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1 Bayesian Feature Selection

We use feature selection in linear regression as the example in the following discussion. The standard linear
. . 2T K .
regression formula is y, = 7%, + € = > ;_; Bexnk + N(0,02), where € represents a zero-mean Gaussian

noise with variance o2. We want to find a sparse E to reduce the dimension of inputs. Although this sparse
formulation does not make much difference in the computational at first glance, dimension reduction may
lead to very different generalization error of the model and reduce the work load of data collection.

1.1 The Hierarchial Bayesian Model for Bayesian Feature Selection

The feature selection could be performed in a principled fansion using the hierarchical Bayesian model whose
graphical structure is depicted in Fig. 1. Both of the parameters 3 and o2 are treated as random variables.
Each component of  is sampled from a mixture of Gaussian distribution:

ﬂk|7k =0~ N(07T2), (1)
ﬁkh/k =1 NN(O,CTQ). (2)

vk is an indicator variable for Ox; yx = 0 represents the case that the kth dimension of inputs is not selected.
Accordingly, 72 is supposed to be small such that the conditional distribution of 3 given ~; = 0 is shrinked
to 0, ¢ should be much greater than 1 which reflects greater degrees of uncertainty for the parameter when
its corresponding feature is present. Although we can again set up prior distributions for ¢, 72, however, for
the discussion in the sequel, we assume ¢ and 72 are known constants estimated from the empirical Bayes
approach, and let 4 simply follows an independent Bernoulli prior distribution.

i ~ Bernoulli(py,). (3)
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Figure 1: Graphical structure for Bayesian feature selection in linear regression.
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For the variable o2, it is natural to choose a conjugate prior distribution. A convenient parameterization is
the inverse gamma distribution which is a two-parameter family of continuous probability distribution with

the density function
b b
2, _ 2(—a—1
flo ,a,b)—r(a)a( )exp<—02>, (4)

where a is the shape parameter and b is the scale parameter. We assume a and b is determined by 7 as well

as some known constants A, and write the prior on o2 as:

0?7 ~ Inv-Gamma(o?; ax(7), ba (7)), ()

and we may drop the arguments of a and b in future discussion. Now that we have defined all the prior
distribution, the model for generating the data is

yn|fnvgv o? NN(/éTfnvo'2)a (6)

where we assume &, is fixed and known. We will also adapt a matrix representation of the features in the
following: X is IV by K matrix of all the input features.

1.2 Inference

The goal of the inference is to compute

P(FIX,Y) = / / p(3. B, 0% X, Y)dfd(0?). (7)

The integral in intractable and approximate inference could be carried via the standard Gibbs sampling
scheme. In the following we briefly discuss the sampling formulae.

p(k|Bk):  Since 7y is a binary random variable, the computation is fairly easy:

P(ve)P(Br [vi)P (@ [y, T-1) (8)

POk ) = S P (Be (@ Tr)

where p(vi), p(Bk|vk), p(0?]7) are defined in Sec.1.1.

p(ﬁ 17, 027)_(: ,¥): Blocked version of sampling can be applied to draw samples from the conditional distri-
G.

bution of 3. We first write out the conditional distribution p(ﬁ|’y’) as a multivariate normal:

EH”NN(QR’Y)? (9)

where R, is a diagonal matrix and the kth diagonal element Ry = ¢¥*72. This is a conjugate prior of the
multivariate normal data distribution

X, B.0% ~ N(XB,0%Ix), (10)
where I is the N-dimensional identity matrix.
So the posterior is still a multivariate normal distribution:
p(B17.0%, X, §) o p(B17)p(71X, B.0?)

o exp (—;ﬂ R 5 — XB)" Xﬁ))

g_
T —
o exp (—;BT (Rv1+X X)B+HT§§>. (11)
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Therefore we obtain the sampling formula for ﬁ :

2= 2 X — N 2R_1 XTX 71XT—* R—l XTX - 1
B17,0% X, G~ N | (¢°R;' + ) b\ By + =3 : (12)

p(c27,3,X,7): Since the data distribution p(7]X, 3,02) is conjugate of the inverse-Gamma prior on o2,

the posterior is tractable and also in the inverse-Gamma family:
p(o®17, 8, X, 9) o p(a®|7)p(1 X, B, 0°)

ooy () e ot x - x)
o 20

2(—a—1) 1 1
X o exp ( = (b—l— 2 XE)T(gf Xg))) , (13)

so we can get the sampling formula for o2

o 1
0'2|’77 ﬁ7 X> g ~ Inv-Gamma (0-2; ax (’?)a b)\ (i) + =, >\ ) : (14)



