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Computational GenomicsComputational Genomics

1010--810/02810/02--710, Spring 2009710, Spring 2009

ModelModel--based Comparative Genomicsbased Comparative Genomics

Eric XingEric Xing

Lecture 14, March 2, 2009

Reading: class assignment

Uses of evolutionary theory
Comparative genomics (this lecture)

Cladistics: figuring out closely related species, proteins, sequences
Drug design and testing
Building chimera : mixing genetic codes of species, genetic technology
Sequence prediction in related unsequenced species : use in  sequencing, primer 
design, etc

Phylogenetic footprinting
Functional constraints on a genomic region inversely proportional to evolutionary rate, 
from neutral theory
Look at two concrete examples : transcription factor binding site (motif) and gene 
prediction

Population genetics (module 4)
Population structure
Understanding evolutionary driving force underlying genome variation 
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Comparative Genomics 
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A pairwise comparison between 
human and mouse genome
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Aligning One Locus
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Example: a human/mouse 
ortholog
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Three Pairwise Alignments
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-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
IMMJMMMMMMMJJMMMMMMJMMMMMMMIIMMMMMIII

M
(+1,+1)

I
(+1, 0)

J
(0, +1)

Alignments correspond 
1-to-1 with sequences 
of states M, I, J

Paired HMM
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-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
IMMJMMMMMMMJJMMMMMMJMMMMMMMIIMMMMMIII

M
(+1,+1)

I
(+1, 0)

J
(0, +1)

Alignments correspond 
1-to-1 with sequences 
of states M, I, J

s(xi, yj)
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Let’s score the transitions
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M
P(xi, yj)

I
P(xi)

J
P(yj)
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δ

ε

δ

ε
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END
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τ τ τ

τ

δδ1 – 2δ – τ

A Pair HMM for alignments
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Gene Finding
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Recall generalized HMM gene finder
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Generalized Pair-HMM gene 
finder
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Hierarchical state transition in pHMM
: knowledge of structure
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Allowing for inserted exons: 
knowledge of structure
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Motif finding: recap
Recap:

Functional regions in sequences often occur as small, 
noisy, repeating subsequences

In DNA : transcription factor binding sites, transcription start sites, splicing 
signals, etc
In proteins : transmembrane domains, phosphorylation sites, signal 
peptides. etc 

Subsequence similarity and functional significance go 
hand in hand

Habib et al, PLoS CompBiol Feb 08
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Problem formulation
Models : Consensus, RegEx, Weight Matrix

Supervised motif detection : Given a set of sequences, and a PWM 
w of length k, find the maximum likelihood set of k-mers which 
correspond to the WMM.

Given TF binding specificities, can we find the TF binding sites ?

De novo (unsupervised) motif detection : Given a set of sequences, 
find the most overrepresented set of k-mers and the corresponding 
WMM w

Given a set of genes with similar expression (putatively co-regulated), can we find the TF 
binding sites common to them and the specificity of the corresponding TF?
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Multi-species data pooling
Simply pool together regulatory regions in related species 

Bacterial DNA motifs, McGuire et al Gen Res 2000 & Gelfand et al Nuc Ac Res
2000
Hunchback TFBS in Drosophila species demonstration :

What could be problematic with this approach ?

CACCACTTTTTATGCCGAGTTAAT

GGTTTTTTCGATTCAATCGGTATA

AGTTAGCGTTTACCCTATTTTTTAC

GCATTTATCCTCTTTTTATAAGCTT

D. melanogaster

D. yakuba

D. persimilis

D. mojavensis
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Multi-species data pooling
Biases analyses towards motifs in a bunch of closely related 
species – no explicit phylogenetic information used

No distinction between paralogs and orthologs

Variation in number of binding sites in orthologous CRMs
much less than in CRMs of coregulated genes in same 
species 

Signals in one species may be drowned out by cross species signals, or vice 
versa
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Orthologous sequence analysis
What if the sequences are orthologous ?

Functional regions like TFBSs are more conserved than 
background
Phylogenetic dependencies between orthologs may be 
modelled to get more accurate scores for P( data | model )
Paralogous sequence analysis also possible

D. melanogaster CTTTACGTATTTTAGTTATCGAGTTTATCTTCTGCTTGCTATCTCGCGC

D. yakuba T--TACGTATTTTAGTTATCGAGTTTATCTTCTGCTTGCTATCTCGCGC

D. persimilis GTTTACGTATTTTAGTTATCGAGTTTATCTTTCGCTT------TCTCGC

D. mojavensis CTTTACGTATTTGAGTTATCAACTTTGT--TTTGCTT--TGCTTTTCGC
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Chronology : from one to many

Method Single species Multispecies

Combinatorial Waterman (1985) FootPrinter (2002)

LRT-like score 
threshold

Staden-PWM 
(1989)

rVista (2002) 
PhyloCon (2003)

Explicit mixture 
models

MEME (1994) EMnEM (2004)
PhyME (2004) 
CSMET (2008)

Gibbs Sampling GMS (1993/1995)
BioProspector
(2001)
AlignACE (2000)

Motif Sampler+ (2000)
CompareProspector
(2004)
PhyloGibbs (2005)

HMM+ Cister (2001) 
HMDM (2002)
LOGOS (2003)
BayCis (2008)

PhyloHMM (2004 –gene / 
2008 - motif)
PhyME (2004)
MORPH (2008)
CSMET (2008)

Ensemble 
models

EMD (2006) -

First usage of term 
phylogenetic footprinting
: Tagle et al, J Mol Biol
1988 : Regulatory 
regions of paralogous
gamma and epsilon 
globin genes in Galago

Google scholar hits for 
“phylogenetic
footprinting”

1988 – 1990 : 11 hits
1991 – 2000 : 141 hits
2001 – 2009 : 1850 hits

Gibbs Sampling 
particularly easily 
adapted to incorporate 
phylogenetic footprinting
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FootPrinter: going combinatorial

4k entries

AGTCGTACGTG
ACGGGACGTGC

ACGTGAGATAC

GAACGGAGTAC
TCGTGACGGTG

…

ACGG: +∞
ACGT: 0
...

…

ACGG: 1 
ACGT: 0
...

…

ACGG: 0 
ACGT: +∞
...

…

ACGG: 0 
ACGT:  2 
...

…

ACGG: 1 
ACGT:  1
...

…

ACGG: 2 
ACGT:  1
...

…

ACGG: +∞
ACGT: 0
...

…

ACGG: +∞
ACGT: 0
...

…

ACGG: +∞
ACGT: 0
...



Footprinter
For each node from the leaf up

Fill up a parsimony table W for each k-mer

If the node n is a leaf
If the word is present in corr. string, W[k] (n) = 0 else W[k] (n) = + ∞

Else
W[k] (n) =   Σ min      ( W[t] (v) + d(t,k) )

Choose most parsimonious k-mer(s) over the tree and 
alignment from table at root
Time complexity = O(n 42k) for n species for fixed topology
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V ∈ child(n) t ∈ k-mer
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Motif Sampler + footprinting
A simple idea that works reasonably well
Wasserman et al, 2000

Given an input multiple alignment A
Compute a score for conservation across the alignment 
Filter out all regions of the alignment with a score below a threshold t
Perform Gibbs Motif Sampling on the remaining alignment A’

D. melanogaster CTTTACGTATTTTAGTTATCGATTTTATTTTCTGCTTGCTATCTCGCGC

D. yakuba T--TACGTATTTTAGTTATCGATTTTATTTTCTGCTTGCTATCTCGCGC

D. persimilis GTTTACGTATTTTAGTTATCGATTTTAGTTTTCGCTT------TCTCGC

D. mojavensis CTTTACGTATTTGAGTTATCAATTTTGGTTTTTGCTT--TGCTTTTCGC
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Motif Sampler + footprinting
A simple idea that works reasonably well
Wasserman et al, 2000

Given an input multiple alignment A
Compute a score for conservation across the alignment 
Filter out all regions of the alignment with a score below a threshold t
Perform Gibbs Motif Sampling on the remaining alignment A’

D. melanogaster CTTTACGTATTTTAGTTATCGATTTTATTTTCTGCTTGCTATCTCGCGC

D. yakuba T--TACGTATTTTAGTTATCGATTTTATTTTCTGCTTGCTATCTCGCGC

D. persimilis GTTTACGTATTTTAGTTATCGATTTTAGTTTTCGCTT------TCTCGC

D. mojavensis CTTTACGTATTTGAGTTATCAATTTTGGTTTTTGCTT--TGCTTTTCGC
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Motif Sampler + footprinting
A simple idea that works reasonably well
Wasserman et al, 2000

Given an input multiple alignment A
Compute a score for conservation across the alignment 
Filter out all regions of the alignment with a score below a threshold t
Perform Gibbs Motif Sampling on the remaining alignment A’

Motifs sampled according to:

D. melanogaster CTTTACGTATTTTAGTTATCGATTTTATTTTCTGCTTGCTATCTCGCGC

D. yakuba T--TACGTATTTTAGTTATCGATTTTATTTTCTGCTTGCTATCTCGCGC

D. persimilis GTTTACGTATTTTAGTTATCGATTTTAGTTTTCGCTT------TCTCGC

D. mojavensis CTTTACGTATTTGAGTTATCAATTTTGGTTTTTGCTT--TGCTTTTCGC

Score (likelihood) under 
PWM (motif) scenario

Score (likelihood) under 
background scenario
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rVISTA
Select motifs with a PWM score 
greater than a threshold
Screens for motifs above a 
certain threshold for nucleotide 
conservation
Two step screening a common 
way to capture both 
overrepresentation & 
conservation

Loots et al, Gen Res 2002 [rVISTA]
Kellis et al, Nature 2003
Wang & Stormo, Bioinf 2003 [PhyloCon]

Loots et el. Gen Res 2002

Phylogenetic model: recap
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X0

X1 X2

X3 X4 X5 X6

P(D|M) = P(X0, X1, X2, X3, X4, X5, X6 | τ, β, θ, π) 
= Σ P(X3|X1; tree) P(X4|X1; tree) P(X5|X2; tree) P(X6|X2; tree) 

P(X2|X0;  
tree) P(X1|X0; tree) P(X0| tree)

X0, X1, X2

Observations



Phylogenetic model: recap
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X0

X1 X2

X3 X4 X5 X6

P(D|M) = P(X0, X1, X2, X3, X4, X5, X6 | τ, β, θ, π) 
= Σ P(X3|X1; tree) P(X4|X1; tree) P(X5|X2; tree) P(X6|X2; tree) 

P(X2|X0;  
tree) P(X1|X0; tree) P(X0| tree)

X0, X1, X2

•Topology – how the 
observations are “tied 
together”: τ

•Branch lengths – the 
length for which the 
CTMP runs: β

•Parameters of CTMP –
characterizing the 
substitution model: θ

•Distribution at root  -
maybe stationary dist 
of CTMP : π
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EMnEM: model based approaches
Mixture model
Each block of k-mer could 
be generated from a 
background model with 
probability 1-πm or from a 
motif model with 
probability πm

Bernoulli draw for the 
mixture indicator
In the spirit of MEME



Function specific phylogenetic
models
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Background model Tb
Topology invariant unless evidence 
otherwise
Substitution matrix invariant unless 
evidence otherwise
Branch lengths longer than functional 
sites
Root distribution : background frequency

Motif site-specific, strand-
specific model Tm, k, +/-

Topology invariant unless evidence 
otherwise
Substitution matrix invariant unless 
evidence otherwise
Branch lengths shorter than background 
sites
Root distribution : from PWM (site 
specific, strand specific)Background 

multinomial

Site-
specific 
multinomial 
from PWM

Lower 
evolutionar
y rate

EMnEM: Expectation maximization 
on mixtures of phylogenies

E-step :

© Eric Xing @ CMU, 2005-2009 32

Mixture parameter:

Ancestral nucleotide:

M-step :

A

X Y Mixture 
parameter

Ancestral 
base

PWM



CRM: putting the pieces together
HMMs !

© Eric Xing @ CMU, 2005-2009 33

Courtesy: Simone Scalabria
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A vanilla HMM …

ACATTGCCATACCATAATCCTTAATT…
Emits a symbol at every discrete step
A run of the HMM outputs a sequence
PhyloHMM outputs a vector of characters
A run of the PhyloHMM outputs a multiple sequence 
alignment
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Phylo-HMM
The emission vector Oi is shaded in gray

Courtesy: McAuliffe
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Phylo-HMM
Emits a vector at each step, generates alignment in a run

CATTGCAT…
CAATGAAT…
CATTGTTT…
AATTATTT…
AGTTAGTT…



State space comparisons
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Standard HMM Phylo HMM Courtesy: Siepel

Evolutionary parameters
Associated with each 
state to help calculate 

emission probability

HMM state space for motif finding
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B

M0 
1,+

M0 
2,+

M0 
3,+

M0 
k0,+…

M0 
1,-

M0 
2,-

M0 
3,-

M0 
k0,-…

M_i
1,+

M_i
2,+

M_i
3,+

M_i
k_i,
+…

M_i
1,-

M_i
2,-

M_i
3,-

M_i
k_i,-…

…
Deterministic transitions

Estimated transition 
probs



More realism, more parameters
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B

M0 
1,+

M0 
2,+

M0 
3,+

M0 
k0,+…

M0 
1,-

M0 
2,-

M0 
3,-

M0 
k0,-…

M_i
1,+

M_i
2,+

M_i
3,+

M_i
k_i,
+…

M_i
1,-

M_i
2,-

M_i
3,-

M_i
k_i,-…

…

Deterministic transitions

Estimated transition 
probs
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Phylo-HMM

A normal HMM, except the emission probabilities are a 
multinomial distribution over the space of [ATGC]n, n being the 
number of sequences in the alignment

4n emission probabilities can be pre computed 

But usually calculated on the fly using Felsenstein’s Pruning 
Algorithm - a special case of the GM Belief Propagation 
Algorithm on trees

Siepel & Haussler, RECOMB 2004, for gene finding
Ray et al. PLoS CompBio 2008, adapted for motif finding



Analogy with HMM

(S, ѱ , N, n, T, b)

Emission probability = P(Oi | Si = s)
= P(Oi | phylogenetic model s )
= P(Alignment column i | ѱ s )
=> Calculate using the Pruning Algorithm

Apply standard Viterbi (maximize joint) or posterior decoding 
on the Forward-Backward matrix
Baum-Welch algorithm (E-M) for unsupervised settings
Exactly analogous to single species motif finding
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Set of states

Set of associated 
phylogenetic models Set of alphabets No of species

Transition 
probs

Initial 
probs
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Missing motifs
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Functional turnover
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CSMET : Phylogenetic mixtures 
of phylogenies

Mixture models for 
evolutionary model selection 
(EMnEM) 
Bernoulli draw for mixture 
variable

What if the mixture 
variables are 
phylogenetically related ?
Output of a “functional”
phylogeny



© Eric Xing @ CMU, 2005-2009 45

CSMET
CSMET-HMM :

An HMM with emission vector 
[A,T,G,C]* 
Each vector is the output of a 
generative process involving a 
mixture of trees
Mixture indicator variables 
themselves generated by a 
phylogeny
Similar scheme to PhyloHMM, except 
for calculating emission probs

Schematic of generation and 
ML inference
CSMET-HMM :

(S, TN, TF, N, F, n, T, b)
Set of nucleotide phylogenetic
models corr to each annotation

Set of functional phylogenetic
models corr to each state in S

Corr character sets
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CSMET
To calculate emission 
probabilities:

Calculate likelihoods of nucleotide 
data for each subtree of the 
nucleotide phylogeny
Calculate likelihood of functional 
indicators for the functional 
phylogeny
Putting the likelihoods together using 
conditional independences
Marginalize out hidden variables

The rest would be analogous 
to an HMM !



Likelihoods on partial 
phylogenies

Marginalize out observed nucleotides present in parts of the 
phylogeny we are not interested in
Turns out to be equivalent to calculating the likelihood of the 
data on the subtree ! 
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Calculating likelihoods on the 
nucleotide phylogeny and 
functional phylogeny
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CSMET: toolkit for calculations

Nucleotide phylogeny :
F84 model – simplest arbitrary 
stationary distribution

Functional phylogeny
Jukes Cantor model Likelihoods on partial phylogenies
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CSMET : emission probabilities
Emission prob : Prob of block 
surrounding particular aligned 
site
Again, analogous to an HMM, 
with one twist : Zi s not 
observed

Joint Probability for an instantiated block

Conditional probability for the block
Emission probability for the block
(marginalized)
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Chronology : aspects of footprinting

Footprinting + Gibbs Sampling
Motif Sampler+ : 2 species alignment
CompareProspector : Pairwise alignment
PhyloGibbs : Multiple alignment

Footprinting + HMM 
PhyloHMM : Emission of HMM generated by a CTMP phylogenetic tree, no 
tolerance for functional turnover
PhyME
CSMET : Emission of HMM generated by a mixture of CTMP phylogenetic
trees, explicit tolerance for functional turnover

Footprinting + alignment
OrthoMEME
MORPH



Can we do even better ?
Footprinting improves with

More knowledge about the functional component we are searching for : what to 
look for in a single species
More knowledge about how it evolves : what to look for in related species

We know a lot about both aspects for protein coding regions, 
or genes
Initial footprinting algorithms on genes and proteins
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Evolution of codons
Genes evolve at a 
level of higher 
granularity

Nucleotide
Codon

HMM states 
corresponding to 
codons
How to choose priors 
for transition 
probabilities ?
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Courtesy: Bioephemera.com



Incorporating evolutionary 
processes

Selection
Transition 
probabilities can 
reflect 

Synonymous 
transitions more 
frequent than non 
synonymous ones
How much more 
frequent ?
Selection parameters 
estimated from data
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Courtesy: Bioephemera.com

Summary
Use genomic representation of functional component
Use evolutionary models of functional component
Can be used for non-sequence data too :

Gene regulatory network
Expression levels : microarray data
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