 0.05.

e Ifinstead you use a genome-wide array with, say, 50,000
genes, this gene would be much harder to detect, because
roughly 5 genes can be expected to have such a low p-value
by chance.

© Eric Xing @ CMU, 2005-2009 38
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p-value adjustments: single-step |
!
e Suppose we conduct a hypothesis test foreach geneg=1, ..., m,
producing
e an observed test statistic: T;
e an unadjusted p—value: p;.
e Define adjusted p-values m, such that the FWER is controlled at
level o where Hi;is rejected when 11, < a.
Sidak: m; =1-(1-p)m
e Sidak is less conservative than Bonferroni. When the genes are
independent, it gives strong control exactly (FWER= a), proof later.
It controls FWER in many other cases, but is still conservative.
© Eric Xing @ CMU, 2005-2009 39
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Proof for Sidak’s method sels
H : [ X J
(single-step adjustment) o
pr(reject at least one H; | H,°)
= pr(at least one 77 < o | H,°)
=1-pr@ll 77> | H,°)
= 1-[lm pr(/Z > a | H,°) assuming independence
Here /7 is the Sidak adjusted p-value, and so 77 > ¢ if and only if
P; > 1-(1- &)¥m (check), giving
1-[ley™ pr(77; > a | H,°)
= 1Tl Pr(P; > 1-(1- @) | H%)
=1-{(1- o)'m ™ since all P, ~ U[0,],
- a~
© Eric Xing @ CMU, 2005-2009 40
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Single-step adjustments (ctd)

FWER: Improvements to Bonferroni
e The minP method of Westfall and Young:

11, = pr(min  P;<p;| H)
1<IEm

e Based on the joint distribution of the p-values {P,}. Thisis
the most powerful of the three single-step adjustments.

o IfP,~U[0,1], it gives a FWER exactly = a (see next page).

e |t always confers weak control, and gives strong control under
subset pivotality (definition next but one slide).

© Eric Xing @ CMU, 2005-2009 41
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adjustment o
Given level ¢, let ¢, be such that
primin, <; < » P = c,| H,) =
Note that {77 < o} ={P; < ¢} for any i.
pr(reject at least one H, at level « | H,°)
= pr (at least one I, < a | H,®)
=pr(ming < < m I < a| He)
=pr(min, < < m Py = a| He)
= Q.
© Eric Xing @ CMU, 2005-2009 42
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Strong control and subset
pivotality

The above proofs are under H,C, which is what we term weak control
In order to get strong control, we need the condition of subset pivotality.

The distribution of the unadjusted p-values (P,, P,, ...P_) is said to have the
subset pivotality property if for all subsets Lc {1,...,m} the distribution of the
subvector {P;: i € L} is identical under the restrictions N{H;: ie L} and H,C .

e Using the property, we can prove that for each adjustment under their conditions,
we have

pr (reject at least one H; at level o, i € My | Hy}

= pr (reject at least one H; at level a, i € My | Hy® }
< pr (reject at least one H; at level o, for all i | H,© }
<a.

e Therefore, we have proved strong control for the previous three adjustments,
assuming subset pivotality.

© Eric Xing @ CMU, 2005-2009 43
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minP adjustment of p-values o2

e Forthe bth iteration, b=1, ---, B;

e Permute the n columns of the data matrix X, obtaining a
matrix X,. The first n; columns are referred to as
“treatments”, the second n, columns as “controls”.

e For each gene, calculate the corresponding unadjusted
p-values, Pip > i=1,2, ~-m, (e.g. by further permutations)
based on the permuted matrix X,.

e After all the B permutations are done.

o Compute the adjusted p-values m; = #{b: min, p,, < p,}/B.

© Eric Xing @ CMU, 2005-2009 44
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Example

\
e Suppose Py, = 0.0003 (the minimal unadjusted  -value).
e Among the randomized data sets (permuted sample labels),
count how often the minimal p-value is smaller than 0.0003. If
this appears e.g. in 4% of all cases, n... = 0.04.

min

© Eric Xing @ CMU, 2005-2009 45

The computing challenge:
iterated permutations

e The procedure is quite computationally intensive if B is very
large (typically at least 10,000) and we estimate all
unadjusted p-values by further permutations.

e Typical numbers:

To compute one unadjusted p-value B = 10,000
# unadjusted p-values needed B = 10,000
# of genes m = 6,000. In general run time is O(mB?2).

e How to avoid computational difficulty?

© Eric Xing @ CMU, 2005-2009 46
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Single-step minP adjustment

e maxT method: (Chapter 4 of Westfall and Young)

m=Pr( max |T,|2|4]|Ho)
1=Ism

e needs B = 10,000 permutations only.

e However, if the distributions of the test statistics are not
identical, it will give more weight to genes with heavy tailed
distributions (which tend to have larger t-values)

e There is a fast algorithm which does the minP adjustment in
O(mBlogB+mlogm) time.

© Eric Xing @ CMU, 2005-2009 47

. (X X ]
Proof for the single-step maxT sels
H [ X J
adjustment o
Given level a, let c, such that pr(max, <; <  |T;| = ¢, | H,®) = a.
Note the { P, < o} ={|T,| = ¢} foranyi. Then we have (cf. min P)
pr(reject at least one H; at level o | H, )
=pr (at least one P, < a | H,°)
=pr(min; <; < P; < o | H®)
=pr(max; <; <m [T;| = ¢, | H®)
=a.
To simplify the notation we assumed a two sided test by using the
statistic T, .We also assume P, ~ U[0,1].
© Eric Xing @ CMU, 2005-2009 48
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More powerful methods: sels
step-down adjustments '
The idea: S Holm’s modification of Bonferroni.
Also applies to Sidak, maxT, and minP.
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S Holm’s modification of sels
Bonferroni -

e Order the unadjusted p-values such that p, < p, < - < p,..

The indices ry, r,, r3,.. are fixed for given data.

e For control of the FWER at level, the step-down Holm adjusted p-
values are

M, =maXy ¢ . 5 {min((m'k+1)prk’ 1)}

e The point here is that we don’t multiply every p,, by the same factor m, but only
the smallest. The others are multiplied by successively smaller factors: m-1, m-
2, ..,.down to multiplying p,,, by 1.

e By taking successive maxima of the first terms in the brackets, we can get
monotonicity of these adjusted p-values.

e Holm’s adjusted p-values deliver strong control.
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Step-down adjustment of minP

*  Order the unadjusted p-values such that p, < p, < - < p,..

» Step-down adjustment: it has a complicated formula, see below,
but in effect is

1.Compare min{P,,, -, P} with p,; .
2.Compare min{P,, -, P} with p, .
3Compare min{P, -, P} with p,; .......

m.Compare P,,, with p,,,, .

» Enforce monotonicity on the adjusted p,, . The formula is

My =maXy_q 5 r(min g m Py < pul HC )}

© Eric Xing @ CMU, 2005-2009 51
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FWER: Comparison of different sess
[ X ]
methods >
e Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.
; 3
g e
5
g | -% g’;‘:\e&rro i
E‘J 5[‘]0 10‘00 15‘00 20‘00 25‘00 30‘00
Number of rejected hypotheses
The FWER is a conservative criterion: many interesting genes may
be missed.
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False Discovery Rate '
e FDR: =E(V/R)
= E(F/S|S>0)P(S>0)
In case R=0, define F/R=0 if R=0.
e Alternatively, define pFDR=E(V/R|R>0).
e When mis large, P(S>=0) is approx. 1 and FDR is approx. equal to
pFDR.
e FDR is a measure of the overall accuracy of a set of
significant features.
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False discovery rate oo
(Benjamini and Hochberg 1995) o

Steps:
e Select desired limit o on E(FDR)
e Rank the p-valuesp,, < p, < ...< p.

e The adjusted p-values are to control FDR when P; are independently
distributed are given by the step-up formula:

T~ MiNg g m { Min (mpy/k 1) }.

e We use this as follows: reject H,, ,H,, , ..., ,Hy- Where k* is the
largest k such that p,, < (k/m)c . This keeps the FDR <o under
independence

e Thus the FDR Adjusted p-value = lowest level of FDR for which the hypothesis is
first included in the set of rejected hypothesis

e Compare the above with Holm’s adjustment to control FWE, the step-down
version of Bonferroni, which is ;= max, ¢ 5 { min (kpy ,1) }.
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Positive false discovery rate
(Storey, 2001, independent case)

e A new definition of FDR, called positive false discovery rate (pFDR)
pFDR=E(V/R | R >0)

e The logic behind this is that in practice, at lease one gene should be
expected to be differentially expressed.

e The adjusted p-value (called g-value in Storey’s paper) are to control
pFDR.

I1= min _ ¢ 5 {(mpy/ K) mo}

e Note n, = m, /m can be estimated by the following formula for
suitable

o= #{p>PY {(1-p) m}.
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Estimation of the FDR °e

e Idea: Depending on the chosen cutoff-value(s) for the test
statistic T, estimate the expected proportion of false positives
in the resulting gene list through a permutation scheme.

e Estimate the number m,, of non-diff. genes: my= #{p;>B}/(1-B).

e Compute the average number of significant genes under permutations of
the sample labels.

Forb=1,..., B, (randomly) permute the sample labels — this
corresponds to the complete null hypothesis. Compute test statistics T,
for each gene.

For any threshold t, of the test statistic, compute the numbers V, of
genes with T, > t, (numbers of false positives).

compute the mean of the V,.

e Estimate the FDR
3 ”][J

E(V/R =VZ2/R
(e
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FWER or FDR?

|
e Chose control of the FWER if high confidence in all selected

genes is desired. Loss of power due to large number of tests:
many differentially expressed genes may not appear as
significant.

e [f a certain proportion of false positives is tolerable:
Procedures based on FDR are more flexible; the researcher
can decide how many genes to select, based on practical
considerations.
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Results: random data .

Random data-—-complete permutations

0.8

06

usted p-values

rawp
Bonferroni
Sidak
maxT
minP
plower

Sorted adj
0.4

nz

0.0

T T T
o 10 20 30 40 50

Number of rejected hypetheses
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Results: Apo Al data H
e Histogram & normal g-q plot of t-statistics
g |
f _....|I|I||||‘ ‘||||I|I....
-4 \ -2 ) 2 4
ApOA1 Quantiles of standard normal
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Callow’s Al ko data — complete sels
permutation -

i
i =
3 —
¥ — rawp
5 —— Bonferroni
—— maxT
Y — minP
plower
& T T T T T T
o 20 40 B0 80 100

Number of rejected hypotheses
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. (X XJ
Callow data with some FDR it
[ LX)
1 (L J
values included :
q ] eem=a- —
- T
3 @ | f’ —— rawp
[—E e ! ---- Holm
J Sidak
g ] i -~ BH
i S | BY
= < _| 1 S e S R e pavw || e maxT
E o : ; minP
2 i : Storey
@ ° bof
- _‘_.i,f
o | i
= T T T T T T
0 20 40 60 80 100
Number of rejected hypotheses
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Comparison :
FWER procedures
i iE
FDR procedures
L I e el - ;ﬂr; """""
pFDR procedures
5 7 St
3 =
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omparison o
gene t unadj. p minP plower maxT
index statistic (x10%) adjust. adjust.
2139 -22 1.5 .53 8 x10° 2x10*
4117 -13 1.5 .53 8 x10° 5x10%
5330 -12 1.5 .53 8 x 10 5x10*
1731 -1 1.5 .53 8 x10° 5x10*
538 -1 1.5 .53 8 x 10 5x 10+
1489 -9.1 1.5 .53 8 x 10 1x103
2526 -8.3 1.5 .53 8 x10° 3x10°
4916 -7.7 1.5 .53 8 x10° 8 x 108
941 -4.7 1.5 .53 8 x 10 0.65
2000 +3.1 1.5 .53 8 x 10 1.00
5867 -4.2 3.1 .76 0.54 0.90
4608 +4.8 6.2 .93 0.87 0.61
948 -4.7 7.8 .96 0.93 0.66
5577 -4.5 12 .99 0.93 0.74
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The gene names o

Index

e 2139
o 4117
e 5330
e 1731

Name

Apo Al

EST, weakly sim. to STEROL DESATURASE
CATECHOL O-METHYLTRANSFERASE
Apo ClII

e 538 EST, highly sim. to Apo Al

e 1489
o 2526
e 4916

EST
Highly sim. to Apo CIII precursor
similar to yeast sterol desaturase
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Golub’s data --- 10K simulations .
: o
i
3
?f o | —— rawp
. —— Bonferroni
— maxT
& — minP
J/ plower
g | \ T T T T T
0 100 200 300 400 500
Number of rejected hypotheses
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o000
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00
] H H [ X )
Golub’s data --- 100K simulations | =
e e
0 _J
E‘ &
z rawp
5 S 7
3 Bonferroni
maxT
] minP
plower
= T T T T T T
L] 100 200 300 400 500
Number of rejected hypotheses
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eoo
’ : : o0
Golub’s data --- 1M simulations .
\
ic
L — rawp
B o
3 —— Bonferroni
—— maxT
o / — minP
plower
° T T T T T T
0 100 200 300 400 500
Number of rejected hypotheses
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Golub data with minP :
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Golub data with maxT

adjusted p-value
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rank of p-value
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Comparisons

adusizd poraluz

adjustzd poralus

el

FWER procedures
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FDR procedures
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What should one look for in a
multiple testing procedure?

\
e There is a bewildering variety of multiple testing procedures.

How can we choose which to use? There is no simple answer
here, but each can be judged according to a number of
criteria:

e Interpretation: does the procedure answer a relevant question for you?
e Type of control: strong, exact or weak?

e Validity: are the assumptions under which the procedure applies clear
and definitely or plausibly true, or are they unclear and most probably
not true?

e Computability: are the procedure’s calculations straightforward to
calculate accurately, or is there possibly numerical or simulation
uncertainty, or discreteness?
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Discussion .

e The minP adjustment seems more conservative than the maxT
adjustment, but is essentially model-free.

e With the Callow data, we see that the adjusted minP values are
very discrete; it seems that 12,870 permutations are not enough
for 6,000 tests.

e With the Golub data, we see that the number of permutations
matters. Discreteness is a real issue here to, but we do have
enough permutations.

e The same ideas extend to other statistics: Wilcoxon, paired t, F,
blocked F.

e Same speed-up works with the bootstrap.
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Selected references

!
e Westfall, PH and SS Young (1993) Resampling-based multiple testing:

Examples and methods for p-value adjustment, John Wiley & Sons, Inc
e Benjamini, Y & Y Hochberg (1995) Controlling the false discovery rate: a
practical and powerful approach to multiple testing JRSS B 57: 289-300
e J Storey (2001): 3 papers (some with other authors), www-
stat.stanford.edu/~jstorey/
e The positive false discovery rate: a Bayesian interpretation and the g-value.
e Adirect approach to false discovery rates
e Estimating false discovery rates under dependence, with applications to microarrays
e Y Ge et al (2001) Resampling-based multiple testing for microarray data
analysis, Test (to appear), see #633 in http://www.stat.Berkeley. EDU/tech-
reports/index.html
e Software
e C and R code available for different tests: multtest in http://www.bioconductor.org
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