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Monte Carlo EM

D = {X}, X ∼ P ( | θ)

In M-step,

θ = arg max P (D | θ)
= arg max P (XH , XV | θ)

XH , XV denotes hidden and visible data respectively.

L(θ) = 〈 log P (XH , XV | θ) 〉P (XH |XV ,θ)

X
(n)
H ∼ P (XH | XV , θ)

L(θ) =
∫

log P (XH , XV | θ) P (XH | XV , θ)dXH

≈ 1
M

M∑
m=1

log P (X(m)
H , XV | θ)

θML = arg max
θ

M∑
m=1

log P (X(m)
H , XV | θ)

When M = 1, it becomes stochastic EM.

Data Augmentation

For Bayesian Inference, we want to get

P (θ | XV )
θ ∼ P (θ | XV )

But it is hard to margin out XH . Suppose

θ ∼ P (θ | XH , XV )
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is easy.

P (θ | XV ) =
∫

P (θ | XH , XV )P (XH | XV )dXH

P (XH | XV ) =
∫

P (XH | θ, XV )P (θ | XV )dθ

Initially, suppose we have samples θ(1), θ(2), . . . , θ(m), which could be interpreted as an estimation of distri-
bution of θ given XV .

In I-step (I for Imputation), draw

X
(m)
H ∼ P (XH | θ(m), XV )

In P-step (P for Posterior), draw

θ(m) ∼ P (θ | X(m)
H , XV )

Repeat the I-step and P-step iteratively.
Finally,

P (θ | XV ) ≈ 1
M

∑
P (θ | X(m)

H , XV )

Invariant Distribution

From this point, we will not distinguish XH and θ, viewing them both as hidden variables.

How to draw sample?

X ∼ P (X)

X(1), X(2), . . . , X(m) are a sequence of samples.

Assume X follows a Markov Chain, so that

X(t) ∼ P (X | X(t−1), . . . , X(1)) = P (X | X(t−1))

X(1) ∼ P0(X)

Let Tm denotes the transition probability of the Markov Chain, that is

Tm(X(m), X(m+1)) = P (X(m+1) | X(m))

Homogeneous Markov Chain: Tm = T

Definition

Define Invariant Distribution (ID):
P is an ID with respect to T if

P (X) =
∑

X′
T (X ′, X)P (X ′)
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Detail Balance

If P (X)T (X, X ′) = P (X ′)T (X ′, X), then P is an ID with respect to T .

Proof.

P (X) = P (X)
∑

X′
T (X,X ′)

=
∑

X′
P (X)T (X,X ′)

=
∑

X′
P (X ′)T (X ′, X)

According to the definition of I.D., it is proved.

Ergodicity

Ergodicity: Sampling using T , and starting from P0. If Pm → P , when m →∞.

In order to have Ergodicity, P must be I.D. with respect to T . (Necessary condition)

In addition, if T (X, X ′) > 0, then Ergodicity must be held. (Sufficient condition)

Theorem If P ∗ is I.D. with respect to T ,

Pm+1(X) =
∑

X′
T (X ′, X)Pm(X ′)

γ = min
X′

min
X:P∗(X)>0

T (X ′, X)
P ∗(X)

> 0

Then, lim
m→∞

Pm(X) = P ∗(X)

Proof. Prove by induction. Suppose

Pm(X) = [1− (1− γ)m]P ∗(X) + (1− γ)mrm(X)

rm is an arbitary distribution. Since γ < 1, it is a convex combination.

1) m = 0, let r0 = p0
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2)

Pm+1(X) =
∑

X′
T (X ′, X)Pm(X ′)

= [1− (1− γ)m]
∑

X′
T (X ′, X)P ∗(X ′) + (1− γ)m

∑

X′
T (X ′, X)rm(X ′)

= [1− (1− γ)m]P ∗(X) + (1− γ)m
∑

X′
rm(X ′)[T (X ′, X) + γP ∗(X)− γP ∗(X)]

= [1− (1− γ)m+1]P ∗(X) + (1− γ)m
∑

X′
rm(X ′)

T (X ′, X)− γP ∗(X)
1− γ

rm+1 =
∑

X′
rm

T (X ′, X)− γP ∗(X)
1− γ

By definition of γ, rm+1 is a distribution. (Sum to 1 and be all non-negative.)

Metropolis Hasting

X ′ ∼ q(X, X ′) = P (X ′ | X)

A(X, X ′) = min(1,
P (X ′)
P (X)

q(X ′, X)
q(X, X ′)

)

Accept X ′ with probability A(X,X ′). That is, if yes, Xt+1 = X ′, otherwise Xt+1 = X (Xt)

T (X, X ′) = q(X,X ′)A(X,X ′)

We can show T (X,X ′) satisfied Detail Balance.

Proof.

P (X)T (X,X ′) = P (X)q(X,X ′)A(X,X ′)

= P (X)q(X,X ′)min(1,
P (X ′)
P (X)

q(X ′, X)
q(X, X ′)

)

= min(P (X)q(X, X ′), P (X ′)q(X ′, X))

Similarly,

P (X ′)T (X ′, X) = P (X ′)q(X ′, X)A(X ′, X)
= min(P (X ′)q(X ′, X), P (X)q(X, X ′))
= P (X)T (X, X ′)

Proof done.

Therefore, P (X) is I.D. with respect to T . We can evaluate P (X) on P̃ (X).


