

Refresher: BLOSUM – Brief Overview
Based purely on counts and alignment
BLOSUM65 < BLOSUM45 in evolutionary distance

1 k i i1 in

ij i

20

j i j i
1 1 1

a set of sequences S = S ...S , where S = s ...s ,
s is the j-th amino acid in sequence S .

The probability of observing each amino acid X =p(X)

p(X) (, S) / (, S)

where (,

k k

i j i

j

c X c X

c X
= = =

= ∑ ∑∑

i

2

) is the count of amino acid in sequence S

(, |) 2 (). () () ,
i j

l m l m l

S X

P X X random p X p X or p X if l m= =

Refresher: In general …log-odds for
alignment

(, |) # of , combinations/all possible pairwise combinations
finally take the log2-odds likelihood ratio and multiply by 2 for easy representation
Note: all possible pairwise combinations=k

l m l mP X X data X X=

{ }

{ }l m

l m

. (1) / 2
 does use pseudo count to accomodate for combinations not observed:

add 1 in numerator, add 210 (20*19+20) in denominator
(,)ie (X , X |)

. (1) / 2 210
(X ,X |).log

(X

l m

n n
Blosum

count X XP data
k n n

P data
P

λ

−

=
− +

l m

.
, X |)

 being a scaling factor for representation

subs matrix
random

λ

=

Example:

Orc: ACAGTGACGCCCCAAACGT
Elf: ACAGTGACGCTACAAACGT
Dwarf: CCTGTGACGTAACAAACGA
Hobbit: CCTGTGACGTAGCAAACGA
Human: CCTGTGACGTAGCAAACGA

The inference of evolutionary relationships
The inference of putative common ancestors
Trees (with branches and leaves!)

What is phylogeny?

Rooted vs Unrooted tree

Rooted tree Unrooted tree

C D B A
B

A

D

C

OTUs – Operational taxonomic units (leaves)
HTUs – Hypothetical taxonomic units (internal nodes)

Types of dendograms – diagramatic
representation of phylogenetic trees

A: phenogram (Overall similarity based)

Important: grouping of OTUs
Meaningless: Vertical separation and
branch lengths

B: a phylogram (similarity based)

important : Branch length and grouping

C: a cladogram (rooted)

Important: grouping
Meaningless: Angles, lengths

D: a radial phylogram

Same as B

A B

C D

Calculating the number of unrooted trees

3

1 2

3 4

1 2

3

How many possibilities are there
for adding leaf 3? 1

How many possibilities are
there for adding leaf 4?

Calculating the number of unrooted trees

How many possibilities are there for leaf 5? For the 5th

leaf, there are 5 possibilities
ie to add the nth leaf, we can add at the immediate leaf
branches+ the number of internal branches

ie (n-1) “terminal-branches” + (n-4) “internal branches”=2n-5

1 2

3

4

5

Total number of trees?

#unrooted trees for n taxa: (2n-5)*(2n-7)*...*3*1 = (2n-5)! / [2n-3*(n-3)!]

#rooted trees for n taxa: (2n-3)*(2n-5)*(2n-7)*...*3 = (2n-3)! / [2n-2*(n-2)!]

1 2

3

4

5

N = 10

#unrooted: 2,027,025
#rooted: 34,459,425

N = 30
#unrooted: 8.7 x 1036

#rooted: 4.95 x 1038

Commonly represented as 2n-5!! or 2n-3!!

Parsimony Approach to
Evolutionary Tree Reconstruction

Assumes observed character differences
resulted from the fewest possible mutations

Seeks the tree that yields lowest possible
parsimony score - sum of cost of all mutations
found in the tree

Example for calculating parsimony score

AGA
GGA

AAA
AAG

AAA AGA

AAA

11

1

Total #substitutions = 3

GGA
AAA

AGA
AAG

AAA AAA

AAA

11 2

Total #substitutions = 4
The left tree is preferred over the right tree.

The total number of changes is called the parsimony score.

AGA GGAAAAAAG

1. A procedure to find the minimum number of
changes needed to explain the data for a given
tree topology, where species are assigned to
leaves.

2. A search through the space of trees.
3. Efficient algorithms for (1). (2) is hard, we can

use heuristic approaches.

Parsimony Based Tree Reconstruction

Sankoff algorithm to count evolutionary
changes in a given tree

Step-1: Define a cost matrix [cij], representing
changes from character state i to state j

Step-2: Starting from the leaves, we work
down at each node, k to calculate a score Sk(i)
for each state, i (i= 1.. 4 for DNA)

Sk is the minimal cost of events for all subtrees above
that node, k

A C G T
A 0 2.5 1 2.5
C 2.5 0 2.5 1
G 1 2.5 0 2.5
T 2.5 1 2.5 0

Sankoff algo – cont’d
Remember for each internal node (“parent”) we
have two sub-nodes (“children”)
So the scores need to be added up on both
branches
First, consider say the left branch, with left child
node at state i and we want to evaluate the
score for parent node at state A.

If S(left child node) is known for each states,
the S(parent node@j) will be

Left
Child node
(C1) Right

Child node

Parent
node

A

A/T/G/C

A C

1

1

1

1

()
()

() | min
()
()

A A C

A T C
p LeftArm

A G C

A C C

c S A
c S T

S A
c S G
c S C

→

→

→

→

+⎧ ⎫
⎪ ⎪+⎪ ⎪= ⎨ ⎬+⎪ ⎪
⎪ ⎪+⎩ ⎭

Sankoff algo – cont’d

Left
Child node
(C1) Right

Child node
(C2)

{ } { }1 2/ / / / / /

() '() '()

min () min ()

p p left p right

i j C i k Cj A T G C k A T G C

LeftBranch RightBranch

S i S i S i

c S j c S k→ →= =

= +

= + + +

Parent
node

A

A/T/G/C

{ }

1

1

1

1

1/ / /

()
()

() | min
()
()

min ()

A A C

A T C
p LeftBranch

A G C

A C C

A j Cj A T G C

LeftBranch

c S A
c S T

S A
c S G
c S C

c S j

→

→

→

→

→=

+⎧ ⎫
⎪ ⎪+⎪ ⎪= ⎨ ⎬+⎪ ⎪
⎪ ⎪+⎩ ⎭

= +

Sankoff algorithm – Example
{ } { }1 2/ / / / / /

() min () min ()p i j C i k Cj A T G C k A T G C

RightArmLeftArm

S i c S j c S k→ →= =
= + + +

A C G T
A 0 2.5 1 2.5

C 2.5 0 2.5 1

G 1 2.5 0 2.5

T 2.5 1 2.5 0

{C} {A} {C} {A} {G}

A C G T
0 ∞ ∞ ∞

A C G T
∞ 0 ∞ ∞

A C G T
1 5 1 5

A C G T
∞ 0 ∞ ∞

A C G T
0 ∞ ∞ ∞

A C G T
∞ ∞ 0 ∞

A C G T
3.5 3.5 3.5 4.5

A C G T
6 6 7 8

Cost matrix

Assigning branch lengths using Least
squares

2

1 1;

() ()

Method Dependent Weight

n n

ij ij ij
i j j i

ij

Q T w D d

w
= = ≠

= −

=

∑ ∑
Observed distances denoted by Dij and the
“real branch” lengths to be predicted as dij

We have an observed matrix of Distances between sequences from all
possible pair-wise comparisons – Remember D and K in JC model?

C

A B

D

E
0.05

0.10

0.07
0.03

0.05

0.08

0.06

A B C D E
A 0 0.23 0.16 0.20 0.17
B 0.23 0 0.23 0.17 0.24
C 0.16 0.23 0 0.15 0.11
D 0.20 0.17 0.15 0 0.21
E 0.17 0.24 0.11 0.21 0

Each tree has branch lengths from which
“predicted” set of distances can be computed:
d(i,j) (small d, denotes the distance of the
branches, unlike the observed pairwise distances
D).

Human

Chimp

Gorilla
0.3 0.41

0.25

d(Human,Chimp) = 0.55

d(Human,Gorilla) = 0.71

d(Chimp, Gorilla) = 0.66

Motivation: From a distance table to a tree

The question is can we find branch lengths, so
that the d’s are equal to the D’s?

Human

Chimp

Gorilla
X Y

Z

D(Human,Chimp) = 0.3 =X + Z

D(Human,Gorilla) = 0.4 = X + Y

D(Chimp, Gorilla) = 0.5 = Y + Z

Motivation: From a distance table to a tree

X+Z = 0.3

X+Y = 0.4

Y+Z = 0.5
Y-Z = 0.1

Y+Z = 0.5

Y = 0.3

Z = 0.2

X = 0.1

A

B

D

X Y

Z

5 Variables,

6 Equations,

It might be that there’s no
solutionC

W

V

Is there always a solution??

2 2 3 for N > 3NC N> −

Least squares – Cont’d

,ij ij k k
k

d x v= ∑

12 1 2 3 4 5 6 7

13 1 2 3 4 5 6 7

45 1 2 3 4 5 6 7

1 1 0 0 0 0 1
1 0 1 0 0 1 0

...
0 0 0 1 1 1 1

d v v v v v v v
d v v v v v v v

d v v v v v v v

= + + + + + +
= + + + + + +

= + + + + + +

introduce an indicator variable
, which is 1 if branch lies in
the path from species i to species
j and 0 otherwise

,ij kx
kv

A B

C
D

E
v7

v2

v4v6

v3

v1
v5

LS- Cont’d
2

1 1;

2

1 1;

when the weights are 1.0 () ()

()

n n

ij ij
i j j i

n n

ij ijk k
i j j i k

Q T D d

D x v

= = ≠

= = ≠

= −

= −

∑ ∑

∑ ∑ ∑ , ,
1 1;;

2 () 0
n n

ij k ij ij k k
i j j i kk

dQ x D x v
dv = = ≠

= − − =∑ ∑ ∑

()T TX D X X v=
1()T Tv X X X D−=

X
No of rows=n(n-1)/2
No of columns=2n-3 (eq to k)

LS - example

A

B

C
v2

v1
v3

A B C
A 0 10 12
B 10 0 8

C 12 8 0

1 1 0
1 0 1
0 1 1

X
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

2 1 1
1 2 1
1 1 2

TX X
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

1

3 1 1
4 4 4
1 3 1()
4 4 4
1 1 3
4 4 4

TX X −

⎛ ⎞− −⎜ ⎟
⎜ ⎟
⎜ ⎟= − −
⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎝ ⎠

1() ...T Tv X X X D−= =

10
12
8

D
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

When we have weighted LS, then previous equations
can be written:

where W is a diagonal matrix with distance weights
on main diagonal.

()T TX WD X WX v=

1()T Tv X WX X WD−=

Evaluating a tree is good but how to build
the tree? − Fast clustering-based
algorithm for tree construction

UPGMA (unweighted pair group method using arithmetic averages)

Given two disjoint clusters Ci, Cj of sequences,

1
dij = ––––––––– Σ{p ∈Ci, q ∈Cj}dpq

|Ci| × |Cj|

Note that if Ck = Ci ∪ Cj, then distance to another cluster Cl is:

dil |Ci| + djl |Cj|
dkl = –––––––––––––– = UPGMA distance

|Ci| + |Cj| () ()((),) () (,) () (,)
() () () ()

n i n jD ij l D i l D j l
n i n j n i n j

= +
+ +

UPGMA algorithm

• Find i and j with smallest Dij

• Create new group X by joining nodes i & j

• Compute distances between X (new
member) and others (old)

• Place node X at Dij/2

• Delete i and j; replace with X in D-matrix

The distance table

dog bear raccon weasel seal sea
lion

cat chimp

dog 0 32 48 51 50 48 98 148
bear 0 26 34 29 33 84 136
raccon 0 42 44 44 92 152
weasel 0 44 38 86 142
seal 0 24 89 142
sea lion 0 90 142
cat 0 148
chimp 0

seal sea lion

We call the parent node of seal and sea lion “ss”.

12 12

Distance between these two taxa was 24, so each branch
has a length of 12.

ss

Removing the seal and sea-lion rows and columns,
and adding the ss row and columns

dog bear raccon weasel ss cat chimp

dog 0 32 48 51 ? 98 148
bear 0 26 34 ? 84 136
raccon 0 42 ? 92 152
weasel 0 ? 86 142
ss 0 89 142
cat 0 148
chimp 0

Computing dog-ss distance

dog bear raccon weasel seal sea
lion

cat chimp

dog 0 32 48 51 50 48 98 148

),()
)()(

)((),()
)()(

)(()),((kjD
jnin

jnkiD
jnin

inkijD
+

+
+

=

Here, i=seal, j=sea lion, k = dog.

n(i)=n(j)=1.

D(ss,dog) = 0.5D(sea lion,dog) + 0.5D(seal,dog) =
49.

The new table. Starting second iteration…

dog bear raccon weasel ss cat chimp

dog 0 32 48 51 49 98 148
bear 0 26 34 31 84 136
raccon 0 42 44 92 152
weasel 0 41 86 142
ss 0 89 142
cat 0 148
chimp 0

Inferring tree

We call the parent node of bear and raccoon “br”.

Distance between bear and raccoon was 26, so each branch
has a length of 13.

seal sea lion

12 12

ss

bear raccoon

13 13

br

Computing br-ss distance

dog bear raccon weasel ss cat chimp

ss 49 31 44 41 0 89.5 142

Here, i=raccoon, j=bear, k = ss.

n(i)=n(j)=1. D(br,ss) =
0.5D(bear,ss)+0.5D(raccoon,ss)=37.5.

),()
)()(

)((),()
)()(

)(()),((kjD
jnin

jnkiD
jnin

inkijD
+

+
+

=

The new table. Starting next iteration…

dog br weasel ss cat chimp

dog 0 40 51 49 98 148
br 0 38 37.5 88 144
weasel 0 41 86 142
ss 0 89 142
cat 0 148
chimp 0

Inferring tree

Distance between br and ss was 37.5, so each branch has a length of
18.75. But this is the distance from brss to the leaves. The distance brss
to ss is 18.75-12=6.75. The distance between brss to br is 18.75-13=5.75

seal sea lion

12 12

ss

bear raccoon

6.75

13

brss

br

5.75

13

And so on…..

UPGMA’s Weakness

The algorithm produces an ultrametric tree : the
distance from the root to any leaf is the same

• UPGMA assumes a constant molecular
clock: all species represented by the
leaves in the tree are assumed to
accumulate mutations (and thus evolve)
at the same rate. This is a major pitfall
of UPGMA.

UPGMA’s Weakness: Example

2
3

4
1 1 4 32

Correct tree UPGMA

seal sea lion

12 12

ss

bear raccoon

6.75

13

brss

br

5.75

13

Clustering algorithm 2 – NJ (neighbor
joining)

Tree reconstruction for any 3x3 matrix is
straightforward
We have 3 leaves i, j, k and a center vertex c

Observe D’s, infer d’s

dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk

NJ –Cont’d

2dic + Djk = Dij + Dik

dic = (Dij + Dik – Djk)/2

Similarly,
djc = (Dij + Djk – Dik)/2
dkc = (Dki + Dkj – Dij)/2

Trees with > 3 Leaves – NJ Cont’d

An unrooted tree with n leaves has 2n-3 branches

This means fitting a given tree to a distance matrix
D requires solving a system of “n choose 2”
equations with 2n-3 variables

This is not always easy to solve for large n

NJ algorithm

For each tip compute

Choose i and j for which, is smallest

Join nodes i and j to X. Compute branch length fro
i to X and j to X

Compute the distance between X an remaining
nodes

:
/ (2)

n

i ij
j j i

u D n
≠

= −∑

ij i jD u u− −

() 2

() 2
i X ij i j

j X ij j i

v D u u

v D u u
→

→

= + −

= + −

() 2X k ik jk ijv D D D→ = + −

NJ algorithm – Cont’d

New node X is treated as a new tip and old nodes I,
j are deleted

If more than two nodes remain go back to step-1,
else connect the two nodes (l,m) by Dl,m

Bootstrapping to get the best trees

Main outline of algorithm

1. Select random columns from a multiple alignment – one column can
then appear several times

2. Build a phylogenetic tree based on the random sample from (1)

3. Repeat (1), (2) many (say, 1000) times

4. Output the tree that is constructed most frequently or calculate a
probability for each sub-tree topology

Pairwise alignment: calculation of distance matrix

Rooted NJ tree (guide tree) and calculation of sequence weights

Progressive alignment following the guide tree

Multiple sequence alignment using
phylogenetic methods − Clustal-W

Step 1-Calculation of Distance
Matrix using pairwise alignment

Use the Distance Matrix to create a Guide Tree to
determine the “order” of the sequences.

I =D = 1 – (I)
D = Difference score

of identical aa’s in pairwise global alignment
total number of aa’s in shortest sequence

Hbb-Hu 1 -

Hbb-Ho 2 .17 -

Hba-Hu 3 .59 .60 -

Hba-Ho 4 .59 .59 .13 -

Myg-Ph 5 .77 .77 .75 .75 -

Gib-Pe 6 .81 .82 .73 .74 .80 -

Lgb-Lu 7 .87 .86 .86 .88 .93 .90 -

1 2 3 4 5 6 7

Step 2-Create Rooted Tree and
calculate weights

Weight

Alignment
Order of alignment:
1 Hba-Hu vs Hba-Ho
2 Hbb-Hu vs Hbb-Ho
3 A vs B
4 Myg-Ph vs C
5 Gib-Pe vs D
6 Lgh-Lu vs E

Neighbor joining algorithm – simple, to be discussed later

Step 3-Progressive alignment

Step 3-Progressive alignment
Scoring during progressive alignment

Recommended MSA Programs

MUSCLE (fast and accurate)
MAVID (genome-scale alignment)
SAM (hidden markov, powerful and wide range
of options)

	Slide Number 1
	Refresher: BLOSUM – Brief Overview
	Refresher: In general …log-odds for alignment
	Slide Number 4
	Rooted vs Unrooted tree
	Types of dendograms – diagramatic representation of phylogenetic trees
	Calculating the number of unrooted trees
	Calculating the number of unrooted trees
	Total number of trees?
	Parsimony Approach to Evolutionary Tree Reconstruction
	Example for calculating parsimony score
	Slide Number 12
	Sankoff algorithm to count evolutionary changes in a given tree
	Sankoff algo – cont’d
	Sankoff algo – cont’d
	Sankoff algorithm – Example
	Assigning branch lengths using Least squares
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Least squares – Cont’d
	LS- Cont’d
	LS - example
	Slide Number 24
	Evaluating a tree is good but how to build the tree?  Fast clustering-based algorithm for tree construction
	UPGMA algorithm
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	UPGMA’s Weakness
	UPGMA’s Weakness: Example
	Clustering algorithm 2 – NJ (neighbor joining)
	NJ –Cont’d
	Slide Number 41
	NJ algorithm
	NJ algorithm – Cont’d
	Bootstrapping to get the best trees
	Slide Number 45
	Step 1-Calculation of Distance Matrix using pairwise alignment
	Step 2-Create Rooted Tree and calculate weights
	Step 3-Progressive alignment
	Step 3-Progressive alignment
	Recommended MSA Programs
	Slide Number 53

