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Statistical modeling of 
biopolymer sequences

Modeling biological sequences 

• Kinds of questions we want to ask
– Is this sequence a motif (e.g., binding site, splice site)?
– is this sequence part of the coding region of a gene?
– Are these two sequences evolutionarily related?

– ...

• What we will not address (covered last semester)
– how two (or more) sequences can be optimally aligned
– how sequencing results of a clone library can be assembled 
– What is the most parsimonious phylogeny of a set of sequences

• Machine learning : extracting useful information from a 
corpus of data D by building good (predictive, evaluative 
or decision) models   
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Modeling biological sequences, ctd

• Computational analysis only generate hypothesis, which 
must be tested by experiments
– Site-directed mutagenesis (to alter the sequence content)
– Knockouts/insertions of genes/sites (deletion/addition of elements)  

– Functional perturbations (pathway inhibitors, drugs, ...)

• How to choose experimental models?   
– bacteria, yeast, C. Elegans, Drosophila, mouse, human(?) ...

• From one-way learning to close-loop learning: 
– Active learning: can a machine design smart experiments? 

Probabilistic models for sequences

• We will use probabilistic models of sequences -- not the 
only approach, but usually the most powerful, because

– sequences are the product of an evolutionary process which is 
itself stochastic in nature,

– want to detect biological "signal" against "random noise" of 
background mutations, 

– data may be missing due to experimental reasons or intrinsically 
unobservable, and

– we want to integrate multiple (heterogeneous) data and 
incorporate prior knowledge in a flexible and principled way,

– ....
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Hierarchical structure of the genome

TGCGAAC AAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

Gene structure in prokaryotes
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Gene structure in prokaryotes

• A protein-coding gene consists of the following, in 5’ to 3’ order

– An upstream regulatory region , generally < 50 bp, which turns 
transcription on and off.

– A transcription start site where RNA polymerase incorporates 1st 
nucleotide into nascent mRNA.

– A 5’ untranslated region, generally < 30bp, that is transcribed into mRNA 
but not translated.

– The coding region of the gene (typically=1000bp), consisting of a 
sequence of codons .

– The translation stop site marking the end of coding region. Consists of a 
stop codon, which causes the release of the polypeptide at conclusion of 
translation. 

– A 3’ untranslated region, transcribed into RNA but not translated.
– The transcription stop site marking where the RNA polymerase concludes 

transcription.

The bacterial genome

The E. coli chromosome
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Gene structure in eukaryotes

Gene structure in eukaryotes

• A typical gene consist of the following, in 5’ to 3’ order

– An upstream regulatory region, often larger and more complex than in prokaryotes, 
parts of which may be several thousand bases or more upstream of transcription 
start site.

– A transcription start site.
– A 5’ untranslated region, often larger than in prokaryotes, and which may include 

sequences playing a role in translation regulation.
– The coding sequence, which unlike the case with prokaryotes, may be interrupted 

by non—coding regions called introns. These are spliced out of the transcript to 
form the mature mRNA (and sometimes the splicing can occur in more than one 
way).

– The translation stop site.
– A 3’ untranslated region, which may contain sequences involved in translational 

regulation.
– A polyadenylation (playA) signal , which indicates to the cell’s RNA processing 

machinery that the RNA transcript is to be cleaved and a poly -adenine sequence 
(AAAAAA…) tail appended to it

– The transcription stop site.
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Alternative splicing

The human genome
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Basic Probability Theory Concepts

• A sample space S is the set of all possible outcomes of a conceptual 
or physical, repeatable experiment. (S can be finite or infinite.)
– E.g., S may be the set of all possible nucleotides of a DNA site 

• A random variable is a function that associates a unique numerical 
value (a token) with every outcome of an experiment. (The value of 
the r.v. will vary from trial to trial as the experiment is repeated) 
– E.g., seeing an "A" at a site ⇒ X=1, o/w X=0. 

– This describes the true or false outcome a random event.
– Can we describe richer outcomes in the same way? (i.e., X=1, 2, 3, 4, for being A, 

C, G, T) --- think about what would happen if we take expectation of X.

• Random vector 
– Xi=[XiA, XiT, XiG, XiC]T, Xi=[0,0,1,0]T ⇒ seeing a "G" at site i 

Basic Prob. Theory Concepts, ctd

• (In the discrete case), a probability distribution P on S (and hence on 
the domain of X) is an assignment of a non-negative real number P(s) 
to each s∈S (or each valid value of x) such that Σs∈SP(s)=1. (0≤P(s) 
≤1)
– intuitively, P(s) corresponds to the frequency (or the likelihood) of getting 

s in the experiments, if repeated many times

– call θs= P(s) the parameters in a discrete probability distribution

• A probability distribution for a sample space is sometimes called a 
probability model, in particular if several different distributions are 
under consideration
– write models as M1, M2, probabilities as P(X|M1), P(X|M2).

– E.g., M1 may be prob. dist. appropriate if X is from splice site, M2 is for the 
"background". 

– M is usually a two-tuple of {dist. family, dist. parameters }
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Basic Prob. Theory Concepts, ctd

• For events E (i.e. X=x) and H (say, Y=y), the conditional probability of 
E given H, written as P(E|H), is

P(E and H)/P(H)
(= the probability of both E and H are true, given H is true)

• E and H are (statistically) independent if 

P(E) = P(E|H)
(i.e., prob. E is true doesn't depend on whether H is true); or equivalently

P(E and H)=P(E)P (H). 

• E and F are conditionally independent given H if 
P(E|H,F) = P(E|H)

or equivalently

P(E,F|H) = P(E|H)P(F|H)

Basic Prob. Theory Concepts, ctd

• Joint probability dist. on multiple variables:

• If Xi's are independent: (P(Xi|·)= P(Xi))

• If Xi's are conditionally independent, the joint can be factored to 
simpler products, e.g., 

• The Graphical Model representation
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Basic Prob. Theory Concepts, ctd

• The Bayesian Theory: (e.g., for date D and model M) 

P(M|D) = P(D|M)P(M)/P(D)

– the posterior equals to the likelihood times the prior, up to a constant. 

• This allows us to capture uncertainty about the model in a principled 
way

Probabilities on sequences

• Let S be the space of DNA or protein sequences of a given length n. 
Some simple assumptions for assigning probabilities to sequences:

– Equal frequency assumption: All residues are equally probable at any 
position; i.e., P(X i,r)=P(X i,q) for any two residues r and q, for all i. 

• this implies that P(Xi,r)=θr=1/|A|, where A is the residue alphabet (1/20 for 
proteins, 1/4 for DNA)

– Independence assumption: whether or not a residue occurs at a 
position is independent of what residues are present at other positions. 

• probability of a sequence
P(X1, X2, ..., XN) = θr ·θr· , ..., · θr= θr

N
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Failure of Equal Frequency 
Assumption for (real) DNA

• For most organisms, the nucleotides composition is significantly
different from 0.25 for each nucleotide, e.g., 
– H, influenza .31 A, .19 C, .19 G, .31 T
– P. aeruginosa .17 A, .33 C, .33 G, .17 T
– M. janaschii .34 A, .16 C, .16 G, .34 T
– S. cerevisiae .31 A, .19 C, .19 G, .31 T
– C. elegans .32 A, .18 C, .18 G, .32 T
– H. sapiens .30 A, .20 C, .20 G, .30 T

• Note symmetry: A≅T, C≅G, even thought we are counting nucleotides 
on just one strand. Explanation:
– although individual biological features may have non-symmetric 

composition, usually features are distributed ~ randomly w.r.t. strand, so 
get symmetry. 

General Hypothesis Regarding 
Unequal Frequency

• Neutralist hypothesis: mutation bias (e.g., due to 
nucleotide pool composition)

• Selectionist hypothesis: selection
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• For a site i, define its residue identity to be a random vector:

• Xij=1 w.p. θj, Σk∈S θk =1. 

• The probability of an observation si=C (i.e, xi,C=1)at site i:  

• The probability of a sequence (x1, x2,..., xN):

The multinomial model for sequence
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• Maximum likelihood estimation: 
– multinomial parameters:

• Bayesian estimation:
– Dirichlet distribution:  

– Posterior distribution of θ under the Dirichlet prior:

– Posterior mean estimation:
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Models for homogeneous sequence 
entities

• Probabilities models for long "homogeneous" sequence 
entities, such as:
– exons (ORFs)
– introns

– inter-genetic background
– protein coiled-coil  (other other structural) regions

• Assumptions:
– no consensus, no recurring string patterns 
– have distinct but uniform residue-composition

– every site in the entity are iid samples from the same model

• The model: 
– a single multinomial: X ~ Mul(θ)

Models for homogeneous sequence 
entities, ctd

• Limitations
– non-uniform residue composition (e.g., CG rich regions) 
– non-coding structural regions (MAR, centromere, telomere)
– di- or tri- nucleotide couplings

– estimation bias
– evolutionary constrains 
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Site models

• Probabilities models for short sequences, such as:
– splice sites
– translation start sites
– promoter elements

– protein "motifs"

• Assumptions:
– different examples of sites can be aligned without indels

(insertions/deletions) such that tend to have similar residues in 
same positions

– drop equal frequency assumption; instead have position-specific 
frequencies

– retain independence assumption (for now)   

Site models ctd.

• Applies to short segments (<30 residues) where precise 
residue spacing is structurally or functionally important, 
and certain positions are highly conserved

– DNA/RNA sequence binding sites for a single protein or RNA 
molecule

– Protein internal regions structurally constrained due to folding
requirements; or surface regions functionally constrained because 
bind certain ligands
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Nucleotide Counts for 8192 C. 
elegans 3' Splice sites

3' Splice site - C. elegans
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5' Splice sites - C. elegans

Limitation of Site Models

• Failure to allow indels means variably spaced 
subelements are "smeared", e.g.:
– branch site, for 3' splice sites;
– coding sequences, for both 3' and 5' sites

• Independence assumption
– usually OK for protein sequences (after correcting for evolutionary 

relatedness) 
– often fails for nucleotide sequences; examples:

• 5' sites (Burge-Karlin observation);
• background (dinucleotide correlation).
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Why correlation?

• Splicing involves pairing of a small RNA with the 
transcription at the 5' splice site.

• The RNA is complementary o the 5' sr consensus 
sequence.

• A mismatch at position -1 tends to destabilize the pairing, 
and makes it more important for other positions to be 
correctly paired.

• Analogy can be easily drew for other DNA and protein 
motifs.   

Comparing alternative probability 
models

• We will want to consider more than one model at a time, 
in the following situations:

– To differentiate between two or more hypothesis about a 
sequence

– To generate increasingly refined probability models that are 
progressively more accurate



17

Comparing alternative probability 
models, ctd.

• First situation arises in testing biological assertion, e.g., 
"is this a coding sequence?" Would compare two 
models:

1. one associated with a hypothesis Hcoding which attaches to a 
sequence the probability of observing it under experiment of 
drawing a random sequence from the genome

2. one associate with a hypothesis Hnoncoding which attaches to a 
sequence the probability of observing it under experiment of 
drawing a random non-coding sequence from the genome.  

Likelihood Ratio Test

• The posterior probability of a model given data is:

P(M|D) = P(D|M)P(M)/P(D)

• Given that all models are equally probable a priori, the 
posterior probability ratio of two models given the same 
data reduce to a likelihood ratio:

– the numerator and the denominator may both be very small! 

• The log likelihood ratio (LLR) is the logarithm of the 
likelihood ratio:

)|(
)|(

=)|,(
0

0 MDP
MDP

DMMLR a
a

)|(log)|(log=)|,( 00 MDPMDPDMMLLR aa


