


Refresher: BLOSUM – Brief Overview
Based purely on counts and alignment
BLOSUM65 < BLOSUM45 in evolutionary distance
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Refresher: In general …log-odds for 
alignment

( , | ) # of ,  combinations/all possible pairwise combinations 
finally take the log2-odds likelihood ratio and multiply by 2 for easy representation
Note: all possible pairwise combinations=k
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Example:

Orc: ACAGTGACGCCCCAAACGT
Elf: ACAGTGACGCTACAAACGT
Dwarf: CCTGTGACGTAACAAACGA
Hobbit: CCTGTGACGTAGCAAACGA
Human: CCTGTGACGTAGCAAACGA

The inference of evolutionary relationships
The inference of putative common ancestors
Trees (with branches and leaves!)

What is phylogeny?



Rooted vs Unrooted tree

Rooted tree Unrooted tree

C         D        B           A
B

A

D

C

OTUs – Operational taxonomic units (leaves)
HTUs – Hypothetical taxonomic units (internal nodes)



Types of dendograms – diagramatic
representation of phylogenetic trees

A: phenogram (Overall similarity based)

Important: grouping of OTUs 
Meaningless: Vertical separation and 
branch lengths

B: a phylogram (similarity based) 

important : Branch length and grouping

C: a cladogram (rooted)

Important: grouping
Meaningless: Angles, lengths

D: a radial phylogram

Same as B

A B

C D



Calculating the number of unrooted trees

3

1 2

3 4

1 2

3

How many possibilities are there 
for adding leaf 3? 1

How many possibilities are 
there for adding leaf 4? 



Calculating the number of unrooted trees

How many possibilities are there for leaf 5? For the 5th

leaf, there are 5 possibilities
ie to add the nth leaf, we can add at the immediate leaf 
branches+ the number of internal branches

ie (n-1) “terminal-branches” + (n-4) “internal branches”=2n-5

1 2

3

4

5



Total number of trees?

#unrooted trees for n taxa: (2n-5)*(2n-7)*...*3*1 = (2n-5)! / [2n-3*(n-3)!] 

#rooted trees for n taxa: (2n-3)*(2n-5)*(2n-7)*...*3 = (2n-3)! / [2n-2*(n-2)!]

1 2

3

4

5

N = 10

#unrooted:  2,027,025
#rooted:    34,459,425

N = 30
#unrooted:     8.7 x 1036

#rooted:       4.95 x 1038

Commonly represented as 2n-5!! or 2n-3!!



Parsimony Approach to 
Evolutionary Tree Reconstruction

Assumes observed character differences 
resulted from the fewest possible mutations

Seeks the tree that yields lowest possible 
parsimony score - sum of cost of all mutations 
found in the tree



Example for calculating parsimony score

AGA
GGA

AAA
AAG

AAA AGA

AAA

11

1

Total #substitutions = 3

GGA
AAA

AGA
AAG

AAA AAA

AAA

11 2

Total #substitutions = 4
The left tree is preferred over the right tree.

The total number of changes is called the parsimony score.

AGA GGAAAAAAG



1. A procedure to find the minimum number of 
changes needed to explain the data for a given 
tree topology, where species are assigned to 
leaves.

2. A search through the space of trees.
3. Efficient algorithms for (1).  (2) is hard, we can 

use heuristic approaches. 

Parsimony Based Tree Reconstruction



Sankoff algorithm to count evolutionary 
changes in a given tree

Step-1: Define a cost matrix [cij], representing 
changes from character state i to state j 

Step-2: Starting from the leaves, we work 
down at each node, k to calculate a score Sk(i) 
for each state, i (i= 1.. 4 for DNA)

Sk is the minimal cost of events for all subtrees above 
that node, k

A C G T
A 0 2.5 1 2.5
C 2.5 0 2.5 1
G 1 2.5 0 2.5
T 2.5 1 2.5 0



Sankoff algo – cont’d
Remember for each internal node (“parent”) we 
have two sub-nodes (“children”) 
So the scores need to be added up on both 
branches
First, consider say the left branch, with left child 
node at state i and we want to evaluate the 
score for parent node at state A.

If S(left child node) is known for each states, 
the S(parent node@j) will be
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Sankoff algo – cont’d
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Sankoff algorithm – Example
{ } { }1 2/ / / / / /

( ) min ( ) min ( )p i j C i k Cj A T G C k A T G C

RightArmLeftArm

S i c S j c S k→ →= =
= + + +

A C G T
A 0 2.5 1 2.5

C 2.5 0 2.5 1

G 1 2.5 0 2.5

T 2.5 1 2.5 0

{C}          {A}                   {C}            {A}                        {G}

A C G T
0 ∞ ∞ ∞

A C G T
∞ 0 ∞ ∞

A C G T
1 5 1 5

A C G T
∞ 0 ∞ ∞

A C G T
0 ∞ ∞ ∞

A C G T
∞ ∞ 0 ∞

A C G T
3.5 3.5 3.5 4.5

A C G T
6 6 7 8

Cost matrix



Assigning branch lengths using Least 
squares

2

1 1;
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Observed distances denoted by Dij and the 
“real branch” lengths to be predicted as dij

We have an observed matrix of Distances between sequences from all 
possible pair-wise comparisons – Remember D and K in JC model? 

C

A B

D

E
0.05

0.10

0.07
0.03

0.05

0.08

0.06

A B C D E
A 0 0.23 0.16 0.20 0.17
B 0.23 0 0.23 0.17 0.24
C 0.16 0.23 0 0.15 0.11
D 0.20 0.17 0.15 0 0.21
E 0.17 0.24 0.11 0.21 0



Each tree has branch lengths from which 
“predicted” set of distances can be computed: 
d(i,j) (small d, denotes the distance of the 
branches, unlike the observed pairwise distances 
D).

Human

Chimp

Gorilla
0.3 0.41

0.25

d(Human,Chimp) = 0.55

d(Human,Gorilla) = 0.71

d(Chimp, Gorilla) = 0.66

Motivation: From a distance table to a tree 



The question is can we find branch lengths, so 
that the d’s are equal to the D’s?

Human

Chimp

Gorilla
X Y

Z

D(Human,Chimp) = 0.3 =X + Z

D(Human,Gorilla) = 0.4 = X + Y

D(Chimp, Gorilla) = 0.5 = Y + Z

Motivation: From a distance table to a tree 

X+Z = 0.3

X+Y = 0.4

Y+Z = 0.5
Y-Z = 0.1

Y+Z = 0.5

Y = 0.3

Z = 0.2

X = 0.1



A

B

D

X Y

Z

5 Variables,

6 Equations,

It might be that there’s no 
solutionC

W

V

Is there always a solution?? 

2 2 3 for N > 3NC N> −



Least squares – Cont’d
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k
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introduce an indicator variable 
, which is 1 if branch        lies in 
the path from species i to species 
j and 0 otherwise
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LS- Cont’d
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LS - example 

A

B

C
v2
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A B C
A 0 10 12
B 10 0 8

C 12 8 0
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When we have weighted LS, then previous equations
can be written:

where W is a diagonal matrix with distance weights 
on main diagonal.

( )T TX WD X WX v=

1( )T Tv X WX X WD−=



Evaluating a tree is good but how to build 
the tree? − Fast clustering-based 
algorithm for tree construction

UPGMA (unweighted pair group method using arithmetic averages)

Given two disjoint clusters Ci, Cj of sequences,

1
dij = ––––––––– Σ{p ∈Ci, q ∈Cj}dpq

|Ci| × |Cj|

Note that if Ck = Ci ∪ Cj, then distance to another cluster Cl is:

dil |Ci| + djl |Cj|
dkl = –––––––––––––– = UPGMA distance

|Ci| + |Cj| ( ) ( )(( ), ) ( ) ( , ) ( ) ( , )
( ) ( ) ( ) ( )

n i n jD ij l D i l D j l
n i n j n i n j

= +
+ +



UPGMA algorithm

• Find i and j with smallest Dij

• Create new group X by joining nodes i & j

• Compute distances between  X (new 
member) and others (old)

• Place node X  at Dij/2

• Delete i and j; replace with X in D-matrix



The distance table

dog bear raccon weasel seal sea 
lion

cat chimp

dog 0 32 48 51 50 48 98 148
bear 0 26 34 29 33 84 136
raccon 0 42 44 44 92 152
weasel 0 44 38 86 142
seal 0 24 89 142
sea lion 0 90 142
cat 0 148
chimp 0



seal sea lion

We call the parent node of seal and sea lion “ss”.

12 12

Distance between these two taxa was 24, so each branch 
has a length of 12.

ss



Removing the seal and sea-lion rows and columns,
and adding the ss row and columns

dog bear raccon weasel ss cat chimp

dog 0 32 48 51 ? 98 148
bear 0 26 34 ? 84 136
raccon 0 42 ? 92 152
weasel 0 ? 86 142
ss 0 89 142
cat 0 148
chimp 0



Computing dog-ss distance

dog bear raccon weasel seal sea 
lion

cat chimp

dog 0 32 48 51 50 48 98 148

),()
)()(

)((),()
)()(

)(()),(( kjD
jnin

jnkiD
jnin

inkijD
+

+
+

=

Here, i=seal, j=sea lion, k = dog.

n(i)=n(j)=1. 

D(ss,dog) = 0.5D(sea lion,dog) + 0.5D(seal,dog) = 
49.



The new table. Starting second iteration…

dog bear raccon weasel ss cat chimp

dog 0 32 48 51 49 98 148
bear 0 26 34 31 84 136
raccon 0 42 44 92 152
weasel 0 41 86 142
ss 0 89 142
cat 0 148
chimp 0



Inferring tree

We call the parent node of bear and raccoon “br”.

Distance between bear and raccoon was 26, so each branch 
has a length of 13.

seal sea lion

12 12

ss

bear raccoon

13 13

br



Computing br-ss distance

dog bear raccon weasel ss cat chimp

ss 49 31 44 41 0 89.5 142

Here, i=raccoon, j=bear, k = ss.

n(i)=n(j)=1. D(br,ss) = 
0.5D(bear,ss)+0.5D(raccoon,ss)=37.5.
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The new table. Starting next iteration…

dog br weasel ss cat chimp

dog 0 40 51 49 98 148
br 0 38 37.5 88 144
weasel 0 41 86 142
ss 0 89 142
cat 0 148
chimp 0



Inferring tree

Distance between br and ss was 37.5, so each branch has a length of 
18.75. But this is the distance from brss to the leaves. The distance brss
to ss is 18.75-12=6.75. The distance between brss to br is 18.75-13=5.75

seal sea lion

12 12

ss

bear raccoon

6.75

13

brss

br

5.75

13

And so on…..



UPGMA’s Weakness

The algorithm produces an ultrametric tree : the 
distance from the root to any leaf is the same

• UPGMA assumes a constant molecular 
clock: all species represented by the 
leaves in the tree are assumed to 
accumulate mutations (and thus evolve) 
at the same rate.  This is a major pitfall 
of UPGMA.



UPGMA’s Weakness: Example

2
3

4
1 1 4 32

Correct tree UPGMA

seal sea lion

12 12

ss

bear raccoon

6.75

13

brss

br

5.75

13



Clustering algorithm 2 – NJ (neighbor 
joining) 

Tree reconstruction for any 3x3 matrix is 
straightforward
We have 3 leaves i, j, k and a center vertex c

Observe D’s, infer d’s

dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk



NJ –Cont’d

2dic +    Djk = Dij + Dik

dic = (Dij + Dik – Djk)/2

Similarly,
djc = (Dij + Djk – Dik)/2
dkc = (Dki + Dkj – Dij)/2



Trees with > 3 Leaves – NJ Cont’d

An unrooted tree with n leaves has 2n-3 branches

This means fitting a given tree to a distance matrix 
D requires solving a system of “n choose 2” 
equations with  2n-3 variables

This is not always easy to solve for large n



NJ algorithm

For each tip compute

Choose i and j for which,                   is smallest

Join nodes i and j to X. Compute branch length fro 
i to X and j to X

Compute the distance between X an remaining 
nodes

:
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u D n
≠
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ij i jD u u− −
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v D u u
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→

→

= + −

= + −

( ) 2X k ik jk ijv D D D→ = + −



NJ algorithm – Cont’d

New node X is treated as a new tip and old nodes I, 
j are deleted

If more than two nodes remain go back to step-1, 
else connect the two nodes (l,m) by Dl,m



Bootstrapping to get the best trees

Main outline of algorithm

1. Select random columns from a multiple alignment – one column can 
then appear several times

2. Build a phylogenetic tree based on the random sample from (1)

3. Repeat (1), (2) many (say, 1000) times

4. Output the tree that is constructed most frequently or calculate a 
probability for each sub-tree topology



Pairwise alignment: calculation of distance matrix

Rooted NJ tree (guide tree) and calculation of sequence weights

Progressive alignment following the guide tree

Multiple sequence alignment using 
phylogenetic methods − Clustal-W



Step 1-Calculation of Distance 
Matrix using pairwise alignment

Use the Distance Matrix to create a Guide Tree to
determine the “order” of the sequences.

I =D = 1 – (I) 
D = Difference score

# of identical aa’s in pairwise global alignment
total number of aa’s in shortest sequence

Hbb-Hu 1 -

Hbb-Ho 2 .17 -

Hba-Hu 3 .59 .60 -

Hba-Ho 4 .59 .59 .13 -

Myg-Ph 5 .77 .77 .75 .75 -

Gib-Pe 6 .81 .82 .73 .74 .80 -

Lgb-Lu 7 .87 .86 .86 .88 .93 .90 -

1 2 3 4 5 6 7



Step 2-Create Rooted Tree and 
calculate weights

Weight

Alignment
Order of alignment:
1 Hba-Hu vs Hba-Ho
2 Hbb-Hu vs Hbb-Ho
3 A vs B
4 Myg-Ph vs C
5 Gib-Pe vs D
6 Lgh-Lu vs E

Neighbor joining algorithm – simple, to be discussed later



Step 3-Progressive alignment



Step 3-Progressive alignment
Scoring during progressive alignment



Recommended MSA Programs

MUSCLE (fast and accurate)
MAVID (genome-scale alignment)
SAM ( hidden markov, powerful and wide range 
of options)
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