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In general, learning graphical models involves trying to infer the best Bayesian Network from a dataset of
independent samples. Graphical model learning can be broadly separated into two categories: structural
learning, wherein one might try to estimate graphical connections and the implied independences, and
parameter learning, where one might seek to estimate specific conditional probabilities. This lecture covers
the latter.

1 Parameter Estimation for Completely Observed GMs of Given
Structure

In this section, we consider learning parameters for a Bayesian Network which has a known, fixed structure
G and is completely observable (i.e. our data samples include observations of all variables). Stated formally,
we are given a dataset of N independent, identically-distributed training cases D = {x1,...,xy). Each
training case @, = (Tn,1,...,%n M) 18 & vector of M values, one per node.

To address our problem of learning parameters in this context, we will describe how simple, completely-
observed, structure-fixed graphical models can be generalized into the exponential family of distributions.
This generalized reparameterization will allow us to write closed-form expressions for quantities that we are
interested (e.g. conditional probabilities, means, etc.). The simple graphical models that we describe in
detail are building blocks for more complex models, making the exponential family parameterization useful
for learning all graphical models.

1.1 Exponential Family
1.1.1 Formulation and Examples

The exponential family is a parametric set of probability distributions which characterize many common
examples in modern statistics, including the Bernoulli, Multinomial, Gaussian, Poisson, and Gamma distri-
butions. For a numeric random variable X described by an exponential family distribution, the PDF can be
written as:

plaln) = h(z)exp [T T(x) — A(n)]
1

= mh(ﬂc) exp [HTT(QU)]

with natural (canonical parameter) n. The function T'(z) is called the sufficient statistic because its output
is all that is required from the data to estimate 1. The function A(n) = log Z(n) is the log normalizer and
ensures the probability distribution can be integrated to unity.

We first demonstrate how a multivariate Gaussian distribution can be represented in terms of the exponential
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family canonical parameters and functions. First, the classic k-dimensional Gaussian distribution:

s ®) = s o0 { 5o - W7 - )
1

1 _ _ 1 —
:WeXP{_QTr(Z 1xxT)+uTZ 1x—§pTZ 1,u—1og|2|}

which is fully described by the k+ k? parameters that define the first two moments of the distribution, y and
3. Tr(-) is the matrix trace operation. We can represent this same distribution in the exponential family
representation,

1 1
n= |37 —5 vee (X[ =lm,vec ()],  m=%'pandni = —52—1

T(z) = [z;vec (za”)]

1 e 1 1
A(n) = Sp" St log D] = =3 Tr (nomni) — 5 log (—=2m2)
h(z) = (2m)~*/?

where vec(-) is an operation which flattens a matrix into a 1-D vector. The k+k? parameters in the canonical
1 vector fully capture the variability in the k-dimensional Gaussian previously parameterized by p and o.

As another example, we will show how the K-outcome multinomial distribution can be written in exponential
family form. We start by stating the familiar probability distribution in a form more representative of the
exponential family,

p(z|m) = mitmyt - = exp {Z Xk 1n7rk}

k

K-1 K-1 K-1
exp{Zxklnwar(l xK> In (1 7rk>}
k=1 k=1 k=

K—
= exp Zxﬂn( >+ln<l— 7rk>}
{ Zk 1 Tk k=1

Note, there are only K — 1 parameters to fit, as Zszl m, = 1. We follow by stating the explicit exponential
family representation,

==
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1.1.2 Moments

One particularly useful property of exponential family distributions is that we can easily compute their g-th
central moments through the g-th derivatives of the log normalizer A(n):

dA(n) _ _
T E[T(z)] = p
d*A(n) B

aZ Var [T'(z)]

where the expectation value of T'(z) is defined as the moment parameter p. Since the log normalizer’s first
derivative is p and its second derivative must be positive, then there exists some function ¢ which defines a
1-to-1 relationship between canonical and moment parameters,

n=1(p)
This property of the exponential family is particularly significant in inferring n. When performing MLE

on an exponential family distribution, we can maximize the log-likelihood, ¢, with respect to n, estimate p
directly, and then infer n using the v function.

;D) =y " logh(,) + (nT > T(%)) — NA(n)

Subsequently, we can find an estimate for the canonical parameter via fiyre = ¥(fimLg). This procedure is
called moment matching.

1.1.3 Sufficiency

In previous sections, we have seen that most of the distributions we encounter can be expressed in the form
of exponential family with appropriate T'(z) and 7.

However, why is this interesting and practically useful? It turns out that for p(z|f), T (x) is sufficient for 6
if there is no information in X regarding 6 beyond that in T'(x). For instance, if your boss wants you to do
inference w.r.t. 6, you do not need to save all data X but T'(x), the sufficient statistics.

To define this property more rigorously, we need the following.

In the Bayesian view, the posterior distribution of the parameter 6 is dependent of the data X. However,
the posterior of the parameter is independent of data X given sufficient statistics T'(z), i.e. p(0|T(z),z) =
p(0]T(x))(A). In the Frequentist view, our data is generated from some true parameter. Yet, the distribution
of our data x is dependent of the parameter 6 if given the sufficient statistics T'(x), i.e. p(z|T(x),0) =
p(x|T(2))(B).

If we combine these two views, we obtain the Neyman factorization theorem: The statistics T'(x) is sufficient
for the parameter 6 if both (A) and B hold.
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1.1.4 Examples

Here are some common distributions written in the general expoential family form.

For Gaussian, n = [~ y; f%Eil], T(x) = [x,mgT], A(n) = 2p"S 7+ Llog|S|, h(z) = (2m)~F/2,

1 1

For Multinomial, = [In = 0], T'(z) = [z], A(n) = —In (1 — 2K ) = In (B ™), h(z) =1,

TK

1
HUMLE = Nznxn

For Possion, n =log A, T(z) =z, A(n) = A =¢€", h(z) = %7

x!

1
HUMLE = Nznxn

1.2 Generalized Linear Models (GLIMs)

With the definition of Exponential Family Distribution, we can begin analyzing Generalized Linear Mod-
els(GLIMs). Suggested by its name, the definition of GLIM is very general.

1. The observed input z is assumed to enter into the model via a linear combination of its elements &,
where £ = 07 x.

2. The conditional mean g is represented as a function f(£) of £, where f is known as the response
function.

3. The observed output y is assumed to be characterized by an exponential family distribution p with
conditional mean pu.

Then the model E,(y) = u = f(0Tz) is called a GLIM. Some basic examples of GLIM include:

1. Linear Regression

Assume the target variable y and the inputs are related by the equation: 1; = 67X, + ¢;,where

¢ ~ N(0,0). Then we have p(y;|z;,0) = —= exp—%. To estimate 6, we can apply LMS

2mo
algorithm (a gradient ascent/descent).

2. Logistic Regression(sigmoid classifier, perceptron,etc.)

In logistic regression, the condition distribution is p(y|x) = p(x)¥(1 — u(z))' =Y, where u(x) = ﬁ
and y € {0,1}. To estimate parameter 6, we can either directly apply brute-force gradient method or
generic laws by observing that p(y|z) is a GLIM.

More advanced examples of GLIM include:

1. Markov Random Fields, where p(X) = % exp (X jen, 0i; Xi X; + £:0,0X;)
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2. Restricted Boltzmann Machines, where
p(z, h|0) = exp{%ibigi(z:) + X;0;0;(h;) + i ;0i0i,(w, hy) — A(0)}
3. Conditional Random Fields, where

polle) = (0, 2) exp{Sabef(wene))

and all X; are assumed as features that are inter-dependent.

A more formal view of GLIMs is the following:

parameter 6 and data z — & EN I 5 N RXP y, where f is some response function, ¥ is some reversible
transformer corresponding to the T' operator before, and EXP is some exponential family distribution we
use.

Notice that the choice of exp family distribution is constrained by the nature of the data y. For example,
if y is a continuous vector, then multivariate Gaussian is a reasonable choice. However, if y is a class label,
using Bernouli or multinomial is more favorable.

We also have some mild constraints for the choice of response function, such as positivity. There also exists
some canonical response functions for different models.
e Gaussian, y =17

e Bernoulli, y = %

multinomial, y; = k7
J

Poisson, p = e

& gamma, [ = —77_1.

1.3 Learning GLIMs
1.3.1 MLE for GLIMs with natural response

For example for log-likelihood,

= Z log h(yn) + Z(QT:{:nyn — A(nn))

n

note that here 87z, acts as the natural parameters for the exponential family distribution. Take derivative
of the log-likelihood,

d dA(ny) dny,

= (4o — ptn)n

=X"(y—p)
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Note that this is a fixed point function since p is a function of 6. This can be used as a generic learning rule
in online learning for canonical GLIMs. The stochastic gradient ascent is given by

0" = 0" + p(yn — up,)n

where p!, = (6" x,, p is a step size

Alternative to stochastic gradient descent to speed up is batch learning algorithm:

dadeT - deT Z
_ dpin
- Z n gt

_ _ Z d,un dny,
on dny, doT

:_and“" 2!

7L

= —XTWX

where the second but last equality is due to n,, = 67 x,,. X = [2]] is the design matrix and W = diag( dp; )Z 1
can be computed via the second derivative of A(n,,).

After obtaining Hessian H = —XTW X together with jacobian, we can apply Iteratively Reweighted Least
Squares (IRLS).

Recall Newton-Raphson methods
0"t = 0"+ H'Vvol
“HHO" + Vo)
_ (XTWtX)_leWtZt

where 2! = X0' + (W?')~1(y — u?) is the adjusted response. This can be understood as solving the the
iteratively reweighted least squares problem

0" = arg mein(:z: — X0)TW(z — X0)

1.3.2 Examples: Logistic and Linear regression

For logistic regression, conditional distribution is given by a Bernoulli

p(ylz) = p()?(1 — p(x)) Y

where p(z) = We know p(y|z) is an exponential family function with mean E(y|z) = p =

1
1+e—n(x)

W
and canonical response function 7 = 7 2. Hence from previous section we know IRLS updates with
dp
°E (1 —
an (1 —p)

W = diag(p; (1 — pi);y)
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For linear regression, condition distribution is a Gaussian
0,%) = ! L Tyt
p(ylz,0,%) = WGXP{—i(y—H(x)) (y — p(z))}

= h(x) exp{—%Eil(UT(l‘)y —An))}

T

where p(z) = 0Tz = n(z). Thus p(y|z) is an exponential family function with E(y|z) = p = 672 and

canonical response function 7; = 6T 2. Since Z—ﬁ; =1 thus in IRLS W = I hence
9t+1 _ et + (XTX)leT(y o ut)

which is reduced to steepest descent. If further take ¢ — oo we get the normal equation

6= (XTXx)1xTy

Remember that simple GMs (with one or two nodes) are the building blocks of complex GMs.

1.4 MLE for General BNs
1.4.1 Example

Assume the parameters for each CPD are globally independent and all nodes are fully observed then the
log-likelihood function decomposes into a sum of local terms, one per node.

1(0, D) = logp(D|0)
= log Hn (Hlp(xn,i |Xn,7'r7~,7 91))

= Z(Z log p(@n i|Xn,x;, 0:))

which allows us to utilize what we have learned from the small GM to instantiate each term in the above
equation and get the result for general GM.

1.4.2 Decomposable Likelihood of a BN

Distribution defined by the DAG GM

p(x]0) = p(x1|01)p(x2|21, 02)p(23|21, 03)D(T4|T2, 73, 04)

leads us to learn four separate small BNs, each of which consists of a node and its parents.

Suppose now each CPD is represented as a table (multinomial) where
Gijk = p(Xz = ]|AX'7‘—1 = k)

and the sufficient statistics are counts of family configurations

. _§ : Jj .k
Nijk = xn,ixn,m
n
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and the log likelihood is

1(0, D) = log I, 1" = Znijk log 0; .
i,k

Using a Lagrange multiplier to enforce ) ;Oijk =1 we get

ML _ ik
ML — W%
X ik

In summary, learning BN with more nodes rely on local operations which build off that.

2 Parameter Estimation for Partially Observed GMs: EM Algo-
rithm

2.1 Unobserved Variables

In previous sections we have seen parameter estimation for fully observed graphical models. However, often
in practice some random variables in a graphical model may be unobserved, and for various reasons. Some
random variables are imaginary quantities designed to capture the abstract data generation process and thus
are not physically measurable (e.g. the latent variables in speech recognition models and mixture models);
some others may be unobserved because of faulty sensors. As we will see, the fact that there are unobserved
random variables makes parameter estimation trickier. Nonetheless, partially observed graphical models
models remain useful in practice, and we will see how to use Expectation-Maximization to estimate their
parameters.

2.1.1 Why is Learning Harder for Partially Observed GMs?

Let’s consider the case of Gaussian Mixture Models, where the data is sampled from a mixture of Gaussian
distributions by first sampling Z, the class indicator vector, and then sampling X from a Gaussian distribu-
tion with a class specific mean and co-variance matrix.

We can estimate the parameters of the graphical model using MLE. In a fully observed setting where Z
is observed, we maximize the log likelihood function

Le(0;x, 2) = log p(x, 210) = log p(x, 2|0..) + log p(x|z, 0,)

which factors nicely into two terms with decoupled parameters 6, and 6, which can be optimized individually.

If we do not observe Z, then the likelihood function is the following,
£.(0;2) = log p(al0) = log 3 p(a, 210)

where parameters 6, and 6, become coupled via marginalization. This objective is much harder to optimize
than the objective in the fully observed setting. In the following sections, we will see the EM algorithm and
how it can be seen as optimizing a surrogate of this objective.
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2.2 Expectation-Maximization

Again let’s consider Gaussian Mixture Models. Our goal is to estimate parameters of the GMM given par-
tially observed data. We have just seen that the fully observed objective for GMM is much easier to optimize
than the partially observed objective. What we are missing in the partially observed setting is the value for
the latent variable Z. Hence, the goal of the E-Step step is to compute the expectation of Z so that the
M-step can perform parameter estimation similar to how it is done in the fully observed setting, but using
the expected value of Z (and in general its sufficient statistics) rather than the value of Z.

This can be formulated as follows, in the E-step, we compute the expected value of the the hidden variables
(i.e. zF) given the current estimate of the parameters,

() pr () $(b)
k(t) _ (k ik ) w(t) m N(zn|p'”, 5)
Tn - <Zn>q(t) = p('zn - 1|:E>/1' 72 ) Z o t)N(xn“j)(t E(t))

In the M-step, we perform parameter estimation using the current expected values for the hidden variables.
We are optimizing the expected complete log likelihood which is discussed with more detail in Section 2.3.

D SR O D A 0|

Tk = N - N N
e = Zath
2onT
k(t)( Hét-i—l))(

S

Tn — HEJH))T

E](;—Q—l) Z

2.3 Complete and Incomplete Log Likelihoods

Using MLE, we want to learn the model parameters that maximize the likelihood of the data. In other
words, we want to maximize the complete log likelihood, defined as

Ce(0; 2, 2) == log p(x, 2|0)

Maximizing this would be easy if all the variables were observed. However, when z is not observed, we
instead have an incomplete log likelihood,

L.(0; ) = log p(x|0) = log Zp (z,2]0)

This objective doesn’t decouple, so we cannot maximize it directly. Instead, we try to maximize a surrogate
that lower bounds the objective we want. For any distribution ¢(z) we define the expected complete log
likelthood as

{te0;2,2))q ==Y a(z|z,0)log p(x, 2|0)

z
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We can see that this is a lower bound using Jensen’s inequality. The proof is as follows

€(0; ) = log p(x|0)

= log Zp(x, z|6)
p(z, 2(0)
1ogz z|x

p(x, 2|0
S logmlg

= <60(93 z,2))q + Hy

2.4 EM as Maximizing Free Free Energy

We define the free energy as follows:

F(q,0) =Y q(z|z)log p(z,2|0)

) = (Le(0;2,2))q + H,y

z

Note that this is the second-to-last expression in the previous proof. Then we can view the EM algorithm
as coordinate ascent on F.

2.4.1 E-Step

In the E-step, we maximize over ¢, and we can show that the solution is
¢t = argmax,F(q,0") = p(z|z,0")

We can prove this by showing that this choice of ¢**! achieves the upper bound on F that we derived in the
previous section

p(x, z|0¢
F(p(z|z,0"),0") = Zp |x9tlog(|0t

= Zp (z|z,0") log p((0")

= log p(x|60")
= 0(0"; )

Given this result, we assume WLOG that p(z, z|0) is a generalized exponential family distribution. Then
the expected complete log likelihood is

<€c(9t; x, Z)>qt+1 = Z q(z‘gj, Qt) logp(x, Z‘Qt) - A(@)
= Z 9:<fz(-r7 Z)>q(z|$’gt) — A(Q)

M Z 01 (1i(2))q el 00 o) — A(6)
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2.4.2 M-Step

In the M-step, we now maximize over §. We note that in the definition of free energy, the H, term does not
depend on 6, so we are just optimizing the first term.

0"t = argmaxy(£c(0; 7, 2)) +1 = argmax; Zq(2|x) log p(z, z|0)

z

Under optimal ¢'*1, this is equivalent to solving a standard MLE of the fully observed model p(x, z|#) with
the sufficient statistics involving z replaced by their expectations w.r.t p(z|z,6).

2.5 EM Algorithm for K-Means

In K-means, we assume there are K clusters and we want to find the parameters of the model (i.e. means of
the K clusters) and the hidden variable (i.e. cluster assignments of data points). We can estimate the means
iteratively by alternating between 1) computing cluster assignments at time t using the means at time t, and
2) using cluster assignments at time t to recompute the mean for the next iteration. This can be formalized
as follows, in E-step

2" = argming (z, — )78 (@ — )

and in M-step

LD 2.n 0(2 ),k‘)ﬂfn
>, 00 k)

2.6 EM Algorithm for Gaussian Mixture Models (GMMs)

In GMMs, we assume that we have some data that is sampled from a mixture of k& Gaussian distributions.
The data {z,} are observed, but we do not know the parameters for the Gaussian distributions {p, X}
Let z, be a latent class indicator vector and suppose we have a prior 7, = p(z*¥ = 1) on the class labels.
Then we can write its likelihood as

Zk
p(zn) = H(ﬂ'k) "
k
If we knew the class label for a data point, then the likelihood is
pl@nlzy =1, 1,8) = N (245 e Sr)
_ 1 1 Ts—1
= g o (gt w5 =)

Thus, we can combine the previous two equations and utilize the fact that z, is a binary indicator vector to
write the likelihood of z,,

p(anlp,X) Zp Tns 2 =11, X)
—Zp k= 1m)p(an|zk =1, 1,%)

= Zﬂk * N(2n; X))
k
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The complete log-likelihood is thus

<£c(9; z, Z)> = Z<10gp(zn|7r)>p(z|m) + Z<10gp(xn‘zna My E)>p(z\r)

= S ek tomm — S0 (G — ) S ) + log [l +C)
n k n k



