

Refresher: BLOSUM – Brief Overview

- Based purely on counts and alignment
- BLOSUM65 < BLOSUM45 in evolutionary distance

a set of sequences $S = S_1 \dots S_k$, where $S_i = s_{i1} \dots s_{in}$,
 s_{ij} is the j -th amino acid in sequence S_i .

The probability of observing each amino acid $X = p(X)$

$$p(X) = \sum_{i=1}^k c(X_j, S_i) / \sum_{j=1}^{20} \sum_{i=1}^k c(X_j, S_i)$$

where $c(X_j, S_i)$ is the count of amino acid X_j in sequence S_i

$$P(X_l, X_m \mid \text{random}) = 2p(X_l).p(X_m) \text{ or } p(X_l)^2, \text{ if } l = m$$

Refresher: In general ...log-odds for alignment

$P(X_l, X_m | data) = \# \text{ of } X_l, X_m \text{ combinations} / \text{all possible pairwise combinations}$
finally take the log2-odds likelihood ratio and multiply by 2 for easy representation
Note: all possible pairwise combinations = $k \cdot \{n(n-1) / 2\}$

Blosum does use pseudo count to accommodate for combinations not observed:
add 1 in numerator, add 210 (20*19+20) in denominator

$$\text{ie } P(X_l, X_m | data) = \frac{\text{count}(X_l, X_m)}{k \cdot \{n(n-1) / 2\} + 210}$$

$$\lambda \cdot \log \frac{P(X_l, X_m | data)}{P(X_l, X_m | random)} = \text{subs.matrix}$$

λ being a scaling factor for representation

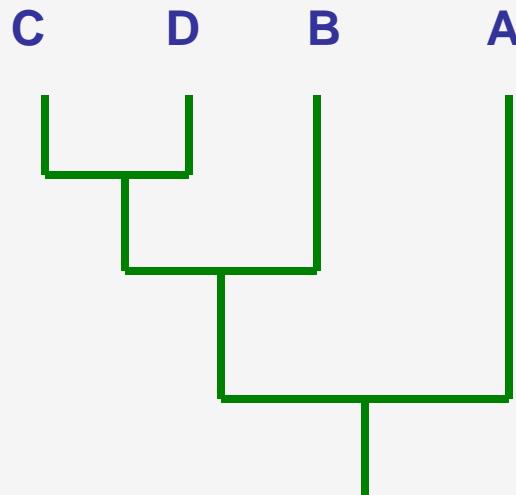
What is phylogeny?

- The inference of evolutionary relationships
- The inference of putative common ancestors
- Trees (with branches and leaves!)

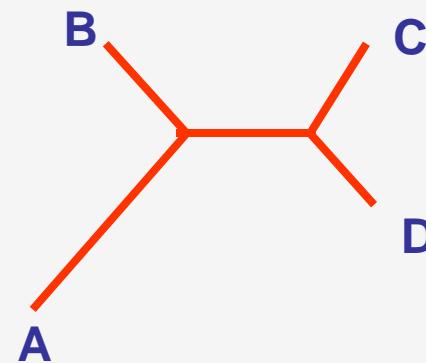
Example:

Rooted vs Unrooted tree

Rooted tree



Unrooted tree

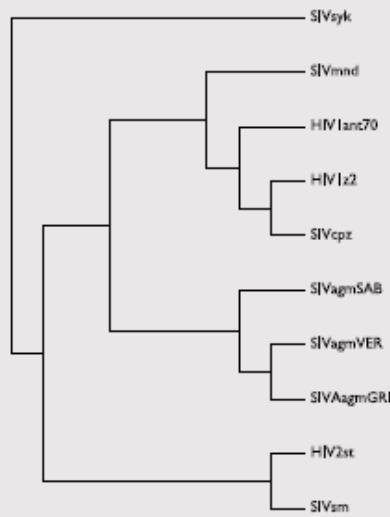


OTUs – Operational taxonomic units (leaves)

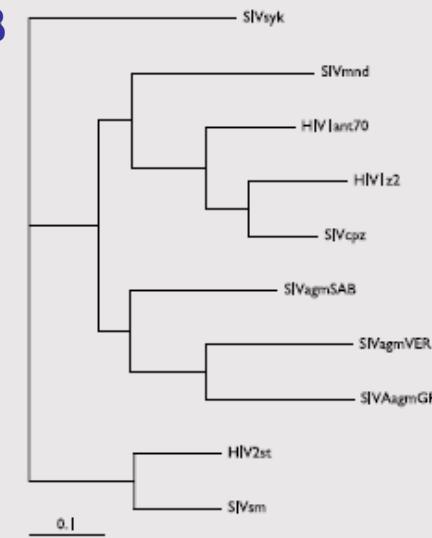
HTUs – Hypothetical taxonomic units (internal nodes)

Types of dendograms – diagrammatic representation of phylogenetic trees

A



B



A: phenogram (Overall similarity based)

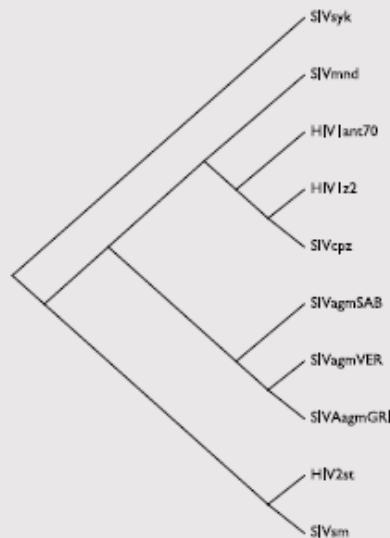
Important: grouping of OTUs

Meaningless: Vertical separation and branch lengths

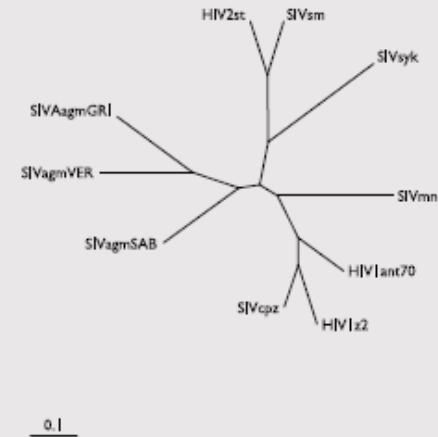
B: a phylogram (similarity based)

important : Branch length and grouping

C



D



C: a cladogram (rooted)

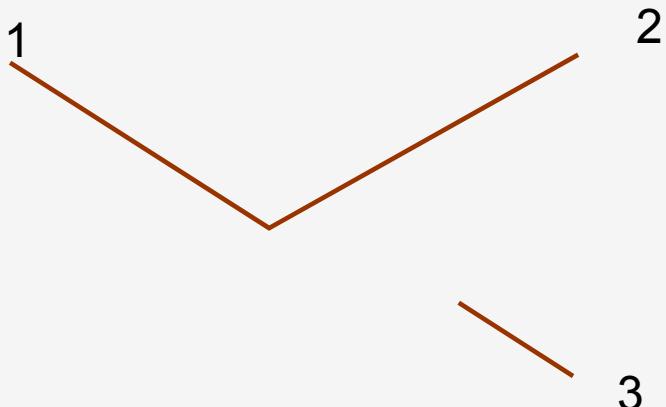
Important: grouping

Meaningless: Angles, lengths

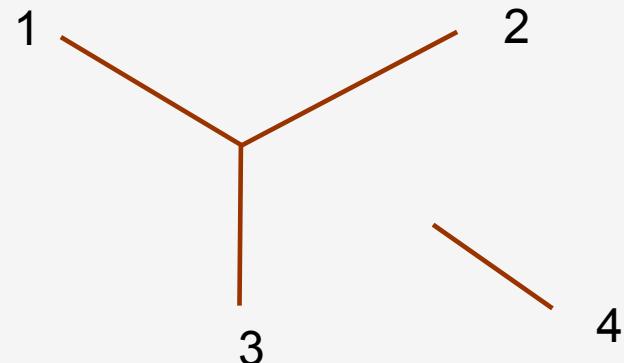
D: a radial phylogram

Same as B

Calculating the number of unrooted trees



How many possibilities are there for adding leaf 3?

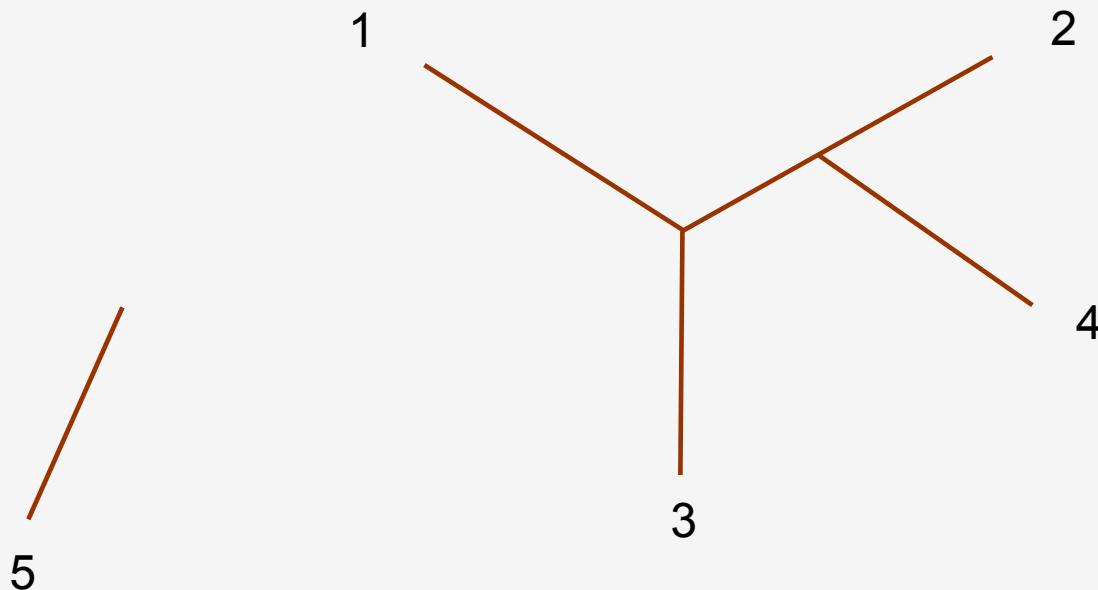


How many possibilities are there for adding leaf 4?

• 1

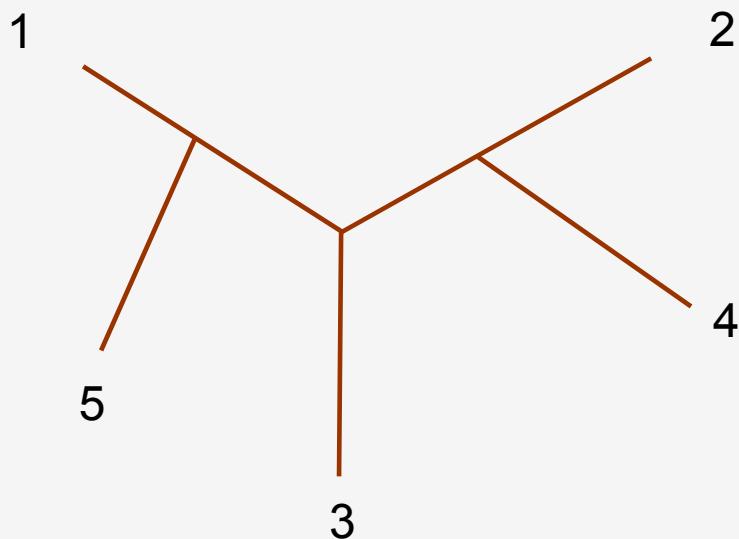
• 3

Calculating the number of unrooted trees



- How many possibilities are there for leaf 5? For the 5th leaf, there are 5 possibilities
- *ie* to add the nth leaf, we can add at the immediate leaf branches+ the number of internal branches
ie $(n-1)$ “terminal-branches” + $(n-4)$ “internal branches” = $2n-5$

Total number of trees?



N = 10

#unrooted: 2,027,025

#rooted: 34,459,425

N = 30

#unrooted: 8.7×10^{36}

#rooted: 4.95×10^{38}

- #unrooted trees for n taxa: $(2n-5)*(2n-7)*\dots*3*1 = (2n-5)! / [2n-3*(n-3)!]$
- #rooted trees for n taxa: $(2n-3)*(2n-5)*(2n-7)*\dots*3 = (2n-3)! / [2n-2*(n-2)!]$

Commonly represented as $2n-5!!$ or $2n-3!!$

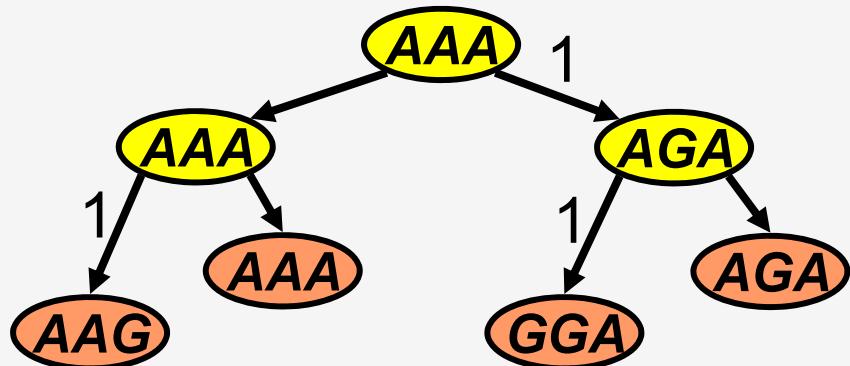
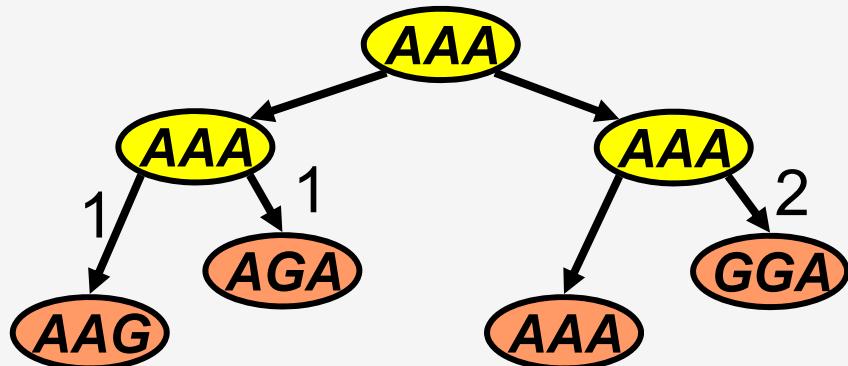
Parsimony Approach to Evolutionary Tree Reconstruction

Parsimony \equiv frugality, “less is better”

- Assumes observed character differences resulted from the **fewest** possible mutations
- Seeks the tree that yields **lowest** possible **parsimony score** - sum of cost of all mutations found in the tree

Example for calculating parsimony score

AAG **AAA** **AGA** **GGA**



Total #substitutions = 3

Total #substitutions = 4

The left tree is preferred over the right tree.

The total number of changes is called the **parsimony score**.

Parsimony Based Tree Reconstruction

1. A procedure to find the minimum number of changes needed to explain the data for a *given tree topology, where species are assigned to leaves.*
2. A search through the space of trees.
3. Efficient algorithms for (1). (2) is hard, we can use heuristic approaches.

Sankoff algorithm to count evolutionary changes in a given tree

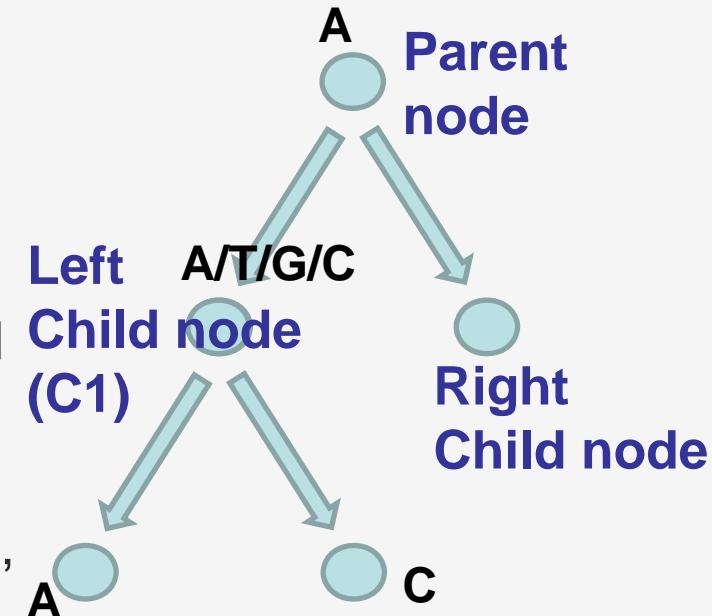
- Step-1: Define a cost matrix $[c_{ij}]$, representing changes from character state i to state j

	A	C	G	T
A	0	2.5	1	2.5
C	2.5	0	2.5	1
G	1	2.5	0	2.5
T	2.5	1	2.5	0

- Step-2: Starting from the leaves, we work down at each node, k to calculate a score $S_k(i)$ for each state, i ($i = 1..4$ for DNA)
 - S_k is the minimal cost of events for all subtrees above that node, k

Sankoff algo – cont'd

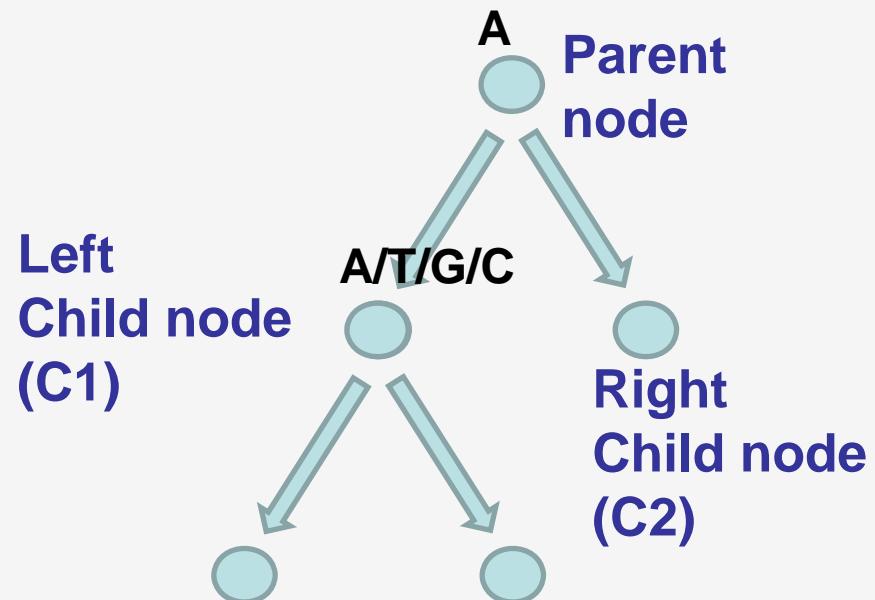
- Remember for each internal node (“parent”) we have two sub-nodes (“children”)
- So the scores need to be added up on both branches
- First, consider say the left branch, with left child node at state i and we want to evaluate the score for parent node at state A .
 - If $S(\text{left child node})$ is known for each states, the $S(\text{parent node}@j)$ will be



$$S_p(A) |_{LeftArm} = \min \left\{ \begin{array}{l} c_{A \rightarrow A} + S_{C1}(A) \\ c_{A \rightarrow T} + S_{C1}(T) \\ c_{A \rightarrow G} + S_{C1}(G) \\ c_{A \rightarrow C} + S_{C1}(C) \end{array} \right\}$$

Sankoff algo – cont'd

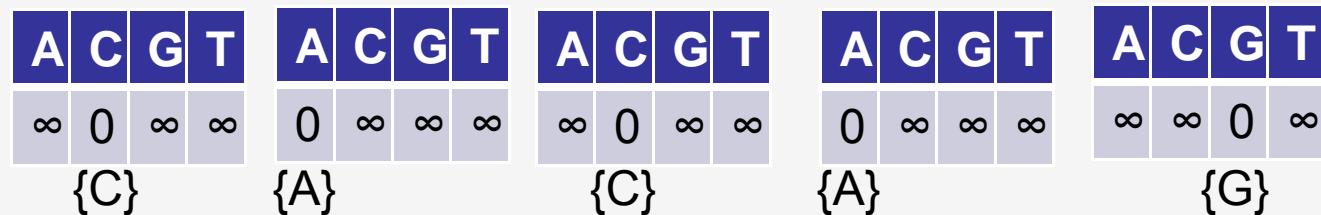
$$\begin{aligned}
 S_p(A)|_{LeftBranch} &= \min \left\{ \begin{array}{l} c_{A \rightarrow A} + S_{C1}(A) \\ c_{A \rightarrow T} + S_{C1}(T) \\ c_{A \rightarrow G} + S_{C1}(G) \\ c_{A \rightarrow C} + S_{C1}(C) \end{array} \right\} \\
 &= \underbrace{\min_{j=A/T/G/C} \left\{ c_{A \rightarrow j} + S_{C1}(j) \right\}}_{LeftBranch}
 \end{aligned}$$



$$\begin{aligned}
 S_p(i) &= S_p'(i)_{left} + S_p'(i)_{right} \\
 &= \underbrace{\min_{j=A/T/G/C} \left\{ c_{i \rightarrow j} + S_{C1}(j) \right\}}_{LeftBranch} + \underbrace{\min_{k=A/T/G/C} \left\{ c_{i \rightarrow k} + S_{C2}(k) \right\}}_{RightBranch}
 \end{aligned}$$

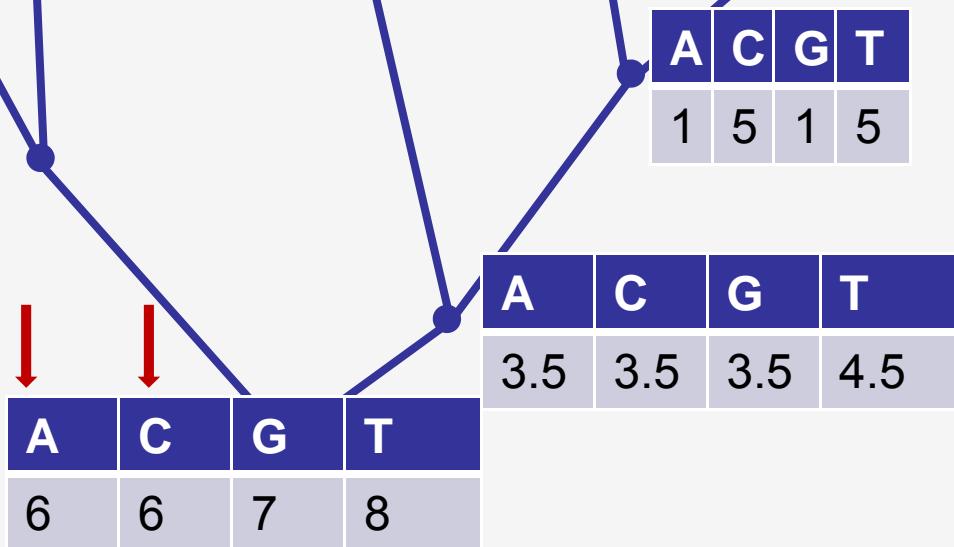
Sankoff algorithm – Example

$$S_p(i) = \underbrace{\min_{j=A/T/G/C} \{c_{i \rightarrow j} + S_{C1}(j)\}}_{LeftArm} + \underbrace{\min_{k=A/T/G/C} \{c_{i \rightarrow k} + S_{C2}(k)\}}_{RightArm}$$



Cost matrix

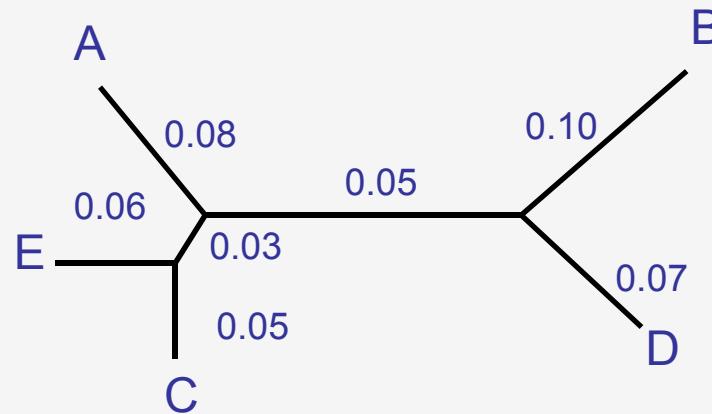
	A	C	G	T
A	0	2.5	1	2.5
C	2.5	0	2.5	1
G	1	2.5	0	2.5
T	2.5	1	2.5	0



Assigning branch lengths using Least squares

We have an observed matrix of Distances between sequences from all possible pair-wise comparisons – Remember D and K in JC model?

	A	B	C	D	E
A	0	0.23	0.16	0.20	0.17
B	0.23	0	0.23	0.17	0.24
C	0.16	0.23	0	0.15	0.11
D	0.20	0.17	0.15	0	0.21
E	0.17	0.24	0.11	0.21	0



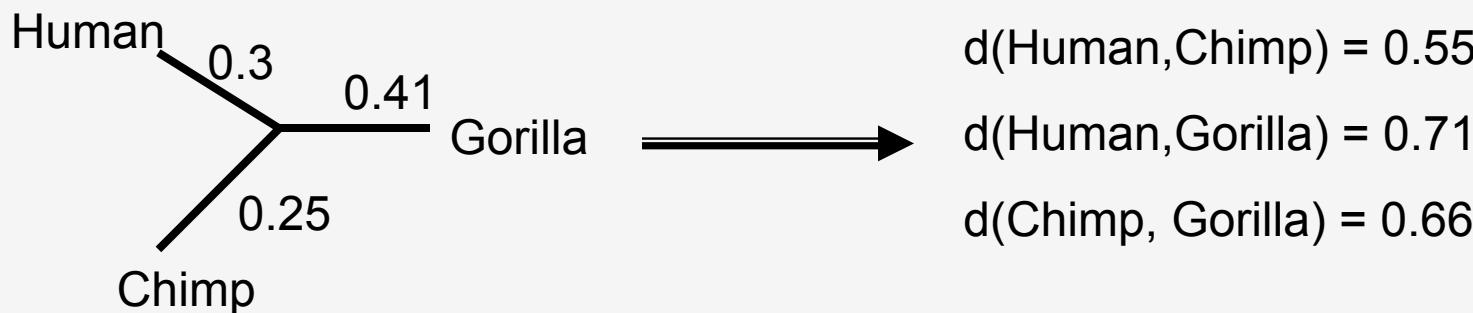
Observed distances denoted by D_{ij} and the “real branch” lengths to be predicted as d_{ij}

$$Q(T) = \sum_{i=1}^n \sum_{j=1; j \neq i}^n w_{ij} (D_{ij} - d_{ij})^2$$

w_{ij} = Method Dependent Weight

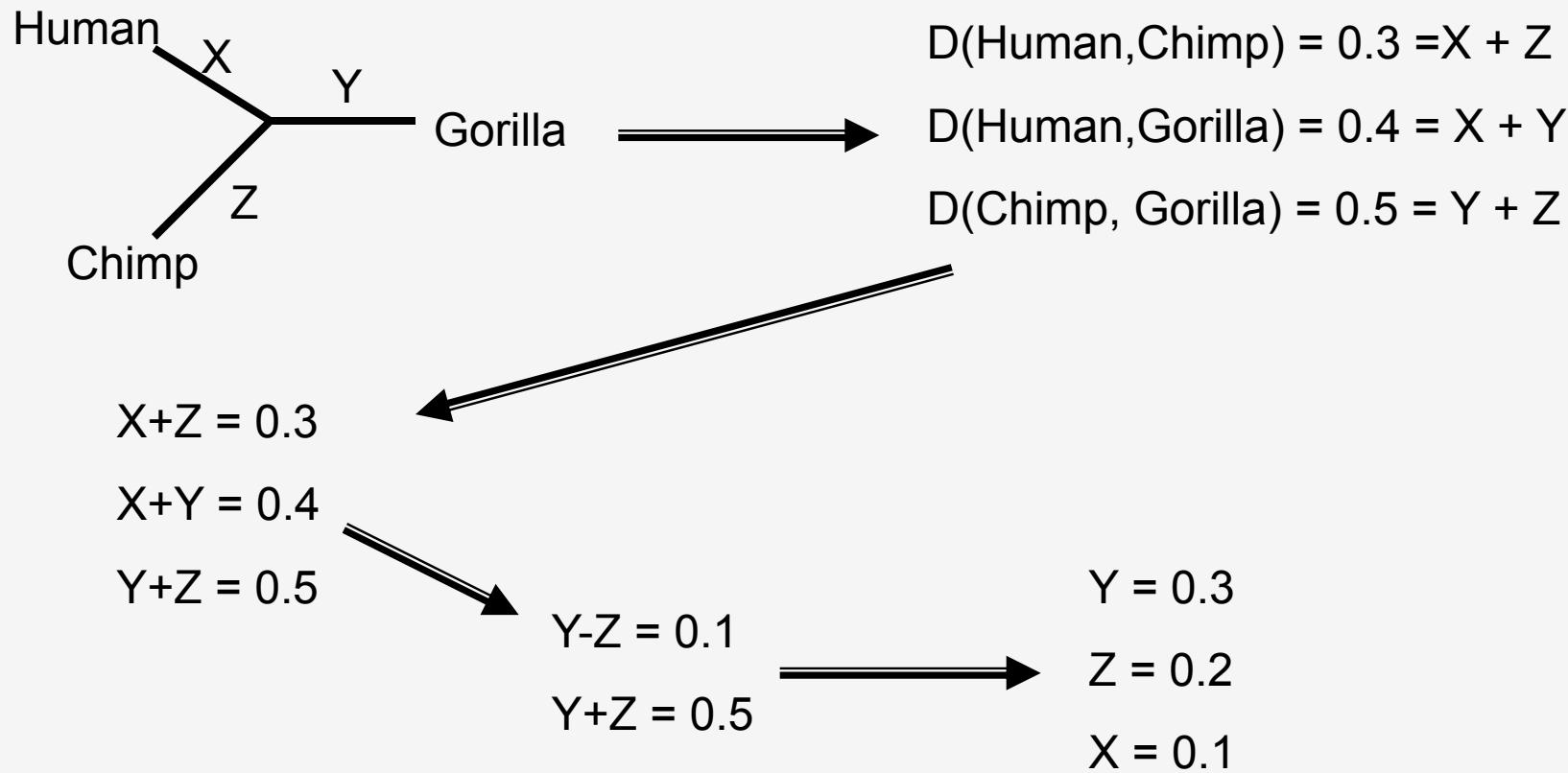
Motivation: From a distance table to a tree

Each tree has branch lengths from which “predicted” set of distances can be computed: $d(i,j)$ (small d , denotes the distance of the branches, unlike the observed pairwise distances D).

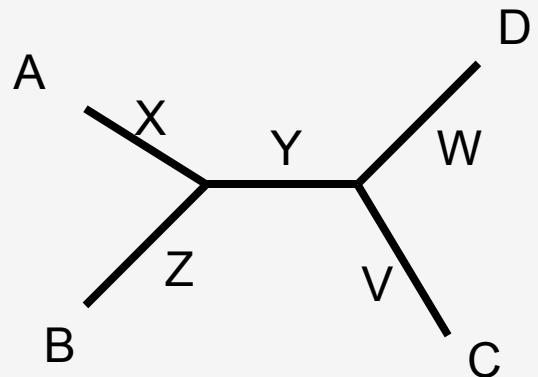
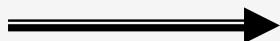


Motivation: From a distance table to a tree

The question is can we find branch lengths, so that the d 's are equal to the D 's?



Is there always a solution??



5 Variables,
6 Equations,
It might be that there's no
solution

$$NC_2 > 2N - 3 \text{ for } N > 3$$

Least squares – Cont'd

$$d_{ij} = \sum_k x_{ij,k} v_k$$

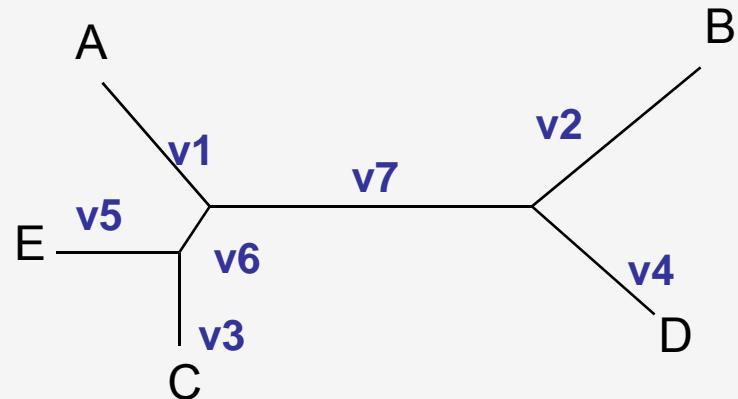
introduce an indicator variable $x_{ij,k}$, which is 1 if branch v_k lies in the path from species i to species j and 0 otherwise

$$d_{12} = 1v_1 + 1v_2 + 0v_3 + 0v_4 + 0v_5 + 0v_6 + 1v_7$$

$$d_{13} = 1v_1 + 0v_2 + 1v_3 + 0v_4 + 0v_5 + 1v_6 + 0v_7$$

...

$$d_{45} = 0v_1 + 0v_2 + 0v_3 + 1v_4 + 1v_5 + 1v_6 + 1v_7$$



LS- Cont'd

when the weights are 1.0 $Q(T) = \sum_{i=1}^n \sum_{j=1; j \neq i}^n (D_{ij} - d_{ij})^2$

$$= \sum_{i=1}^n \sum_{j=1; j \neq i}^n (D_{ij} - \sum_k x_{ijk} v_k)^2 \quad \rightarrow \quad \frac{dQ}{dv_k} = -2 \sum_{i=1}^n \sum_{j=1; j \neq i}^n x_{ij,k} (D_{ij} - \sum_k x_{ij,k} v_k) = 0$$

$$X^T D = (X^T X)v$$

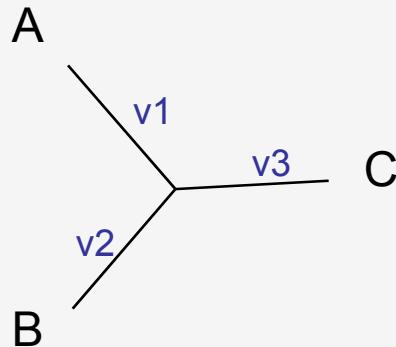
$$v = (X^T X)^{-1} X^T D$$

X

No of rows=n(n-1)/2

No of columns=2n-3 (eq to k)

LS - example



	A	B	C
A	0	10	12
B	10	0	8
C	12	8	0

$$X = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$X^T X = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

$$(X^T X)^{-1} = \begin{pmatrix} \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} \end{pmatrix}$$

$$D = \begin{pmatrix} 10 \\ 12 \\ 8 \end{pmatrix}$$

$$v = (X^T X)^{-1} X^T D = \dots$$

When we have weighted LS, then previous equations can be written:

$$X^T WD = (X^T WX)v$$

$$v = (X^T WX)^{-1} X^T WD$$

where W is a diagonal matrix with distance weights on main diagonal.

Evaluating a tree is good but how to build the tree? – Fast clustering-based algorithm for tree construction

UPGMA (unweighted pair group method using arithmetic averages)

Given two disjoint clusters C_i, C_j of sequences,

$$d_{ij} = \frac{1}{|C_i| \times |C_j|} \sum_{\{p \in C_i, q \in C_j\}} d_{pq}$$

Note that if $C_k = C_i \cup C_j$, then distance to another cluster C_l is:

$$d_{kl} = \frac{d_{il} |C_i| + d_{jl} |C_j|}{|C_i| + |C_j|} = \text{UPGMA distance}$$

$$D((ij),l) = \left(\frac{n(i)}{n(i) + n(j)} \right) D(i,l) + \left(\frac{n(j)}{n(i) + n(j)} \right) D(j,l)$$

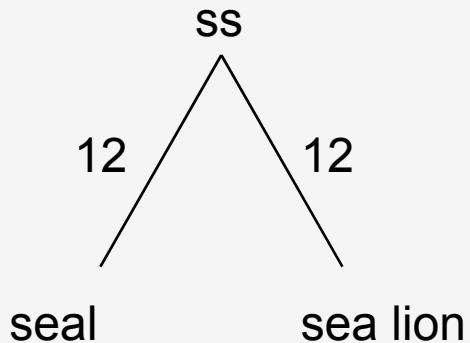
UPGMA algorithm

- Find i and j with smallest D_{ij}
- Create new group X by joining nodes i & j
- Compute distances between X (new member) and others (old)
- Place node X at $D_{ij}/2$
- Delete i and j ; replace with X in D-matrix

The distance table

	dog	bear	raccoon	weasel	seal	sea lion	cat	chimp
dog	0	32	48	51	50	48	98	148
bear		0	26	34	29	33	84	136
raccoon			0	42	44	44	92	152
weasel				0	44	38	86	142
seal					0	24	89	142
sea lion						0	90	142
cat							0	148
chimp								0

Distance between these two taxa was 24, so each branch has a length of 12.



We call the parent node of seal and sea lion “ss”.

Removing the seal and sea-lion rows and columns, and adding the ss row and columns

	dog	bear	raccoon	weasel	ss	cat	chimp
dog	0	32	48	51	?	98	148
bear		0	26	34	?	84	136
raccoon			0	42	?	92	152
weasel				0	?	86	142
ss					0	89	142
cat						0	148
chimp							0

Computing dog-ss distance

	dog	bear	raccoon	weasel	seal	sea lion	cat	chimp
dog	0	32	48	51	50	48	98	148

$$D((ij),k) = \left(\frac{n(i)}{n(i) + n(j)} \right) D(i,k) + \left(\frac{n(j)}{n(i) + n(j)} \right) D(j,k)$$

Here, i=seal, j=sea lion, k = dog.

$$n(i)=n(j)=1.$$

$$D(ss, \text{dog}) = 0.5D(\text{sea lion}, \text{dog}) + 0.5D(\text{seal}, \text{dog}) = 49.$$

The new table. Starting second iteration...

	dog	bear	raccoon	weasel	ss	cat	chimp
dog	0	32	48	51	49	98	148
bear		0	26	34	31	84	136
raccoon			0	42	44	92	152
weasel				0	41	86	142
ss					0	89	142
cat						0	148
chimp							0

Inferring tree

Distance between bear and raccoon was 26, so each branch has a length of 13.

We call the parent node of bear and raccoon “br”.

Computing br-ss distance

	dog	bear	raccoon	weasel	ss	cat	chimp
ss	49	31	44	41	0	89.5	142

$$D((ij),k) = \left(\frac{n(i)}{n(i) + n(j)} \right) D(i,k) + \left(\frac{n(j)}{n(i) + n(j)} \right) D(j,k)$$

Here, i=raccoon, j=bear, k = ss.

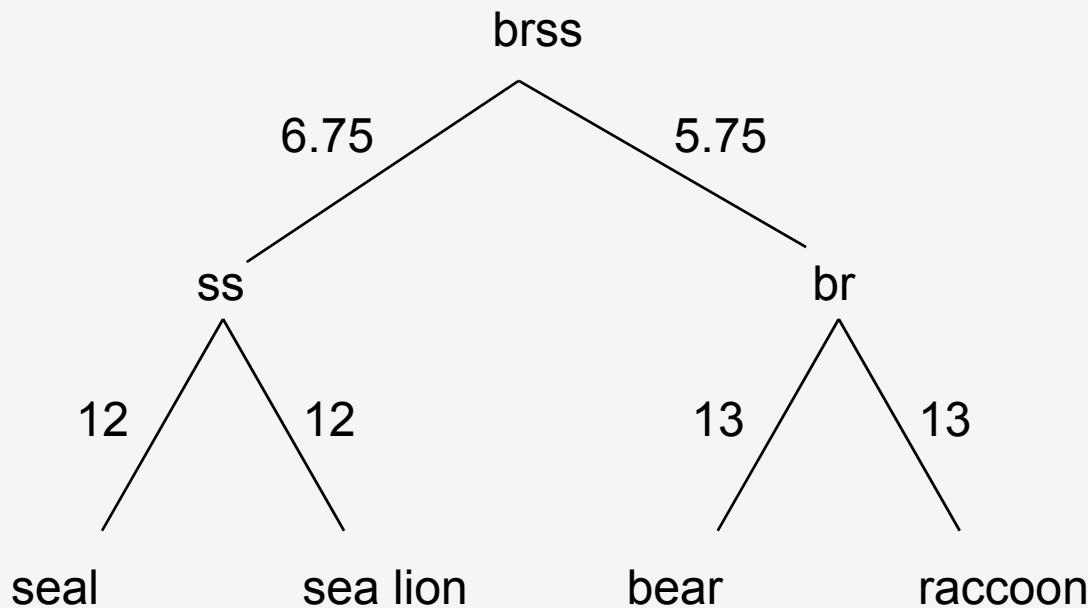
$n(i)=n(j)=1$. $D(br,ss) = 0.5D(bear,ss)+0.5D(raccoon,ss)=37.5$.

The new table. Starting next iteration...

	dog	br	weasel	ss	cat	chimp
dog	0	40	51	49	98	148
br		0	38	37.5	88	144
weasel			0	41	86	142
ss				0	89	142
cat					0	148
chimp						0

Inferring tree

Distance between br and ss was 37.5, so each branch has a length of 18.75. But this is the distance from brss to the leaves. The distance brss to ss is $18.75-12=6.75$. The distance between brss to br is $18.75-13=5.75$

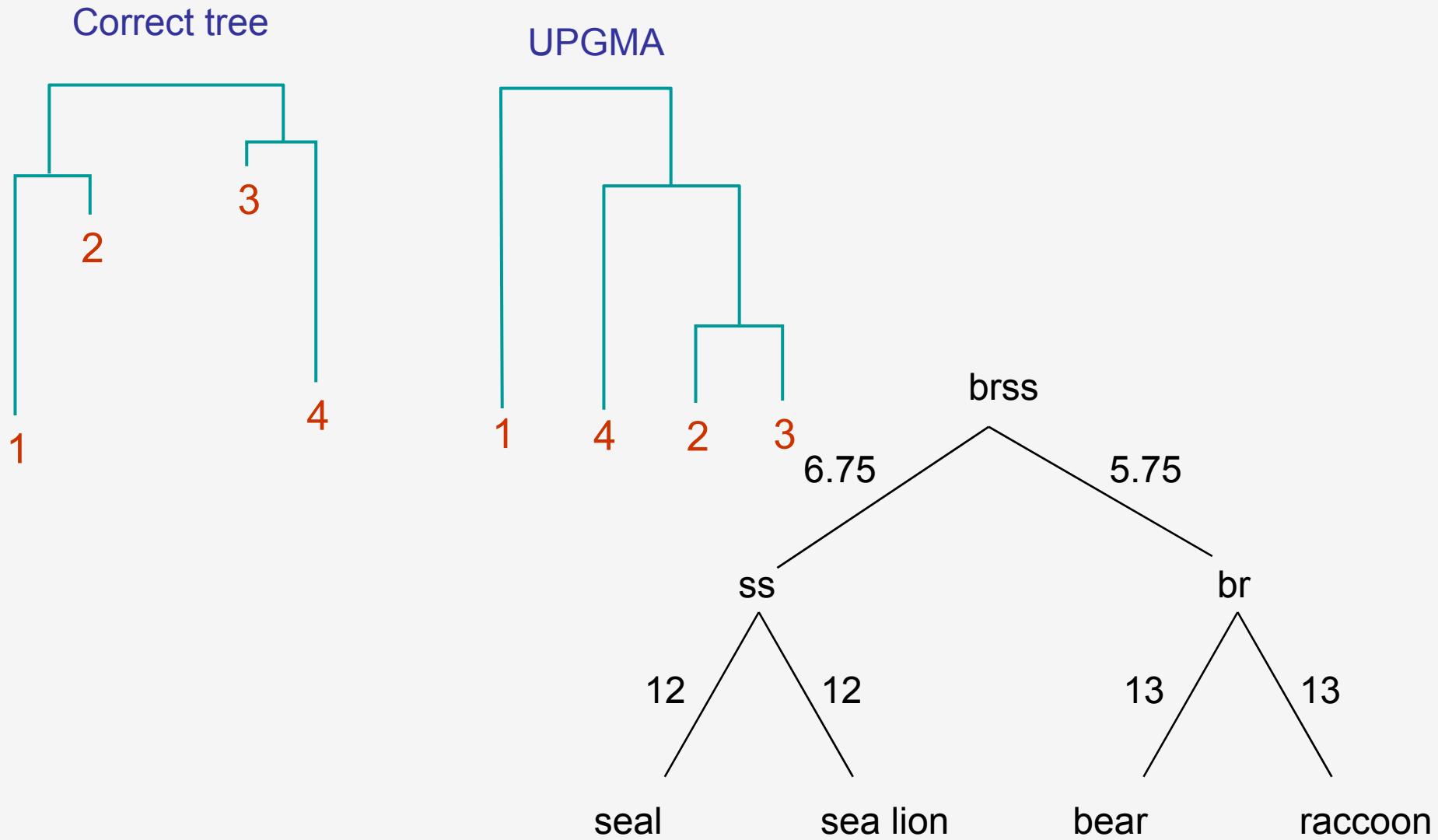


And so on.....

UPGMA's Weakness

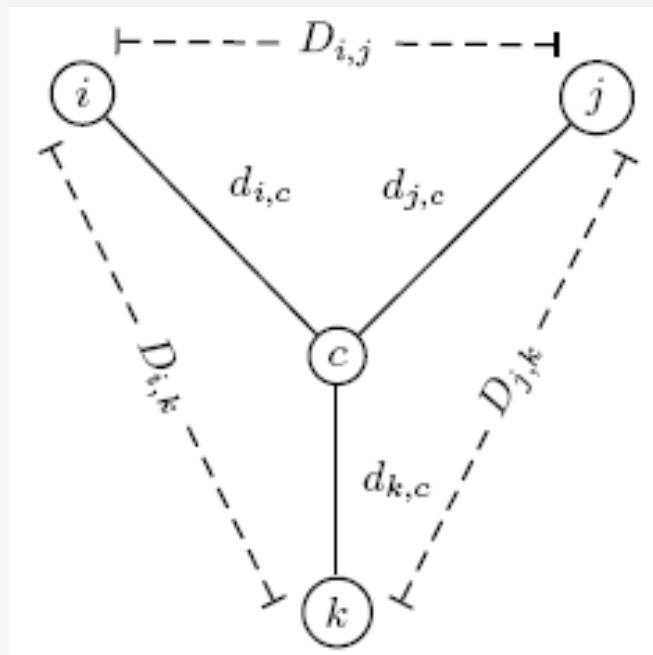
- The algorithm produces an **ultrametric** tree : the distance from the root to any leaf is the same
 - UPGMA assumes a constant molecular clock: all species represented by the leaves in the tree are assumed to accumulate mutations (and thus evolve) at the same rate. This is a major pitfall of UPGMA.

UPGMA's Weakness: Example



Clustering algorithm 2 – NJ (neighbor joining)

- Tree reconstruction for any 3x3 matrix is straightforward
- We have 3 leaves i, j, k and a center vertex c



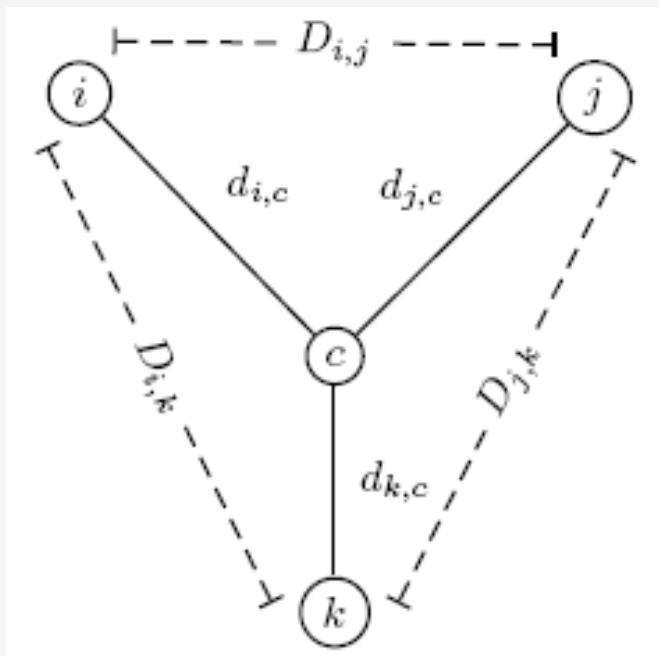
Observe D's, infer d's

$$d_{ic} + d_{jc} = D_{ij}$$

$$d_{ic} + d_{kc} = D_{ik}$$

$$d_{jc} + d_{kc} = D_{jk}$$

NJ –Cont'd



$$2d_{ic} + D_{jk} = D_{ij} + D_{ik}$$

$$d_{ic} = (D_{ij} + D_{ik} - D_{jk})/2$$

Similarly,

$$d_{jc} = (D_{ij} + D_{jk} - D_{ik})/2$$

$$d_{kc} = (D_{ki} + D_{kj} - D_{ij})/2$$

Trees with > 3 Leaves – NJ Cont'd

- An unrooted tree with n leaves has $2n-3$ branches
- This means fitting a given tree to a distance matrix D requires solving a system of “ n choose 2” equations with $2n-3$ variables
- This is not always easy to solve for *large n*

NJ algorithm

- For each tip compute $u_i = \sum_{j:j \neq i}^n D_{ij} / (n-2)$
- Choose i and j for which, $D_{ij} - u_i - u_j$ is smallest
- Join nodes i and j to X. Compute branch length from i to X and j to X

$$v_{i \rightarrow X} = (D_{ij} + u_i - u_j) / 2$$

$$v_{j \rightarrow X} = (D_{ij} + u_j - u_i) / 2$$

- Compute the distance between X and remaining nodes

$$v_{X \rightarrow k} = (D_{ik} + D_{jk} - D_{ij}) / 2$$

NJ algorithm – Cont'd

- New node X is treated as a new tip and old nodes I, j are deleted
- If more than two nodes remain go back to step-1, else connect the two nodes (I, m) by $D_{I,m}$

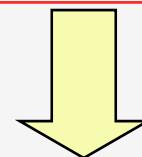
Bootstrapping to get the best trees

Main outline of algorithm

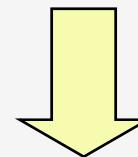
1. Select random columns from a multiple alignment – one column can then appear several times
2. Build a phylogenetic tree based on the random sample from (1)
3. Repeat (1), (2) many (say, 1000) times
4. Output the tree that is constructed most frequently or calculate a probability for each sub-tree topology

Multiple sequence alignment using phylogenetic methods – Clustal-W

Pairwise alignment: calculation of distance matrix



Rooted NJ tree (guide tree) and calculation of sequence weights



Progressive alignment following the guide tree

human	---	MEEPQSDPSVEP-PLSQETFS	20
monkey	---	MEEPQSDPSIEP-PLSQETFS	20
mouse		MTAMEEESQSDISLEL-PLSQETFS	23
rat	---	MEDSQSDMSIEL-PLSQETFS	20
xenopus	---	ME-PSSETGMDP-PLSQETES	19
chicken	---	MA-EEMEPLLEPTEVFMDLW-	19

* . : :: : :

Step 1-Calculation of Distance Matrix using pairwise alignment

Use the Distance Matrix to create a Guide Tree to determine the “order” of the sequences.

Hbb-Hu	1	-						
Hbb-Ho	2	.17	-					
Hba-Hu	3	.59	.60	-				
Hba-Ho	4	.59	.59	.13	-			
Myg-Ph	5	.77	.77	.75	.75	-		
Gib-Pe	6	.81	.82	.73	.74	.80	-	
Lgb-Lu	7	.87	.86	.86	.88	.93	.90	-
		1	2	3	4	5	6	7

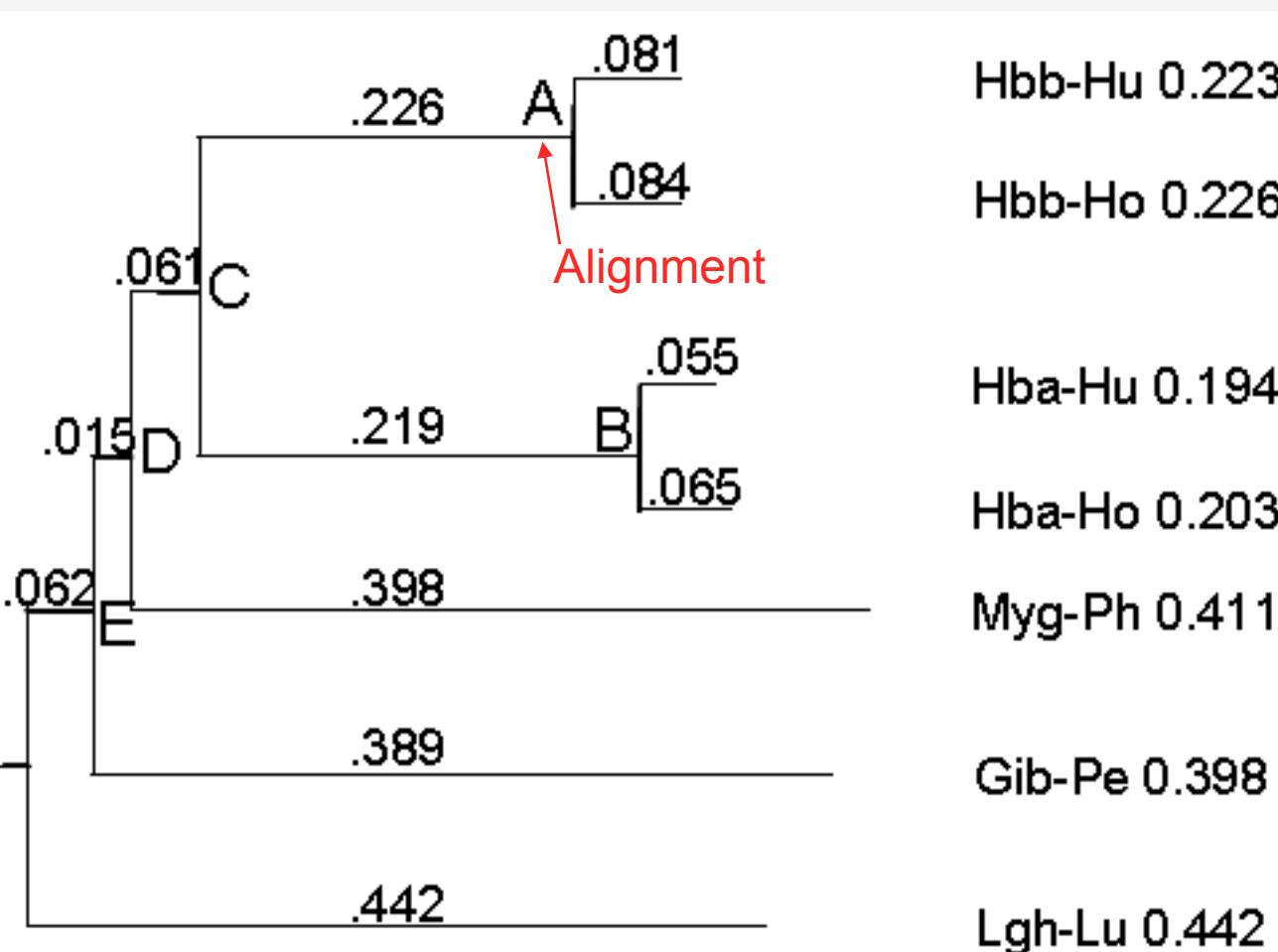
$$D = 1 - (I)$$

D = Difference score

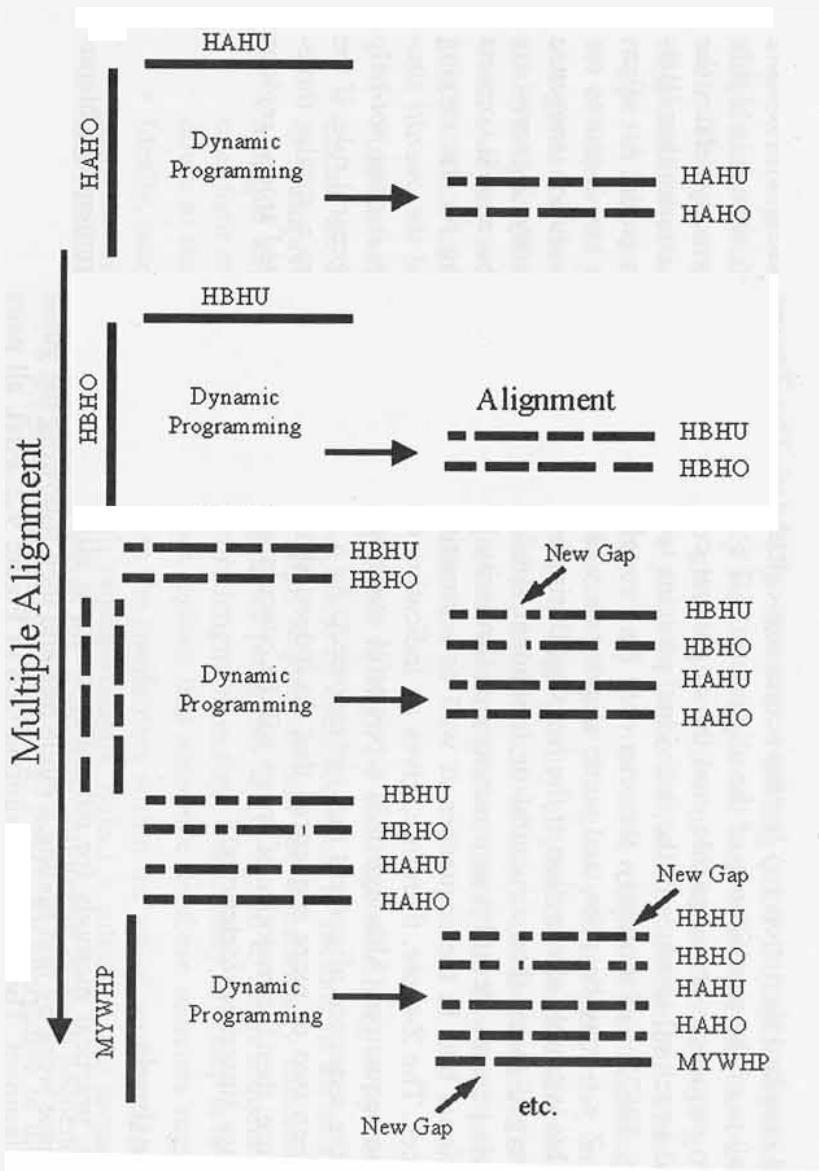
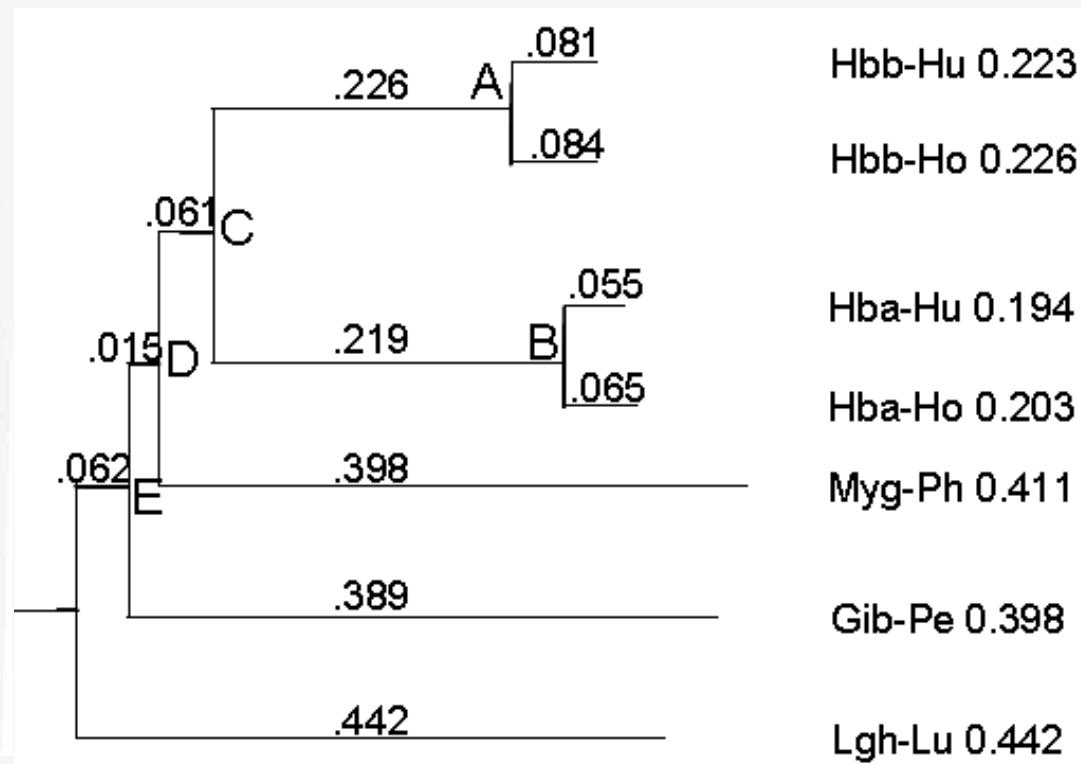
$$I = \frac{\text{\# of identical aa's in pairwise global alignment}}{\text{total number of aa's in shortest sequence}}$$

Step 2-Create Rooted Tree and calculate weights

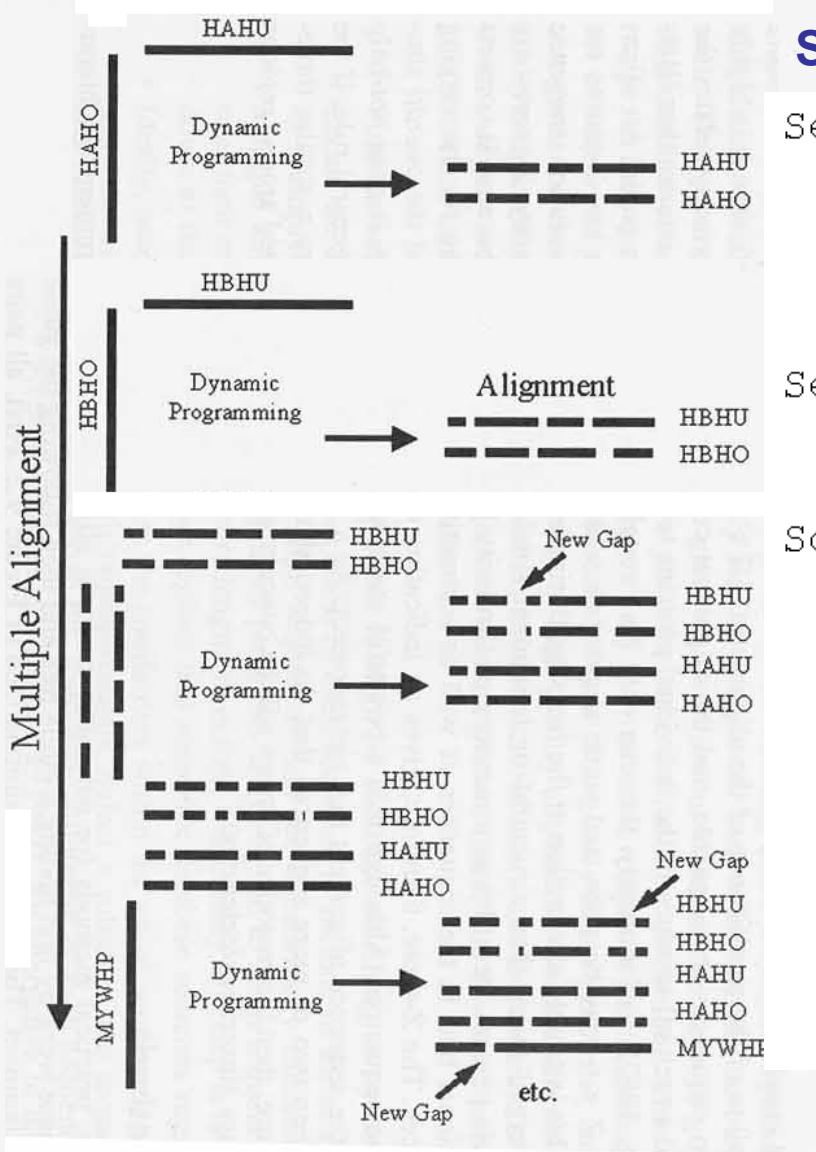
Neighbor joining algorithm – simple, to be discussed later



Step 3-Progressive alignment



Step 3-Progressive alignment



Scoring during progressive alignment

Set of 4:

1 eeksavtal
2 eekaavtal
3 adktnvkaa
4 adktnvkaa

Set of 2

5 gewqlv
6 aektkirs

$$\begin{aligned}
 \text{Score} = & M(t, v) * w_1 * w_1 \\
 & + M(t, i) * w_1 * w_1 \\
 & + M(l, v) * w_2 * w_2 \\
 & + M(l, i) * w_2 * w_2 \\
 & + M(k, v) * w_3 * w_3 \\
 & + M(k, i) * w_3 * w_3 \\
 & + M(k, v) * w_4 * w_4 \\
 & + M(k, i) * w_4 * w_4
 \end{aligned}$$

divided by 8

Recommended MSA Programs

- MUSCLE (fast and accurate)
- MAVID (genome-scale alignment)
- SAM (hidden markov, powerful and wide range of options)

