
10-801: Advanced Topics in Graphcal Models 10-801, Spring 2007

Conditional Random Fields

Lecturer: Eric P. Xing Scribes: Ramesh Nallapati

The objective is to predict the most likely sequence of labels ŷ given a data sequence x:

ŷ = arg max
y

P (y|x) (1)

In generative models such as HMM, we use Bayes rule to compute the conditional likelihood of labels:

arg max
y

P (y|x) = arg max
y

P (x,y)

P (x)
= arg max

y
P (x,y) (2)

The objective function optimized by HMM is the joint likelihood, which is different from what we want to
optimize. As a solution, discriminative models called MEMMs were proposed which optimize the conditional
likelihood of the labels given the observed data directly:

ŷ = argmax
y

P (y|x) = arg max
y

n
∏

i=1

P (yi|yi−1, xi) (3)

where i is the position in the sequence of size n. However, MEMMs suffer from label bias problem, i.e., local
distributions influence the global choice of latent variables as shown in figure 1. In this figure, the model is
forced to choose state y(2) correspondong to observation x2, although the evidence points to state y(1). This
follows from the fact that the probabilities in MEMMs are locally normalized, and as a result, it forces the
model to prefer state y(2) in this case, since it has a higher incoming-mass from the previous states.

(1)(1) y
(1)

y
(2)

y
(2)

y
(2)

x 1
x 2 x

3

yy

Figure 1: label bias problem with MEMMs: the thickness of the arrow indicates the magnitude of the
probability mass

One way to resolve this problem is to normalize the probabilities globally. The resulting model is called a
Conditional Random Field, which is shown below.

P (y|x) =
1

Z(x)
exp

(

n
∑

i=1

K
∑

k=1

θkfk(yi, yi−1,x, i)

)

(4)

where K is the number of feature functions and i is the position index in the example as usual.

1

1 Inference

Given a trained model, inference on a test example corresponds to finding the most likely label sequence.

ŷ = argmax
y

log P (y|x) = argmax
y

(

n
∑

i=1

K
∑

k=1

θkfk(yi, yi−1,x, i) − log Z(x)

)

= argmax
y

n
∑

i=1

K
∑

k=1

θkfk(yi, yi−1,x, i) (5)

This can be easily done using the standard Viterbi decoding used in HMMs.

2 Learning

Define Fk(y,x) =
∑

i fk(yi, yi−1,x, i) and the column vectors F(y,x) = (F1(y,x), · · · , FK(y,x))T and θ =
(θ1, · · · , θK)T .

Now the conditional log-likelihood of N training examples {(x1,y1), · · · , (xN ,yN)} is given by:

N
∑

j=1

log Pθ(yj |xj) =
∑

j

(

θ
T F(yj ,xj) − log(

∑

y

exp(θTF(y,xj))

)

(6)

Training consists of estimating the parameters θ that optimize the conditional likelihood defined above. Its
first derivative is given by:

∇(

N
∑

j=1

log Pθ(yj |xj)) =
∑

j

(

F(yj ,xj) −

∑

y exp(θTF(y,xj)F(y,xj)
∑

y exp(θTF(y,xj)

)

=
∑

j

(

F(yj ,xj) − EP
θ

(Y|xj)[F (Y,xj)]
)

(7)

where j is the index of the training example.

2.1 Computing Z(x)

For a given x, Z(x) can be efficiently computed as follows.

Z(x) =
∑

y

{

exp(

K
∑

k=1

θkfk(y1, ystart,x, 1)) exp(

n
∑

i=2

K
∑

k=1

θkfk(yi, yi−1,x, i)) exp(

K
∑

k=1

θkfk(yend, yn,x, n + 1))

}

=
∑

y

{

M1(y1, start)
n
∏

i=2

Mi(yi, yi−1,x)Mn+1(yend, yn,x, n + 1)

}

where Mi(yi, yi−1,x) = exp(
∑

k

θkfk(yi, yi−1,x, i))

= [

n+1
∏

i=1

Mi(x)]start,end where Mi(x) is a |Y | × |Y | matrix with Mi(x)y,y′ = Mi(yi = y, yi−1 = y′,x)

(8)

where start and end are artificial states defined to indicate the beginning and end of a sequence.

2.2 Computing EP
θ

(Y|xj)[F (Y,xj)]

First we note that

EP
θ

(Y|xj)[F (Y,xj)] =
1

Z(xj)

∑

y

exp(θTF(y,xj)F(y,xj) (9)

Since we already know how to compute Z(xj) efficiently, we focus on
∑

y exp(θTF(y,xj)F(y,xj), in par-

tiuclar, one of its components
∑

y exp(θTF(y,xj)Fk(y,xj). We can express it as follows.

∑

y

exp(θTF(y,xj)Fk(y,xj) =
∑

y

exp(

n+1
∑

i=1

K
∑

k=1

θkfk(yi, yi−1,x, i))Fk(y,xj)

=
∑

y

exp(

n+1
∑

i=1

K
∑

k=1

θkfk(yi, yi−1,x, i))

n+1
∑

i=1

fk(yi, yi−1,xj) (10)

Using the result from Eq. (8), it is easy to see that we can rewrite Eq. (10) as follows.

∑

y

exp(θTF(y,xj)Fk(y,xj) =
∑

i

∑

y′,y

[

i−1
∏

l=1

Ml(x)]start,y′Mi(y
′, y,x)fk(y, y′,x, i)[

n+1
∏

m=i+1

Mm(x)]y,end

=
∑

i

∑

y′,y

αi−1(y
′|x)Mi(y

′, y,x)fk(y, y′,x, i)βi(y|x) (11)

where we define the forward and backward vectors α and β recursively as follows.

[α0(x)]y = 1 if y = start

= 0 otherwise (12)

αi(x) = (αi−1(x))T Mi(x) (13)

Similarly,

[βn+1(x)]y = 1 if y = end

= 0 otherwise (14)

βi(x) = Mi+1(x)βi+1(x) (15)

Thus we can compute the gradient efficiently using the forward backward vectors. One can then arrive at
the optimum solution by using an efficient pre-conditioner based conjugate gradient method or a limited
memory Quasi-Newton method as described in (Sha and Pereira, 2006).

