
Computational Genomics

10-810/02-710, Spring 2009

Model-based Comparative Genomics

Eric Xing

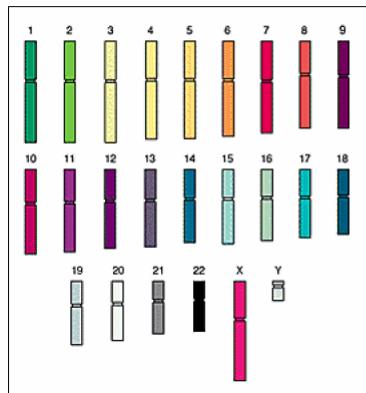
Lecture 14, March 2, 2009

Reading: class assignment

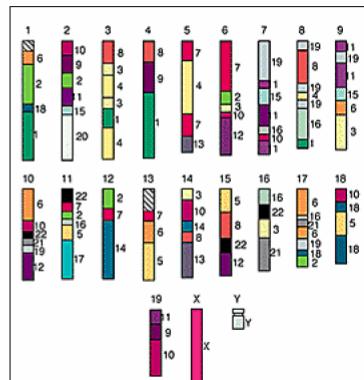
© Eric Xing @ CMU, 2005-2009

1

Uses of evolutionary theory

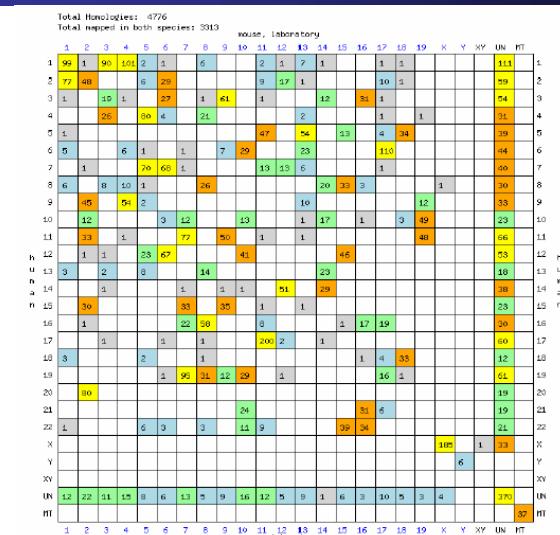

- Comparative genomics (this lecture)
 - Cladistics: figuring out closely related species, proteins, sequences
 - Drug design and testing
 - Building chimera : mixing genetic codes of species, genetic technology
 - Sequence prediction in related unsequenced species : use in sequencing, primer design, etc
 - Phylogenetic footprinting
 - Functional constraints on a genomic region inversely proportional to evolutionary rate, from neutral theory
 - Look at two concrete examples : transcription factor binding site (motif) and gene prediction
- Population genetics (module 4)
 - Population structure
 - Understanding evolutionary driving force underlying genome variation

© Eric Xing @ CMU, 2005-2009


2

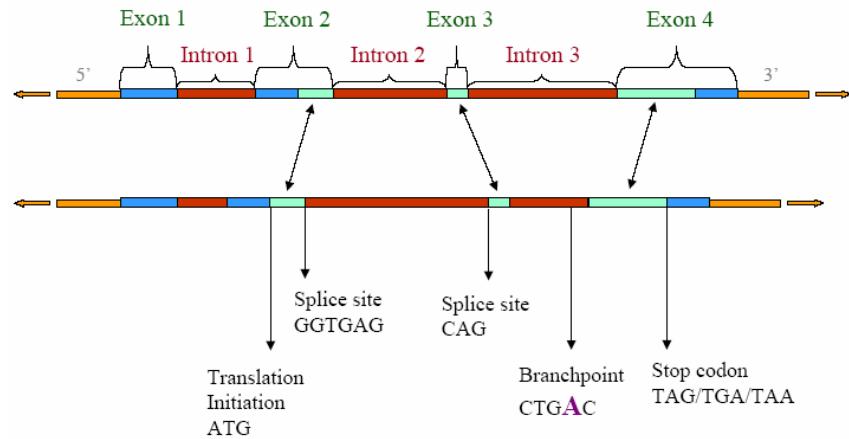
Comparative Genomics

Human


Mouse

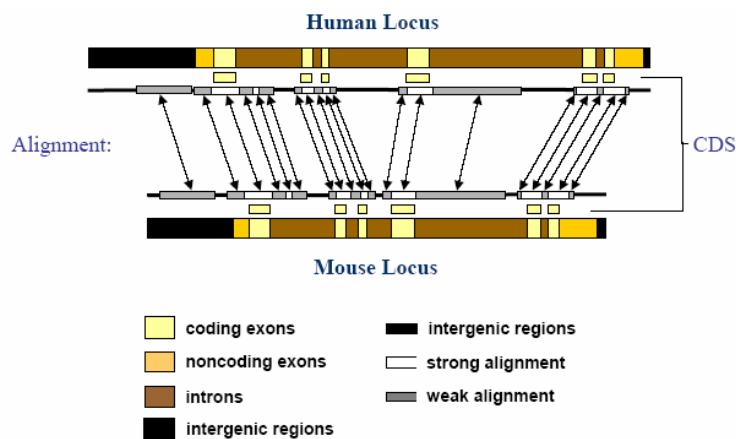
© Eric Xing @ CMU, 2005-2009

3


A pairwise comparison between human and mouse genome

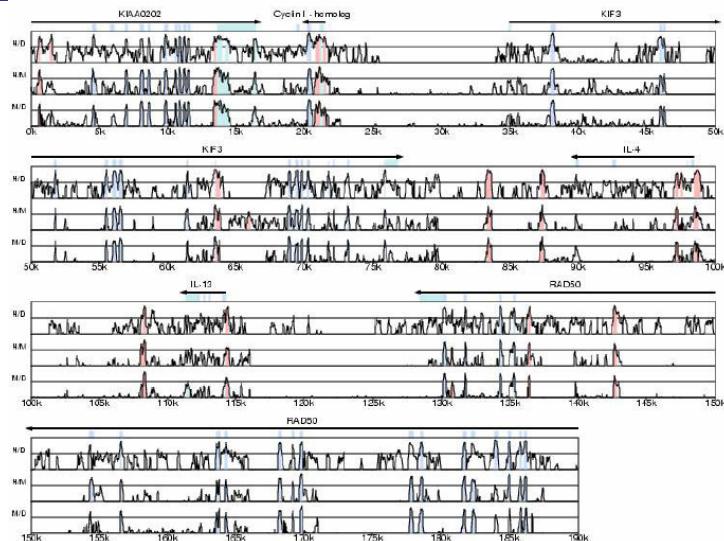
© Eric Xing @ CMU, 2005-2009

4


Aligning One Locus

© Eric Xing @ CMU, 2005-2009

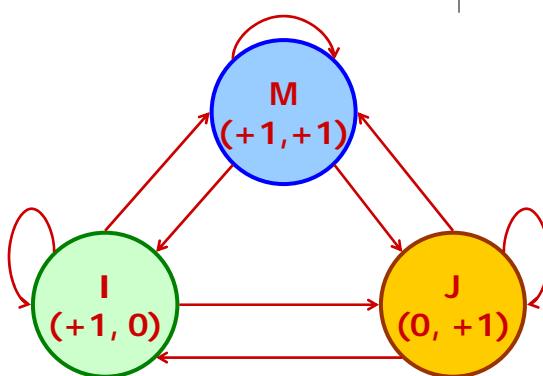
5


Example: a human/mouse ortholog

© Eric Xing @ CMU, 2005-2009

6

Three Pairwise Alignments

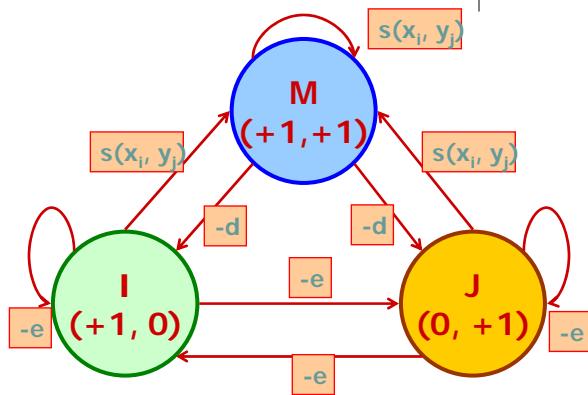


© Eric Xing @ CMU, 2005-2009

7

Paired HMM

Alignments correspond 1-to-1 with sequences of states M, I, J

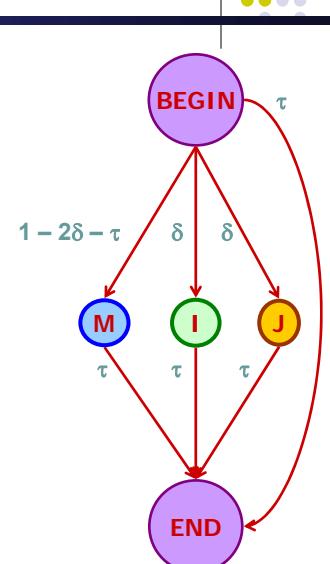
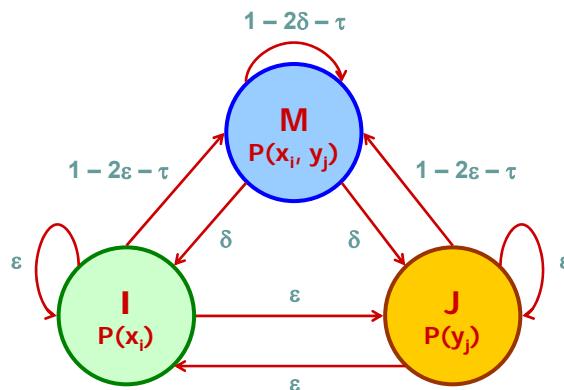

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC-GGTCGATTGCCGACC
IMMJMMMMMMMJUJMHHHHHHHHHIIIMHHHHHHIII

© Eric Xing @ CMU, 2005-2009

8

Let's score the transitions

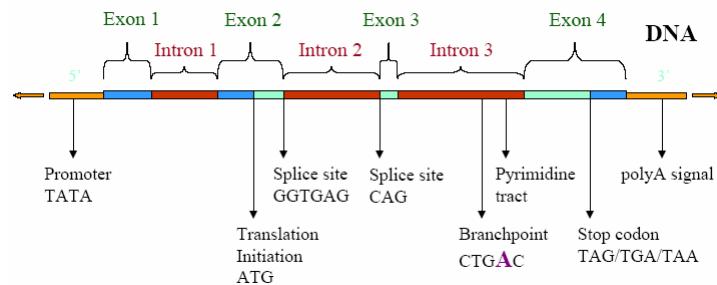
Alignments correspond 1-to-1 with sequences of states M, I, J

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
 TAG-CTATCAC--GACCGC-GGTCGATTTGCCGACC
IMMJMMMMMMJJMMMMMMJMMMMMMIIMMMMMIII

© Eric Xing @ CMU, 2005-2009

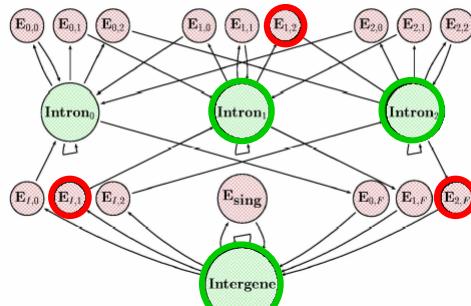
9


A Pair HMM for alignments

© Eric Xing @ CMU, 2005-2009

10

Gene Finding

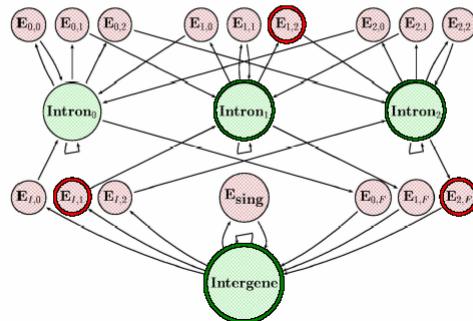


© Eric Xing @ CMU, 2005-2009

11

Recall generalized HMM gene finder

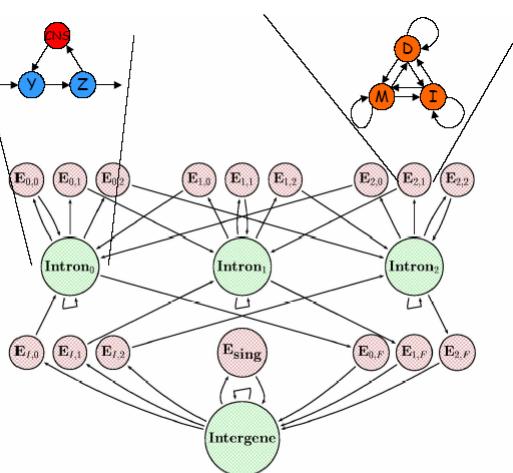
TAAT ATGTCACGG GTATTGAG CATTGTACACGGG GTATTGAG CATGTAA TGAA



© Eric Xing @ CMU, 2005-2009

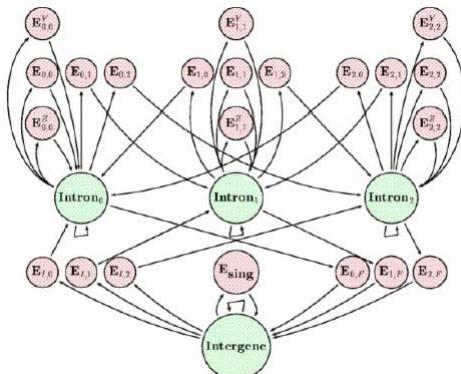
12

Generalized Pair-HMM gene finder


TAAT ATGTCCACGG GTATTGAG CATTGTACACGGG GTATTGAG CATGTAA TGAA
 CTG ATGTACACTG GTTGGTCCTCAG CTTTGTACGGG GTG CATGTAA T6TC

© Eric Xing @ CMU, 2005-2009

13

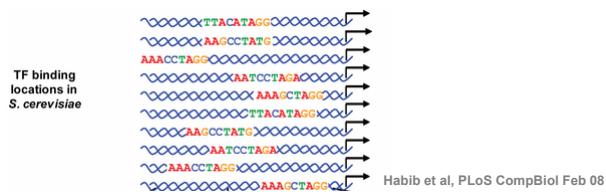

Hierarchical state transition in pHMM : knowledge of structure

© Eric Xing @ CMU, 2005-2009

14

Allowing for inserted exons: knowledge of structure

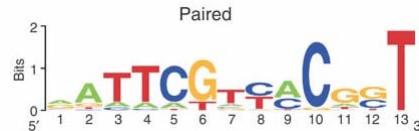
© Eric Xing @ CMU, 2005-2009


15

Motif finding: recap

Recap:

- Functional regions in sequences often occur as small, noisy, repeating subsequences
 - In DNA : transcription factor binding sites, transcription start sites, splicing signals, etc
 - In proteins : transmembrane domains, phosphorylation sites, signal peptides. etc
- Subsequence similarity and functional significance go hand in hand


© Eric Xing @ CMU, 2005-2009

16

Problem formulation

- Models : Consensus, RegEx, Weight Matrix

- **Supervised motif detection** : Given a set of sequences, and a PWM w of length k , find the maximum likelihood set of k -mers which correspond to the WMM.
 - Given TF binding specificities, can we find the TF binding sites ?
- **De novo (unsupervised) motif detection** : Given a set of sequences, find the most overrepresented set of k -mers and the corresponding WMM w
 - Given a set of genes with similar expression (putatively co-regulated), can we find the TF binding sites common to them and the specificity of the corresponding TF?

Multi-species data pooling

- Simply pool together regulatory regions in related species
 - Bacterial DNA motifs, McGuire *et al* **Gen Res** 2000 & Gelfand *et al* **Nuc Ac Res** 2000
 - Hunchback TFBS in Drosophila species demonstration :

CACCACTTTTATGCCGAGTTAAT D. melanogaster

GGTTTTTCGATTCAATCGGTATA D. yakuba

AGTTAGCGTTTACCTA**TTTTTAC** D. persimilis

GCATTTATC**CTCTTTTATAAGCTT** D. mojavensis

- What could be problematic with this approach ?

Multi-species data pooling

- Biases analyses towards motifs in a bunch of closely related species – no explicit phylogenetic information used
- No distinction between paralogs and orthologs
- Variation in number of binding sites in orthologous CRMs much less than in CRMs of coregulated genes in same species
 - Signals in one species may be drowned out by cross species signals, or vice versa

© Eric Xing @ CMU, 2005-2009

19

Orthologous sequence analysis

- What if the sequences are orthologous ?

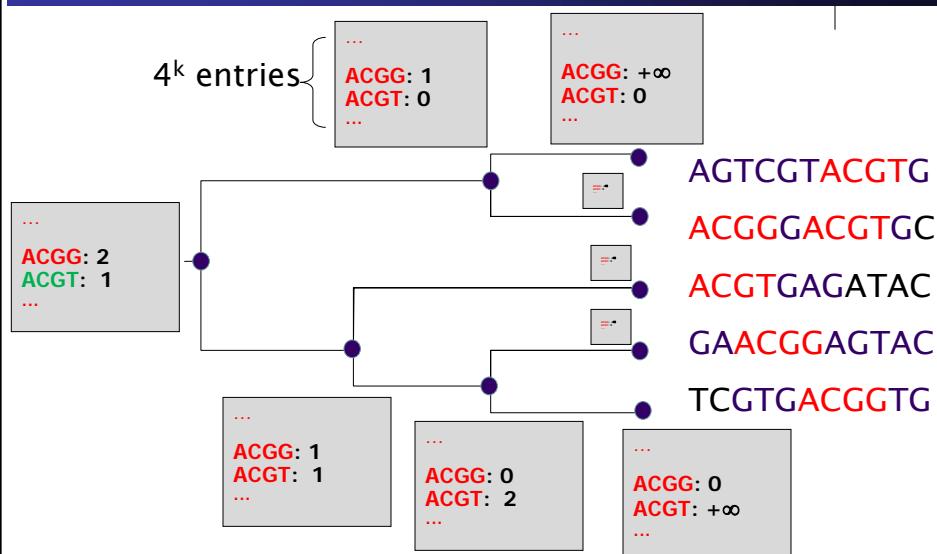
D. melanogaster	CTTACGTA TTTTAGTT ATCGAGTTATCTTCTGCTTGCTATCTCGCGC
D. yakuba	T--TACGTA TTTTAGTT ATCGAGTTATCTTCTGCTTGCTATCTCGCGC
D. persimilis	GTTCACGTA TTTTAGTT ATCGAGTTATCTTCTGCTT-----TCTCGC
D. mojavensis	CTTTACGTA TTTGAGTT ATCAACTTGT--TTTGCTT--TGCTTTCGC

- Functional regions like TFBSS are more conserved than background
- Phylogenetic dependencies between orthologs may be modelled to get more accurate scores for $P(\text{data} \mid \text{model})$
- Paralogous sequence analysis also possible

© Eric Xing @ CMU, 2005-2009

20

Chronology : from one to many


Method	Single species	Multispecies
Combinatorial	Waterman (1985)	FootPrinter (2002)
LRT-like score threshold	Staden-PWM (1989)	rVista (2002) PhyloCon (2003)
Explicit mixture models	MEME (1994)	EMnEM (2004) PhyME (2004) CSMET (2008)
Gibbs Sampling	GMS (1993/1995) BioProspector (2001) AlignACE (2000)	Motif Sampler+ (2000) CompareProspector (2004) PhyloGibbs (2005)
HMM+	Cister (2001) HMDM (2002) LOGOS (2003) BayCis (2008)	PhyloHMM (2004 –gene / 2008 – motif) PhyME (2004) MORPH (2008) CSMET (2008)
Ensemble models	EMD (2006)	-

- First usage of term **phylogenetic footprinting**
: Tagle et al, J Mol Biol 1988 : Regulatory regions of paralogous gamma and epsilon globin genes in Galago
- Google scholar hits for “phylogenetic footprinting”
 - 1988 – 1990 : 11 hits
 - 1991 – 2000 : 141 hits
 - 2001 – 2009 : 1850 hits
- Gibbs Sampling particularly easily adapted to incorporate phylogenetic footprinting

© Eric Xing @ CMU, 2005-2009

21

FootPrinter: going combinatorial

© Eric Xing @ CMU, 2005-2009

22

Footprinter

- For each node from the leaf up
 - Fill up a parsimony table W for each k-mer
- If the node n is a leaf
 - If the word is present in corr. string, $W[k]^{(n)} = 0$ else $W[k]^{(n)} = +\infty$
- Else
 - $W[k]^{(n)} = \sum_{v \in \text{child}(n)} \min_{t \in \text{k-mer}} (W[t]^{(v)} + d(t, k))$
- Choose most parsimonious k-mer(s) over the tree and alignment from table at root
- Time complexity = $O(n 4^{2k})$ for n species for fixed topology

© Eric Xing @ CMU, 2005-2009

23

Motif Sampler + footprinting

- A simple idea that works reasonably well
- Wasserman et al, 2000
 - Given an input multiple alignment A
 - Compute a score for conservation across the alignment
 - Filter out all regions of the alignment with a score below a threshold t
 - Perform Gibbs Motif Sampling on the remaining alignment A'

D. melanogaster

CTTACGTATTTTAGTTATCGATTTTATTTTCTGCTTGCATCTCGCGC

D. yakuba

T--TACGTATTTTAGTTATCGATTTTATTTTCTGCTTGCATCTCGCGC

D. persimilis

GTAAACGTATTTTAGTTATCGATTTTAGTTTTCGCTT-----TCTCGC

D. mojavensis

CTTACGTATTTGAGTTATCAATTTTGGTTTTTGCTT--TGCTTTCGC

© Eric Xing @ CMU, 2005-2009

24

Motif Sampler + footprinting

- A simple idea that works reasonably well
- Wasserman et al, 2000
 - Given an input multiple alignment \mathbf{A}
 - Compute a score for conservation across the alignment
 - Filter out all regions of the alignment with a score below a threshold t
 - Perform Gibbs Motif Sampling on the remaining alignment \mathbf{A}'

- D. melanogaster
D. yakuba
D. persimilis
D. mojavensis

CTTACGTATTTAGTTATCGA TTTTATTTCTGCTTGCATCTCGCGC
T--TACGTATTTAGTTATCGA TTTTATTTCTGCTTGCATCTCGCGC
GTTTACGTATTTAGTTATCGA TTTTAGTTTCGCTT-----TCTCGC
CTTACGTATTTAGTTATCAA TTTGGTTTTGCTT--TGCTTTTCGC

© Eric Xing @ CMU, 2005-2009

25

Motif Sampler + footprinting

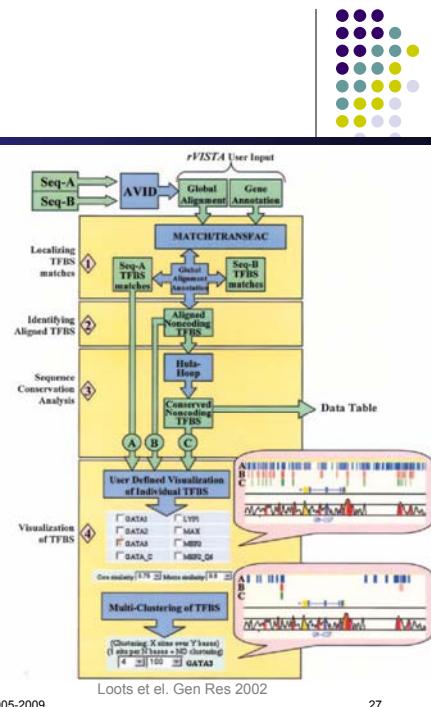
- A simple idea that works reasonably well
- Wasserman et al, 2000
 - Given an input multiple alignment \mathbf{A}
 - Compute a score for conservation across the alignment
 - Filter out all regions of the alignment with a score below a threshold t
 - Perform Gibbs Motif Sampling on the remaining alignment \mathbf{A}'

- D. melanogaster
D. yakuba
D. persimilis
D. mojavensis

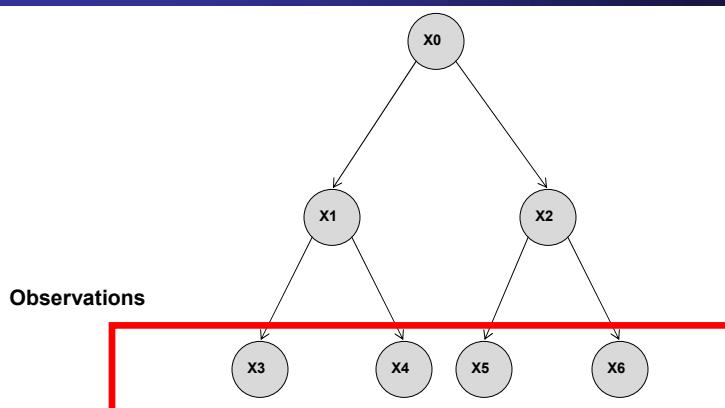
CTTACGTATTTAGTTATCGA TTTTATTTCTGCTTGCATCTCGCGC
T--TACGTATTTAGTTATCGA TTTTATTTCTGCTTGCATCTCGCGC
GTTTACGTATTTAGTTATCGA TTTTAGTTTCGCTT-----TCTCGC
CTTACGTATTTAGTTATCAA TTTGGTTTTGCTT--TGCTTTTCGC

- Motifs sampled according to:

$$\frac{\prod_{k=a}^{a+w} pm_{k-a, R_k}}{\prod_{k=a}^{a+w} p_0_{k, R_k}}$$


Score (likelihood) under
PWM (motif) scenario
Score (likelihood) under
background scenario

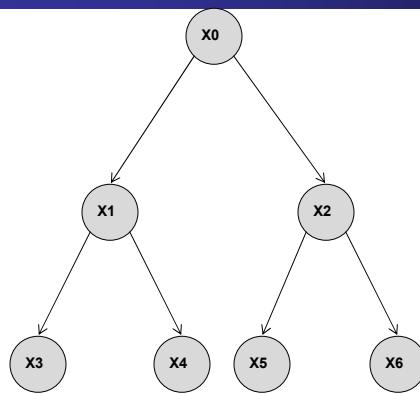
© Eric Xing @ CMU, 2005-2009


26

rVISTA

- Select motifs with a PWM score greater than a threshold
- Screens for motifs above a certain threshold for nucleotide conservation
- Two step screening a common way to capture both overrepresentation & conservation
 - Loots et al, Gen Res 2002 [rVISTA]
 - Kellis et al, Nature 2003
 - Wang & Stormo, Bioinf 2003 [PhyloCon]

Phylogenetic model: recap



$$\begin{aligned}
 P(D|M) &= P(X_0, X_1, X_2, X_3, X_4, X_5, X_6 | \tau, \beta, \theta, \pi) \\
 &= \sum_{x_0, x_1, x_2} P(X_3|X_1; \text{tree}) P(X_4|X_1; \text{tree}) P(X_5|X_2; \text{tree}) P(X_6|X_2; \text{tree}) \\
 &\quad P(X_2|X_0; \text{tree}) P(X_1|X_0; \text{tree}) P(X_0; \text{tree})
 \end{aligned}$$

© Eric Xing @ CMU, 2005-2009

28

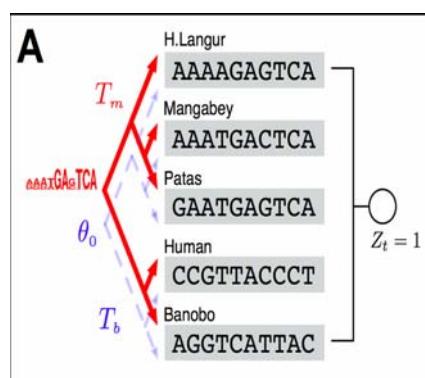
Phylogenetic model: recap

• **Topology** – how the observations are “tied together”: τ

• **Branch lengths** – the length for which the CTMP runs: β

• **Parameters of CTMP** – characterizing the substitution model: θ

• **Distribution at root** - maybe stationary dist of CTMP : π

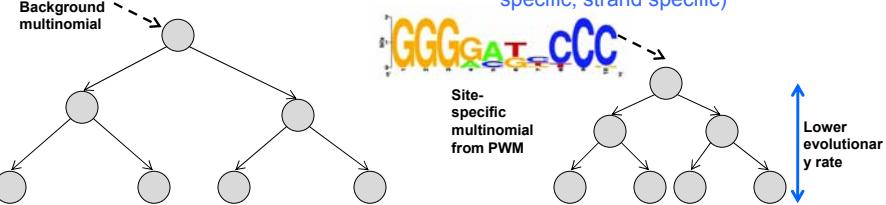

$$\begin{aligned}
 P(D|M) &= P(X_0, X_1, X_2, X_3, X_4, X_5, X_6 | \tau, \beta, \theta, \pi) \\
 &= \sum_{X_0, X_1, X_2} P(X_3|X_1; \text{tree}) P(X_4|X_1; \text{tree}) P(X_5|X_2; \text{tree}) P(X_6|X_2; \text{tree}) \\
 &\quad P(X_2|X_0; \text{tree}) P(X_1|X_0; \text{tree}) P(X_0) \text{ tree}
 \end{aligned}$$

© Eric Xing @ CMU, 2005-2009

29

EMnEM: model based approaches

- Mixture model
- Each block of k-mer could be generated from a background model with probability $1-\pi_m$ or from a motif model with probability π_m
- Bernoulli draw for the mixture indicator
- In the spirit of MEME


© Eric Xing @ CMU, 2005-2009

30

Function specific phylogenetic models

- Background model T_b
 - Topology invariant unless evidence otherwise
 - Substitution matrix invariant unless evidence otherwise
 - Branch lengths longer than functional sites
 - Root distribution : background frequency
- Motif site-specific, strand-specific model $T_{m, k, +/-}$
 - Topology invariant unless evidence otherwise
 - Substitution matrix invariant unless evidence otherwise
 - Branch lengths shorter than background sites
 - Root distribution : from PWM (site specific, strand specific)

© Eric Xing @ CMU, 2005-2009

31

EMnEM: Expectation maximization on mixtures of phylogenies

$$L = \prod_{i=0}^{N-w} \sum_{m_i} p(m_i) \prod_{k=i}^{i+w-1} \sum_{b=0}^3 p(X_k, Y_k | A_{kb}, m_i) p(A_{kb} | m_i)$$

E-step :

- Mixture parameter:**

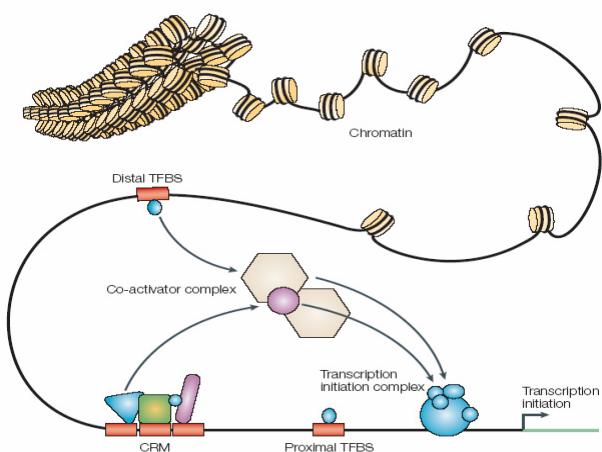
$$\langle m_i \rangle = p(m_i | X, Y) = \frac{p(m_i) p(X, Y | m_i)}{p(X, Y)}$$

$$p(X, Y | m_i) = \prod_{k=i}^{i+w-1} \sum_{b=0}^3 p(X_k, Y_k | A_{kb}, m_i) p(A_{kb} | m_i)$$

$$p(X, Y) = \sum_{m_i} p(X, Y | m_i) p(m_i)$$
- Ancestral nucleotide:**

$$\langle A_{ib} \rangle = p(A_{ib} | X_i, Y_i) = \sum_{m_i} p(A_{ib} | X_i, Y_i, m_i) p(m_i) = \sum_{m_i} \frac{p(A_{ib}) p(X_i, Y_i | A_{ib}, m_i)}{p(X_i, Y_i | m_i)} p(m_i)$$
- M-step :**

$$\langle \ln L_c \rangle = \sum_{i=0}^{N-w} \sum_{m_i} \langle m_i \rangle \left[\ln \pi_m + \sum_{k=i}^{i+w-1} \sum_{b=0}^3 \langle A_{kb} \rangle (\ln p(X_k, Y_k | A_{kb}, m_i) + \ln f_{mkb}) \right]$$

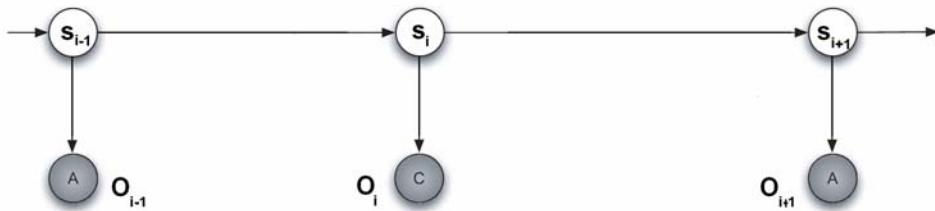

$$\frac{\partial \langle \ln L_c \rangle}{\partial \pi_m} = 0, \frac{\partial \langle \ln L_c \rangle}{\partial f_{mkb}} = 0 \text{ and } \frac{\partial \langle \ln L_c \rangle}{\partial \langle A_{mb} \rangle} = 0$$

© Eric Xing @ CMU, 2005-2009

32

CRM: putting the pieces together

- HMMs !



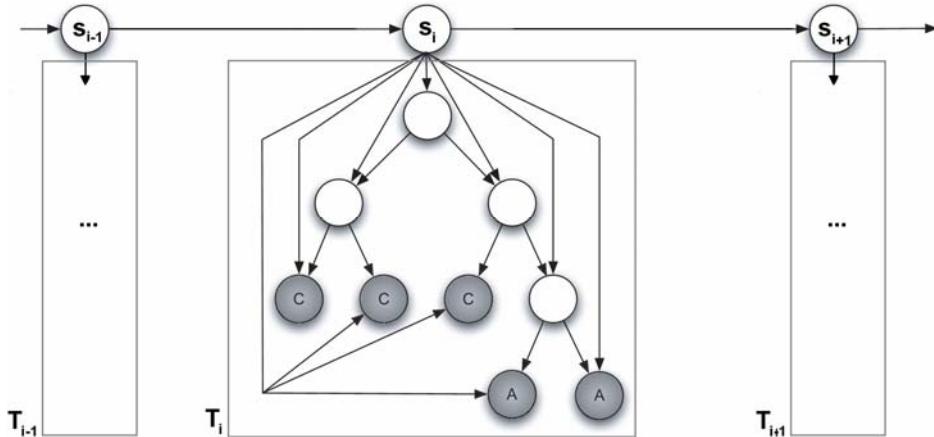
Courtesy: Simone Scalabria

© Eric Xing @ CMU, 2005-2009

33

A vanilla HMM ...

ACATTGCCATACCAATCCTTAATT...

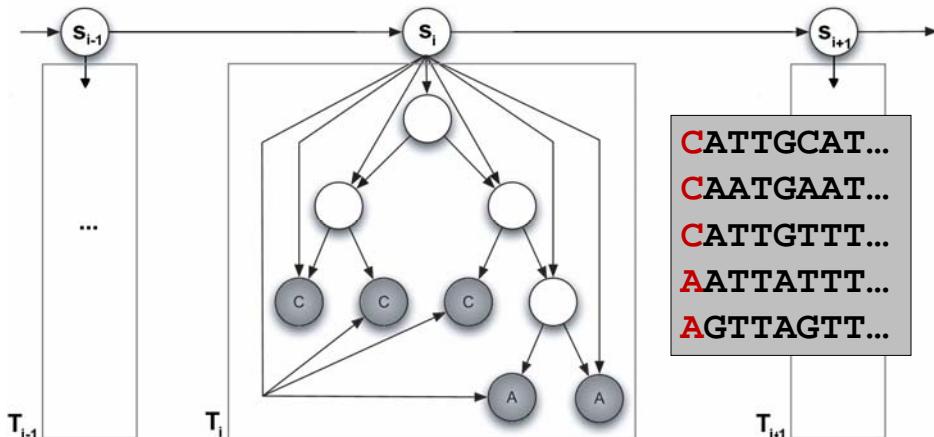

- Emits a symbol at every discrete step
- A run of the HMM outputs a sequence
- PhyloHMM outputs a vector of characters
- A run of the PhyloHMM outputs a multiple sequence alignment

© Eric Xing @ CMU, 2005-2009

34

Phylo-HMM

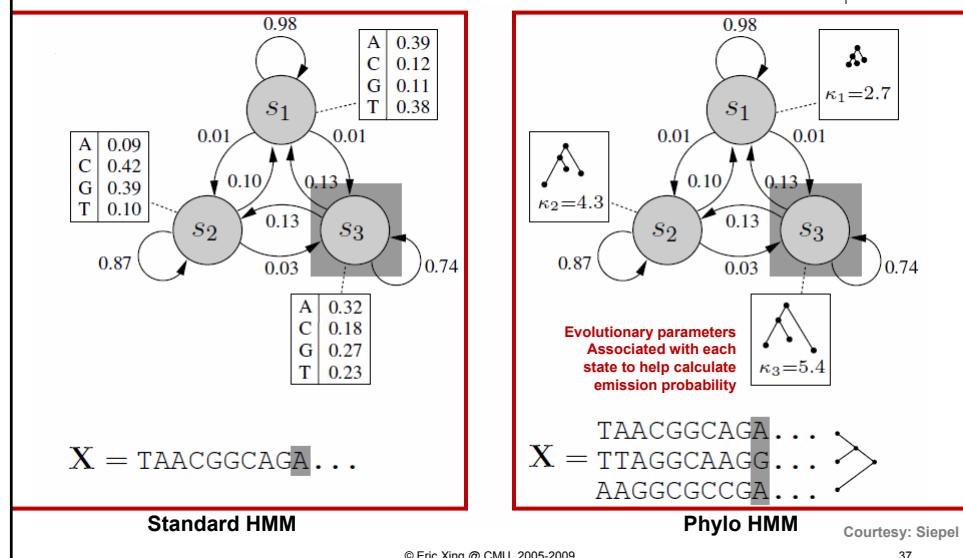
- The emission vector \mathbf{O}_i is shaded in gray



Courtesy: McAuliffe

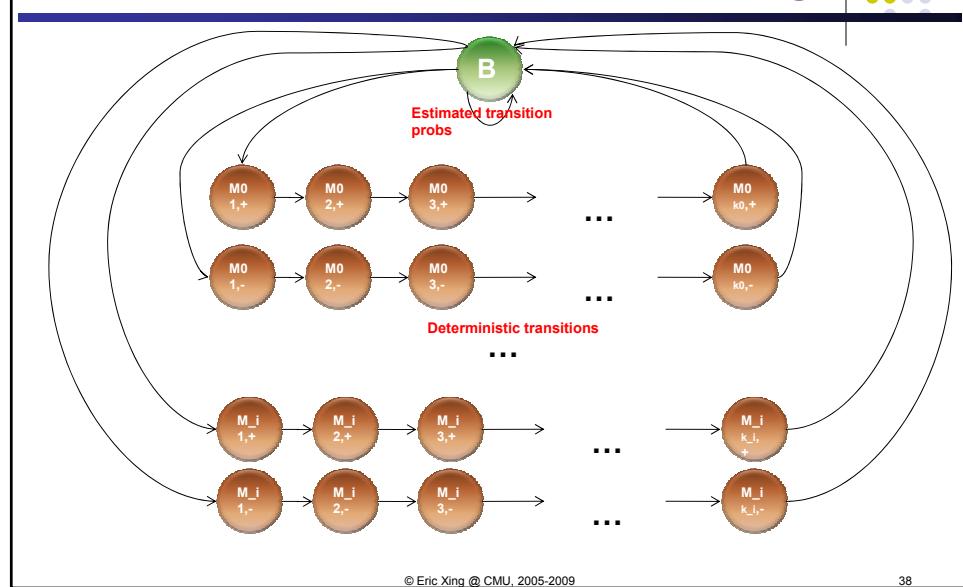
35

Phylo-HMM


- Emits a vector at each step, generates alignment in a run

© Eric Xing @ CMU, 2005-2009

36


State space comparisons

© Eric Xing @ CMU, 2005-2009

37

HMM state space for motif finding

© Eric Xing @ CMU, 2005-2009

38

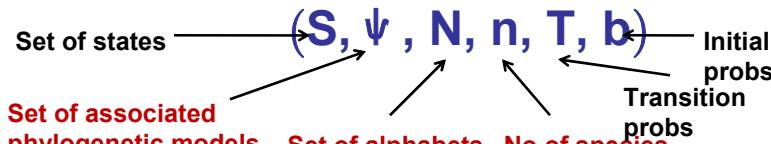
More realism, more parameters

Estimated transition probs

Deterministic transitions

© Eric Xing @ CMU, 2005-2009

39


Phylo-HMM

- A normal HMM, except the emission probabilities are a **multinomial distribution over the space of $[ATGC]^n$** , n being the number of sequences in the alignment
- 4^n emission probabilities can be pre computed
- But usually calculated on the fly using Felsenstein's Pruning Algorithm - a special case of the GM Belief Propagation Algorithm on trees
 - Siepel & Haussler, RECOMB 2004, for gene finding
 - Ray et al. PLoS CompBio 2008, adapted for motif finding

© Eric Xing @ CMU, 2005-2009

40

Analogy with HMM

- Emission probability = $P(O_i | S_i = s)$
 $= P(O_i | \text{phylogenetic model}_s)$
 $= P(\text{Alignment column}_i | \psi_s)$
 \Rightarrow Calculate using the Pruning Algorithm
- Apply standard Viterbi (maximize joint) or posterior decoding on the Forward-Backward matrix
- Baum-Welch algorithm (E-M) for unsupervised settings
- Exactly analogous to single species motif finding

© Eric Xing @ CMU, 2005-2009

41

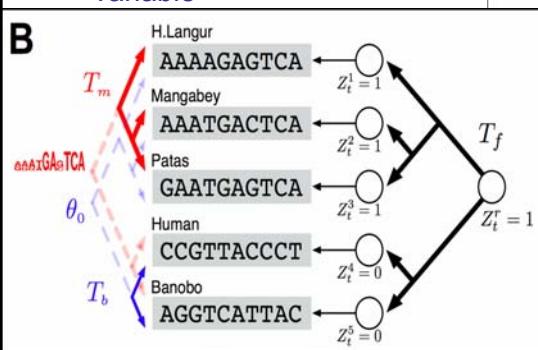
Missing motifs

melanogaster	ccgggatc	—	gcag	tttttacat	gcatac	tttttacg	—	acc	—	tcgtccgttt
sechellia	ccgggatc	—	gctgtttttacat	gcatac	tttttacg	—	acc	—	tcgtccgttt	
simulans	ccgggatc	—	gctgtttttacat	gcatac	tttttacg	—	acc	—	tcgtccgttt	
yakuba	ccgggatc	—	gctgtttttacat	gcatac	tttttacg	—	acc	—	tccgccccgtt	
erecta	ccgggatc	—	gcccgtttttacat	gcatac	tttttacg	—	acc	—	tccgtccgttt	
ananasae	ccgggttc	—	gctgtttttacat	gcatac	ttttatgtgtc	—	acc	—	cgcgtccgttt	
pseudoobscura	ccgggttccct	—	caggcactttttac	gcatac	aaaggatgtttatg	—	gcgtccgcgtccgtgttt	—		
persimilis	ccgggttccct	—	caggcgtttttac	gcatac	aaaggatgtttatg	—	gcgtccgcgcgtgttt	—		
melanogaster	tttattcat	—	cggcgacctt	gaatggccgtttt	gatggccgtgggtgg	—	ttacct	—		
sechellia	tttattcat	—	ggcgacctt	gaatggccgtttat	gtgtgtgggtgg	—	ttacct	—		
simulans	tttattcat	—	ggcgacctt	gaatggccgtttat	gtgtgtgggtgg	—	ttacct	—		
yakuba	tttattcat	—	cggcgacctt	gaatggccgtttgggtgg	cagtgggtgg	—	ttacct	—		
erecta	tttattcat	—	cggcgacctt	gaatggccgtttgggtgg	cagtgggtgg	—	ttacct	—		
ananasae	tttattcat	—	tagcgacctt	gaatggccgtttgggtgg	cagtggat	—	aaagcgggttgcctacatgtt	—		
pseudoobscura	tttattcat	—	tagcgacctt	gaatggccgtttgggtgg	cagtggat	—	cagtgggtcg	—	gtacct	
persimilis	tttattcat	—	tagcgacctt	gaatggccgtttgggtgg	cagtggat	—	cagtgggtcg	—	gtacct	

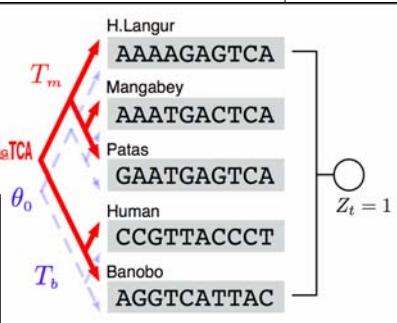
© Eric Xing @ CMU, 2005-2009

42

Functional turnover


	kr - 6	kr - 5	kr - 4	kr - 3	kr - 2	kr - 1
melanogaster	ATAACCCAAT	TTAACCGTT	ACC-CGGTTGC	GAAGGGATTAG	ACTGGTTAT	TTAACCCGTT
yakuba	C.
erecta	C.
pseudoobscura	AA. -	A. TC.	C. G
	bcd - 5	bcd - 4	bcd - 3	bcd - 2	bcd - 1	
melanogaster	GTAAATCCG	GAGATTATT	TATAATCGC	GGGATTAGC	GAAGGGATTAG	
yakuba	C.GC. C. GC.	
erecta	C.	GT....C.	
pseudoobscura	A.	N/A	A. A	
	hb-3	hb-2	hb-1	gt-3		
melanogaster	CATAAAA-ACA	TTATTTTTT	CGATTTTTT	CGAGATTATTAGTCATTG	CAGTTGC	
yakuba - G C. C. A.	
erecta -	C.	N/A C. C.	
pseudoobscura C.	N/A C. C. -	
	gt-2		gt-1			
melanogaster	GACTTTATTGCAGCATCTTG	—AACATCGTC-GCAGTTGGTAACAC	GAAAGTCATAAAA-ACACATAATA			
yakuba C. — G. -	
erecta	CAGC G. -	
pseudoobscura T.	AA. T. G. A. T C.	

© Eric Xing @ CMU, 2005-2009


43

CSMET : Phylogenetic mixtures of phylogenies

- Mixture models for evolutionary model selection (EMnEM) →
- Bernoulli draw for mixture variable

A

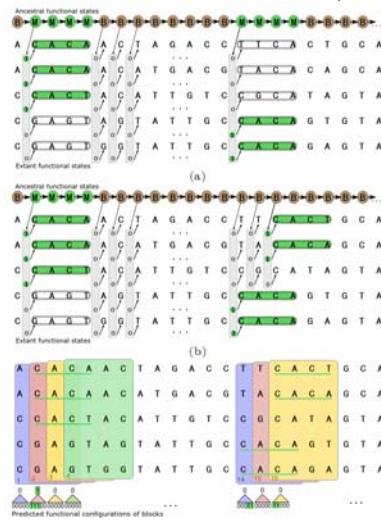
- What if the mixture variables are phylogenetically related ?
- Output of a “functional” phylogeny

© Eric Xing @ CMU, 2005-2009

44

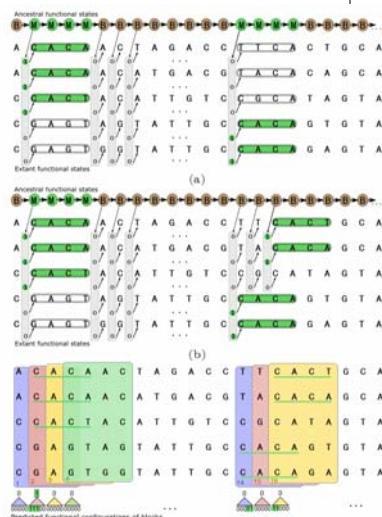
CSMET

- CSMET-HMM :
 - An HMM with emission vector [A,T,G,C]*
 - Each vector is the output of a generative process involving a mixture of trees
 - Mixture indicator variables themselves generated by a phylogeny
 - Similar scheme to PhyloHMM, except for calculating emission probs
- Schematic of generation and ML inference
- CSMET-HMM : **Corr character sets**


(S, TN, TF, N, F, n, T, b)

Set of nucleotide phylogenetic models corr to each annotation

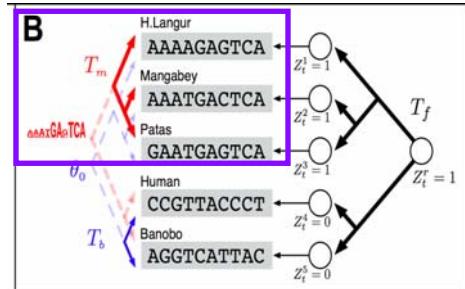
Set of functional phylogenetic models corr to each state in S


© Eric Xing @ CMU, 2005-2009

45

CSMET

- To calculate emission probabilities:
 - Calculate likelihoods of nucleotide data for each subtree of the nucleotide phylogeny
 - Calculate likelihood of functional indicators for the functional phylogeny
 - Putting the likelihoods together using conditional independences
 - Marginalize out hidden variables
- The rest would be analogous to an HMM !



46

Likelihoods on partial phylogenies

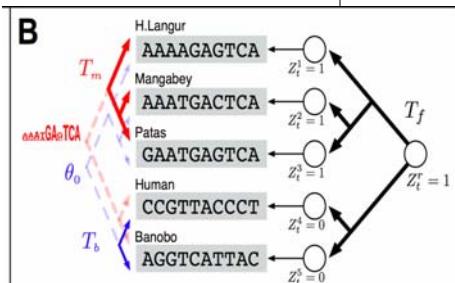
- Marginalize out observed nucleotides present in parts of the phylogeny we are not interested in
- Turns out to be equivalent to calculating the likelihood of the data on the subtree !

$$P(A'_l | T'^{(l)}) = \sum_{A''_l} P(A'_l, A''_l | T^{(l)}) = \sum_{A''_l} \sum_{V_{1:K'}} P(V_{1:K'} = v_{1:K'}, V = A''_l, V' = A'_l)$$

© Eric Xing @ CMU, 2005-2009

47

CSMET: toolkit for calculations


- Calculating likelihoods on the nucleotide phylogeny and functional phylogeny

Nucleotide phylogeny :
F84 model – simplest arbitrary stationary distribution

$$Q_N = \begin{pmatrix} * & (1 + \kappa/\pi_Y)\pi_C & \kappa\pi_A & \kappa\pi_G \\ (1 + \kappa/\pi_Y)\pi_T & * & \kappa\pi_A & \kappa\pi_G \\ \kappa\pi_T & \kappa\pi_C & * & (1 + \kappa/\pi_R)\pi_A \\ \kappa\pi_T & \kappa\pi_C & (1 + \kappa/\pi_R)\pi_A & * \end{pmatrix}$$

Functional phylogeny
Jukes Cantor model

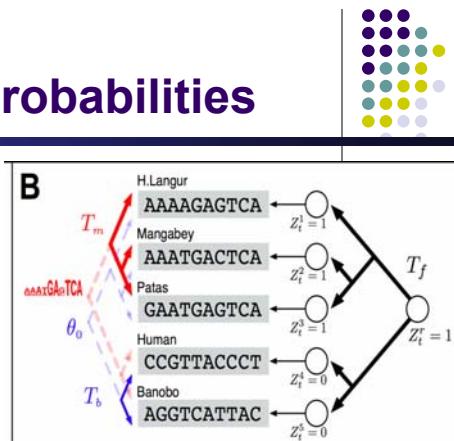
$$P_F = \begin{pmatrix} \frac{1}{2} + \frac{1}{2}e^{-2\beta} & \frac{1}{2} - \frac{1}{2}e^{-2\beta} \\ \frac{1}{2} - \frac{1}{2}e^{-2\beta} & \frac{1}{2} + \frac{1}{2}e^{-2\beta} \end{pmatrix}$$

Likelihoods on partial phylogenies

$$P(A'_l | T'^{(l)}) = \sum_{A''_l} P(A'_l, A''_l | T^{(l)}) = \sum_{A''_l} \sum_{V_{1:K'}} P(V_{1:K'} = v_{1:K'}, V = A''_l, V' = A'_l)$$

© Eric Xing @ CMU, 2005-2009

48


CSMET : emission probabilities

- Emission prob : Prob of block surrounding particular aligned site
- Again, analogous to an HMM, with one twist : Z_i s not observed

Joint Probability for an instantiated block

$$P(\mathbf{A}_t, \mathbf{z}_t, \mathbf{z}'_t) = P(\mathbf{A}_t | Z_t = \mathbf{z}_t, T_m, T_b) P(Z_t = \mathbf{z}_t | Z'_t = \mathbf{z}'_t, T_f)$$

$$P(Z'_t = \mathbf{z}'_t) = P(\mathbf{A}'_t | T'_m) P(\mathbf{A}''_t | T'_b) P(\mathbf{z}'_t | \mathbf{z}'_t, T_a) P(\mathbf{z}'_t).$$

Conditional probability for the block

$$P(\mathbf{A}_t | Z_t = \mathbf{z}_t, T_m, T_b) = P(\mathbf{A}'_t | T'_m) P(\mathbf{A}''_t | T'_b) =$$

$$\prod_{l=1}^L P(\mathcal{A}'_l(t) | T'_m(l)) P(\mathcal{A}''_l(t) | T'_b).$$

Emission probability for the block (marginalized)

$$P(\mathbf{A}_t | \mathbf{z}'_t) = \sum_{\mathbf{z}_t} P(\mathbf{A}_t, \mathbf{z}_t | \mathbf{z}'_t) = \sum_{\mathbf{z}_t} P(\mathbf{A}'_t(\mathbf{z}_t) | T'_m(\mathbf{z}_t))$$

$$P(\mathbf{A}''_t(\mathbf{z}_t) | T'_b(\mathbf{z}_t)) P(\mathbf{z}_t | T_a, \mathbf{z}'_t),$$

© Eric Xing @ CMU, 2005-2009

49

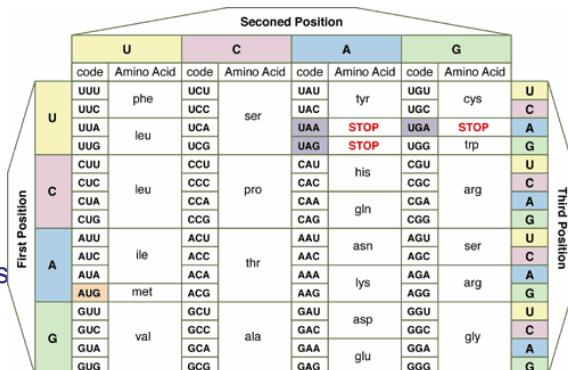
Chronology : aspects of footprinting

- Footprinting + Gibbs Sampling
 - **Motif Sampler+** : 2 species alignment
 - **CompareProspector** : Pairwise alignment
 - **PhyloGibbs** : Multiple alignment
- Footprinting + HMM
 - **PhyloHMM** : Emission of HMM generated by a CTMP phylogenetic tree, no tolerance for functional turnover
 - **PhyME**
 - **CSMET** : Emission of HMM generated by a mixture of CTMP phylogenetic trees, explicit tolerance for functional turnover
- **Footprinting + alignment**
 - **OrthoMEME**
 - **MORPH**

© Eric Xing @ CMU, 2005-2009

50

Can we do even better ?


- Footprinting improves with
 - More knowledge about the functional component we are searching for : what to look for in a single species
 - More knowledge about how it evolves : what to look for in related species
- We know a lot about both aspects for protein coding regions, or genes
- Initial footprinting algorithms on genes and proteins

© Eric Xing @ CMU, 2005-2009

51

Evolution of codons

- Genes evolve at a level of higher granularity
 - Nucleotide
 - Codon
- HMM states corresponding to codons
- How to choose priors for transition probabilities ?

Courtesy: Bioephemera.com

© Eric Xing @ CMU, 2005-2009

52

Incorporating evolutionary processes

- Selection
- Transition probabilities can reflect
 - Synonymous transitions more frequent than non synonymous ones
 - How much more frequent ?
 - Selection parameters estimated from data

		Second Position						
		U	C	A	G			
		code	Amino Acid	code	Amino Acid	code	Amino Acid	
U	UUU	phe	UCU	ser	UAU	tyr	UGU	cys
	UUC		UCC		UAC		UGC	
	UUA	leu	UCA		UAA	STOP	UGA	STOP
	UUG		UCG		UAG	STOP	UGG	trp
C	CUU		CCU	pro	CAU	his	CGU	
	CUC	leu	CCC		CAC		CGC	
	CUA		CCA		CAA	gln	CGA	arg
	CUG		CCG		CAG		CGG	
A	AUU		ACU	thr	AAU	asn	AGU	ser
	AUC	ile	ACC		AAC		AGC	
	AUA		ACA		AAA	lys	AGA	arg
	AUG	met	ACG		AAG		AGG	
G	GUU		GCU	ala	GAU	asp	GGU	
	GUU		GCC		GAC		GCC	
	GUU	val	GCA		GAA	glu	GGA	gly
	GUG		GCG		GAG		GGG	

Courtesy: Bioephemera.com

© Eric Xing @ CMU, 2005-2009

53

Summary

- Use genomic representation of functional component
- Use evolutionary models of functional component
- Can be used for non-sequence data too :
 - Gene regulatory network
 - Expression levels : microarray data

© Eric Xing @ CMU, 2005-2009

54

Acknowledgments

- **Serafim Batzoglou**: for some of the slides adapted or modified from his lecture slides at Stanford University
- **Lior Pachter**: for some of the slides modified from his lectures at UC Berkeley
- Acknowledgements for some graphics on corresponding slides