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Monte Carlo EM

D={X}, X~P(]0)
In M-step,

0 = argmax P(D | 9)
= argmax P(Xg, Xy | 0)

X, Xv denotes hidden and visible data respectively.
L(0) = (log P(Xu, Xv | 0) ) p(xu|xv 0)
X~ P(Xy | Xv,0)

L(G) = /IOgP(XH,XV | 9) P(XH ‘ Xv,e)dXH

M
1 ,
~ 1 > log P(X[1Y, Xy | 0)

m=1

M
ML _ (m)
0V = arg max Z log P(X} 7, Xv | 9)

m=1

When M =1, it becomes stochastic EM.

Data Augmentation

For Bayesian Inference, we want to get

PO | Xv)
6~ P9 | Xy)

But it is hard to margin out Xg. Suppose

0~ PO | Xi, Xv)
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is easy.
PO| Xv) = /P(9 | Xu, Xv)P(Xy | Xv)dXy
PO | Xv) = [ PO | 0.X0)P(0] X0)d0
Initially, suppose we have samples (1), ) .. (™) which could be interpreted as an estimation of distri-

bution of 8 given Xy .

In I-step (I for Imputation), draw
Xgn) ~ P(Xy | 0™, Xv)
In P-step (P for Posterior), draw
00" ~ PO | X, Xy)

Repeat the I-step and P-step iteratively.
Finally,

1 m
PO | Xv)~ 57 3 PO | X, Xv)

Invariant Distribution

From this point, we will not distinguish Xy and 6, viewing them both as hidden variables.
How to draw sample?

X ~ P(X)

XM x@ X are a sequence of samples.
Assume X follows a Markov Chain, so that

XO o px | xED  xW)y = px | XEY)

XM~ Py(X)
Let T, denotes the transition probability of the Markov Chain, that is

Tm(X(m),X("L+1)) — p(X(m—H) | X(M))

Homogeneous Markov Chain: T, =T

Definition

Define Invariant Distribution (ID):
P is an ID with respect to T if

P(X) =) T(X', X)P(X')
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Detail Balance

If P(X)T(X,X') = P(X")T(X', X), then P is an ID with respect to T

Proof.
P(X)=P(X)) T(X,X')
X/
=Y P(X)T(X,X')
X/

=> PX)T(X' X)
5

According to the definition of I.D., it is proved.

Ergodicity

Ergodicity: Sampling using T, and starting from Py. If P,, — P, when m — oc.

In order to have Ergodicity, P must be I.D. with respect to T. (Necessary condition)
In addition, if T(X, X’) > 0, then Ergodicity must be held. (Sufficient condition)
Theorem If P* is I.D. with respect to T,

Pria(X) =) T(X', X)Pn(X)
5

) . T(X" X)
= min m I ——
TN X:P+(X)>0 P*(X)

Then, lim P, (X)= P*(X)
m—00

>0

Proof. Prove by induction. Suppose

B (X) = [1 = (1 =9)"P*(X) + (1 = 7)"rm(X)

rm 18 an arbitary distribution. Since v < 1, it is a convex combination.

1)m=0,let ro =pg
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2)
P (X ZT (X', X)Pn(X")
= ZTX’ P*( ZTX’ )7m (X)
=[1= (1 =y)"P(X)+ (1 =)™ ra(X)T(X', X) + 7 P*(X) = yP*(X)]
m * m T X/,X *"}’P* X
= (1= (1= )PP () 4 (1= )™ 3 ) T 2P0
X' -7
T(X', X P*(X
gl = Zrm ( 1)_ 7P (X)
X/
By definition of v, 7,41 is a distribution. (Sum to 1 and be all non-negative.) O

Metropolis Hasting

X'~ q(X,X') = P(X' | X)
P(X') (X', X),
P(X) (X, X))

A(X, X") = min(1,

Accept X’ with probability A(X, X’). That is, if yes, X*! = X', otherwise X't = X (X?)

T(X,X")=q(X,X")AX,X")

We can show T'(X, X') satisfied Detail Balance.

Proof.
PX)T(X,X") = P(X)q(X,X")A(X, X")
B P(X")q¢(X", X)
= P(X)q(X, X’) min(1, PX) (X X’))
= min(P(X)q(X, X'), P(X")q(X', X))
Similarly,
P(X"NT(X', X)=P(X")q(X', X)A(X', X)
= min(P(X")q(X’, X), P(X)q(X, X"))
=P(X)T(X,X")
Proof done. [

Therefore, P(X) is L.D. with respect to T. We can evaluate P(X) on P(X).



