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1 Bayesian Method

Consider a statistical model with parameter θ and observation data X which follow some distributions f
and π such that:

X ∼ f(· | θ), θ ∼ π(θ)

Then from Bayes theorem, we have:

P (θ | X) =
P (X | θ)P (θ)

P (X)
=

P (X | θ)P (θ)∫
P (X | θ)P (θ)dθ

This means that we can compute the posterior probability distribution of the parameter θ given the obser-
vation X from some prior distribution P (θ) and the likelihood function P (X | θ). Some people criticize
this Bayesian framework as too subjective. But is Bayesian really subjective?

Example 1 Suppose we have a coin and we want to test if the probability of head θ is equal to or greater
than 0.5. That is, we do the following hypothesis test:

H0 : θ = 1
2

H1 : θ ≥ 1
2

Now we observed 9 heads and 3 tails in our experiment. Let Z denote the event that the toss is a head. Then
our assumption is that

Z ∼ Ber(θ)

. Here are three different interpretation of this observation.

1. If we let X the total number of heads we observed out of 12 tossing, X would follow Binomial distri-
bution:

X ∼ Binomial(n, θ)

Then under the null hypothesis, we have

P (X ≥ 9) =
12∑

X=9

P (X | n, θ) =
12∑

X=9

P (X | 12,
1
2
) = 0.073

and we can use this statistics to decide whether to reject the null hypothesis or not.
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2. Now, we can think of another interpretation of this observation: we tossed the coin until we observed 3
tails and we ended up with 9 heads and 3 tails. Then X would follow the Negative-Binomial distribution:

X ∼ NB(3, θt) =
(

3 + X − 1
X

)
θ3

t (1− θt)X

Then again under the null hypothesis

P (X ≥ 9) =
∞∑

X=9

NB(X | 3, θs) =
∞∑

X=9

NB(X | 3,
1
2
) = 6.730

and this value is different from that estimated in the previous model assumption. This means that
parametric approaches are not always objective, and the different interpretation of the experiment can
result in an entire different conclusion.

3. Finally, consider the Bayesian framework where we assume:

X ∼ Poisson(· | λ)

λ ∼ Gamma(λ | r, 1− p

p
)

Then,

P (X | r, 1− p

p
) =

∫
P (x, λ | r, 1− p

p
)dλ

=
∫

P0(x | λ)Gamma(λ | r, 1− p

p
)dλ

= NB(X | r, p)

and this reduces to the same parametric model as in 2.

Example 2 Suppose

ni ∼ Multinomial(−→θ )

Parametric approach would produce something like:

θi =
ni

N
or θi =

ni + 1
N + 1

Under the following prior distribution

θi ∼ Dir(−→α )

the Bayes estimator would be derived as:

θBE =
ni + αi

N +
∑

αi
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Normal Bayes estimates

Consider the following model s.t.

Xi ∼ N(θ, σ2)

θ ∼ N(µ, τ2)

for some hyper-parameters µ and τ .

��
��
µ, τ ��

��
θ- ��

��
Xi

-

Then

P (θ, X) ∝ exp
(
− (X − θ)2

σ2
− (θ − µ)2

τ2

)
= exp

(
− 1

2ρ

[
θ − ρ(

X

σ2
+

µ

τ2
)
]2
− 1

2(σ2 + τ2)
(X − µ)2

)

= exp

(
− 1

2ρ

[
θ − ρ(

X

σ2
+

µ

τ2
)
]2)

exp
(
− 1

2(σ2 + τ2)
(X − µ)2

)
∝ P (θ | X)P (X)

where ρ = σ2τ2

σ2+τ2 . Hence, without complicated computation, we can induce:

θ | X ∼ N

(
ρ

(
X

σ2
+

µ

τ2

)
, ρ

)
(1)

X ∼ N(µ, σ2 + τ2)

Given N observations: X1, . . . , Xn,
X ∼ N(θ, σ2/n)

By replacing X and σ2 with −→X and σ2

n in (1), we get the following Bayes estimator:

θBayes =
τ2

σ2/n + τ2
X +

σ2/n

σ2/n + τ2
µ

= X − σ2/n

σ2/n + τ2
(X − µ)

Lemma 1

X ∼ h(X) exp(θ ·X − φ(θ))

For any prior π(θ), the posterior mean is

δπ(X) = ∇X log mπ(X)−∇X log h(X)

where mπ(X) =
∫

P (X | θ)π(θ)dθ.
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Consider the model f(x | θ), π(θ) with the conditional assumptions on parameters

π1(θ | θ1), π2(θ1 | θ2), . . . , πn(θn−1 | θn), πn(θn)

s.t.
π(θ) =

∫
π1(θ | θ1)π2(θ1 | θ2) · · ·π(θn)dθ1 . . . θn

Conditional Decomposition:

π(θ | X) =
∫

π(θ | X, θ1)P (θ1 | X)dθ1

where

π(θ | X, θ1) =
f(X | θ)π(θ | θ1)

m1(X | θ1)

and
m1(X | θ1) =

∫
f(X | θ)π(θ | θ1)dθ

Then

π(θ1 | X) =
m1(X | θ1)π2(θ1)

m2

Actually, we have the following decomposition

Eπ (h(θ) | X) = Eπ(θ1|X)
(
Eπ(θ|θ1,X)[h(θ)]

)


