UPGMA’s Weakness

o The algorithm produces an ultrametric tree : the
distance from the root to any leaf is the same

* UPGMA assumes a constant molecular
clock: all species represented by the
leaves in the tree are assumed to
accumulate mutations (and thus evolve)
at the same rate. This is a major pitfall
of UPGMA.



UPGMA'’s Weakness: Example

Correct tree UPGMA
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seal sea lion bear raccoon



Clustering algorithm 2 — NJ (neighbor
joining)

o Tree reconstruction for any 3x3 matrix is
straightforward

» We have 3 leaves |, |, k and a center vertex c

Observe D’s, infer d’s
dic + a}c - D/’j
d. + diye = Dy,

a}c 7 dkc — l?jk




NJ -Cont’d

2dic
dic = (Dj; + Dy — Dy)/2

+ Dy = Dj; + Dy

w‘k.cf Similarly,
dic = (Dyi + Dy — Dy)/2
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Trees with > 3 Leaves — NJ Cont’d

An unrooted tree with n leaves has 2n-3 branches

This means fitting a given tree to a distance matrix
D requires solving a system of “n choose 2~
equations with 2n-3 variables

This is not always easy to solve for large n



NJ algorithm

For each tip compute U = Zn: D, / (n-2)

JJ#

Choose i and j for which, D; —u; —u; is smallest

Join nodes i and j to X. Compute branch length
from i to X and j to X

Lx =(D;+u;—u;)/2

Visx _(D +U; _ui)/2
Compute the distance between X an remaining
nodes
= (D, + D, — DU)/Z

X—>k



NJ algorithm — Cont’d

» New node X is treated as a new tip and old nodes |,
| are deleted

» |f more than two nodes remain go back to step-1,
else connect the two nodes (I,m) by D, ,



Maximum likelihood approach

Tree that maximizes the likelihood of the
observed data is optimal.

L = P(data | tree)= P(D|T)=] [ P(D'|T)
=1
Core Assumptions

1. Evolution in different sites is independent
2. Evolution in different lineages is independent

Assumptions (the fine print):

1. Auniform evolutionary process operated across the entire tree.
2. The process of evolution is a homogeneous Markov process.



ML — Felsenstein’s pruning method

{A) {C} {G}
\

w=A/C/T/G

z=A/CITIG




ML - Cont’d

Remember the sankoff algo?

» We maintained a Score for each state corresponding to the Z_ Parent

best parsimony score for everything above a given node node
o Scores were summed for each branch
1) — '(1 '(1 A/TIG/C
Sp(l) _Sp (I)Ieft +Sp (I)right W ‘
Right
» Similarly, we will define Child node

Lp (I) = I—c:1| pl '(i)left'Lc2|p2 '(i)right G‘ ‘ ¢
Total Likelihood Conditional on each parent node
L'P(i)left T Z P(J |i’tparent_i—>left_child_j)Lleft_child (J)

aie i

L'p(i)right = Z P(J |i’tparent_i—>right_chi|d_j)Lright_child (J)

|



ML - Intialization and final score

Total Likelthood Conditional on each parent node
Llp(i)left = Z P Ii’tparent_i—>left_child_j)Lleft_child (J)

J=AICITIG

L lp (i)right = Z P(J II J tparent_i—>right_child_j)Lright_child (J)

T

We need the values at leaves, for each state:

This is obvious, if we have state A at a given leaf, L(A)=1 and the rest,
L(C)/L(T)/L(G)=0 and so on.

Finally,
We need to add up all state values multiplied by their prior probability to be
at the root — the priors are equivalent to the background probability

L(mee for a given site)= 8 2l (])

i e



More “realistic” approaches

o Allowing for rates to differ among sites

o« Must not assume that we know the relative rate
at individual sites

» Must allow some correlation between rates of
evolution at adjacent sites



Rate heterogeneity and gamma distr

o Mutation rates vary considerably

Commonly used: gamma distribution of rates across sequence sites.

The shape of the gamma distribution |

is controlled by a parameter a, and
the distribution’s mean and variance e 200
are 1 and 1/a, respectively. Large . /
values of a (particularly a>1) give a /
bell curve-shaped distribution,
suggesting little or no rate

heterogeneity 004

Freguency

(.2




HMM for site-specific variation rates
using ML

These are the most widely used models allowing rate variation to be
correlated along the sequence.

We assume:
= There are a finite number of rates, m. Rate i is r;.

- There are probabilities p; of a site having rate i.

= A process not visible to us (“hidden") assigns rates to sites. Itis a
Markov process working along the sequence. For example it might
have transition probability Prob (j|¢) of changing to rate j in the
next site, given that it is at rate i in this site.

- The probability of our seeing some data are to be obtained by
summing over all possible combinations of rates, weighting
approproately by their probabilities of occurrence.




Site-specific rates and HMM

Sites

Phylogeny 1 2 3 4 5 6 7 8
CACGACGA

CGTAACGA
— CGAGACGG _
__CAAAACGG

AAGTGCGC

Hidden Markov chain:
Rates 10.0 lll--lllll

Df. 2.0 l-'-*l L] l& ® @
evolution /
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Likelihood calculation using HMM & rates

lets say Ci represent the category that a given site 1 belongs to,

L=P(D|T)=) > ..X{P(Cl,cz..(:n).f[ P(Di|T,Ci)

Cn 1

where P(C1,C2..Cn) = P.,.P.; ¢,-Psica-Pepi oy — Markov Chain Probabilities

L=Y {7,...2 P(C2.Cn|CI)x[ [ P(Di |T,Ci)}

C2 Cn 1

We can build a recursive relation to claculate L

Li::k — P(Dk |T’Ck)z PCk.Ck+1'Li((3JI;1+1

Ck+1



Bootstrapping: Confidence in trees

. Select random columns from a multiple alignment — one column can
then appear several times

. Build a phylogenetic tree based on the random sample from (1)
. Repeat (1), (2) many (say, 1000) times

. Output the tree that is constructed most frequently or calculate a
probability for each sub-tree topology

1234 2214 3344 A
A aggt A ggat A ggtt 66
B aggt B ggat B aatt 66 B
C tggc C ggtc C aatc 66 C
D tcac D cctc D aacc



Phylogenetic software

Software packages

» Freely available
Phylip (widely used)
+ BIioNJ

» PhyML

+ Tree Puzzle

+ MrBayes

« Commercial

» PAUP (widely used)
» MEGA

"
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Phylogenetic servers

http://www.phylogeny.fr/
http://bioweb.pasteur.fr/seqanal/phylogeny/intro-uk.html
http://atgc.lirmm.fr/phyml/
http://phylobench.vital-it.ch/raxml-bb/

http://www.fbsc.ncifcrf.gov/app/htdocs/appdb/drawpage.php?ap
pname=PAUP

http://power.nhri.org.tw/power/home.htm



Multiple sequence alignment using
phylogenetic methods — Clustal-W

human
monkey
mouse
rat
XENOPUS
chicken

Pairwise alignment: calculation of distance matrix

Rooted NJ tree (guide tree) and calculation of sequence weights

U

Progressive alignment following the guide tree

———HMEEPOSDPEVEP-PLaQETFS Z0
———MEEPOSDPSIEP-FPLaQETFS Z0
MTAMEEZOSDISLEL-PLaQETFS 23
———HMEDSOSDMSIEL-PLEQETFS Z0
———HME-FPE5ETGHDP-PLEQETES 19
———MALA-EEMEPLLEPTEVFMDLW- 19

'.'.'




Step 1-Calculation of Distance
Matrix using pairwise alignment

Use the Distance Matrix to create a Guide Tree to
determine the “order” of the sequences.

Hbb-Hu 1

Hbb-Ho 2 A7

Hba-Hu 3 .59 .60

Hba-Ho 4 .59 .59 A3

Myg-Ph 5 77 77 .75 .75

Gib-Pe 6 .81 .82 73 .74 .80

Lgb-Lu 7 .87 .86 .86 .88 93 90

1 2 3 4 5 6 7

D=1-(l) | = #of identical aa’s in pairwise global alignment

D = Difference score total number of aa’s in shortest sequence



Step 2-Create unrooted tree using

neighbor joining
Myg-Ph
Hba-Ho
Hba-Hu
Hbb-Ho .
Hbb-Hu

Lgb-Lu



Step 2-Create Rooted Tree and
calculate weights

Weight
s A 081 Hbb-Hu 0.223 %
\ 084 Hbb-Ho 0.226
.DE1C Alignment
055 Hba-Hu 0.194
-DE‘D 219 B
065 Hba-Ho 0.203
-DﬁE .398 Myg-Ph 0.411
— 389 Gib-Pe 0.398

442 Lgh-Lu 0.442




Multiple Alignment

Step 3-Progressive alignment

HAHU Order of alignment:
- 1 Hba-Hu vs Hba-Ho
B § e W EEEFERAE 2 Hbb-Hu vs Hbb-Ho
et o s T T 3AvsB
4 Myg-Ph vs C
HBHU -
e —— 5 Gib-Pe vs D
8 Dynamic Alignment 6 Lgh-LU VS E
g Programming - e e s HEHU 081
- e wmm JBHO —
296 A Hbb-Hu 0.223
- e—— e e [[RBHTJ ew Ga
: l———. = HRHO i .2 M Hbb-Ho 0.226
I I e s s [JRHO U61C
Dynamic - s e s HAHU
ogramming =————pp> e ey =
[l Bosene RARO g 055 Hba-Hu 0.194
| I s e e =B FL U 12D . B 065
- —— {BHO S Hba-Ho 0.203
- e s s HAHU New Ga
———— o 7 062 298 Myg-Ph 0.411
5 T e i JEEHO
Dynamic HAHU
§ Programming — —  m w HAHO — .389 Gib-Pe 0.398

— essssssssss——s YW HP

efc.

New Ga
. 442 Lgh-Lu 0.442




Multiple Alignment

Step 3-Progressive alignment

HAHU

—_— Scoring during progressive alignment
% _ D Set of 4: 1 eeksavigal
i ogrniing > CrETrE ﬁgg 2 eekaavllal
5 adktnvikaa
HBHU 4 adktnv]faa
i Dynamic Alignment Set of Z: o gewa@lhv
g Programming - — s s HBHU
e A 6 aektkhlrsa
- e w—— R New Gap SCore = M(t,V) j‘_T’“'jrjl_j\-EﬁIEu
- s s s TRHO \
I | - w e s HBHU + M(t, l)*wl*wﬁ
Emm s s [JRHO
I I Dyna,mi? e e PR YRR + M(l;-‘:'r) *WE*WS
I | Programming =P o e s e AHO + ML, 1) "W, "W, divided by 8
i I + Mk, v) "W "W, 7
- e msm HRHO + M(k{l)*WB*wﬁ
- — — — HAHU New Gag + Mk, V) "W, W,
S ESrD & odha 88 + Mk, 1) "W, W,

Dynamic = HAHU

Programming - P —

—— eesssssssssss—s 1YW HE

MYWHP

efc.
New Gap
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Recommended MSA Programs

MUSCLE (fast and accurate)
MAVID (genome-scale alignment)

SAM ( hidden markov, powerful and wide range
of options)





