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1: Introduction
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Basic Probability Concepts

Figure 1: Multiple variables in a graph

• Representation: What is the joint probability distribution on multiple variables?

P (X1, X2, X3, X4, X5, X6, X7, X8) (1)

There are 28 state configurations in total. But do they need to be all represented? Do we get any sci-
entific/medical insight? One of the main benefits of graphical models is the cost savings in representing
the joint distribution. Modeling the dependencies among the variables with a graph and conditionals
can drastically reduce the number of parameters needed to describe the joint distribution, compared
to what we would get with a full joint distribution table.

• Learning: Where do we get all these probabilities? Should we use maximum likelihood estimation?
but how many data do we need for that? Could we use other estimation principles? Where do we
incorporate domain knowledge in terms of plausible relationships between variables, and plausible
values of the probabilities?

• Inference: If not all variables are observable, how do we compute the conditional distribution of
latent variables given evidence? Computing P (H | A) in Figure 1 would require summing over all 26

configurations of the unobserved variables: that requires a lot of compute power.

Multivariate Distribution in High-Dimensional Space

We start with an example from biology and represent cellular signal transduction as follows (Figure 2).
Receptors A and B receive signal from cell surface, Kinases C, D and E read and decode the signal; TF F
takes in the signal and triggers production of DNA with DNA template and Genes G and H are expressions
of the DNA templates.
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Figure 2: A possible world for cellular signal transduction

Although Figure 2 is a good start to model cellular signal transduction, the additional domain knowledge
from biologist can be incorporated to impose a structure on the random variables A, B, C, D, E, F, G and
H. Figure 3 partitions the random variab les into compartments they live in within a cell. The dependencies
among the variables (nodes) are communication mechanisms and are modeled as edges. This representation
allows us to derive the joint probabilities among the random variables using the factorization law.

A Structured View From Domain Experts

Figure 3: Dependencies among variables are represented in a directed acyclic graph
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What are Graphical Models

Informally, a graphical model is a just a graph representing relationship among random variables. Nodes
are random variables (features, not examples) and edges (or absence of edges) represent relationships or
dependencies among random variables.

The notion of relationship varies depending on the graph. For example, in Figure 4, the graphical model is
a representation of co-occurrences within a page between major Biblical figures.

Figure 4: Graphical representation of co-occurrences of Biblical figures within a page

Relationship between Two Random Variables

Rigorously defining each component of a graphical model is crucial in avoiding multiple representations of
the same phenomenon by different people, and as part of such effort we first delve into rigorously defining
possible relationships between two random variables. The random variables may potentially have many types
of relationships (some of which are listed in p.10), and to be rigorous we look for “one-number measures” to
serve as summaries that quantitatively represent the presence, absence, or strength of such relationships.

Again, there are many such measures, some of which are listed and discussed below, and each has its
adequacies and inadequacies. Choosing a measure is not a trivial task in the sense that, while one can
arbitrarily choose one such measure, draw a graph out of data, and provide convincing “stories” out of the
graph, unless the measure is chosen rigorously, the argument can be rather easily overthrown by counter-
examples from the same data. It is thus vital to understand what each measure entails.

Pearson’s Correlation

Pearson’s correlation (denoted as ρ) is one of the most well-known and fundamental measures of associ-
ation between random variables that is defined as follows:

ρ(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
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Still, there are two important caveats to note:

1. Two independent variables are uncorrelated; however, the reverse does not hold. For example, let
random variables X, Y be such that X ∼ U [−1, 1] and Y = X2. Then while it is evident that Y
(deterministically) depends on X, they are uncorrelated since:

Cov(X,Y ) =E[XY ]− E[X]E[Y ]

=E[XY ] (∵ E[X] = 0)

=E[X3] = 0 (∵ X is not skewed)

2. Pearson’s correlation only captures linear dependence, as can be seen from the example above. This
in turn means Pearson’s correlation is very weak in terms of capturing independence.

Strong(er) Measures of Association

The limitations of Pearson’s correlation introduced above calls for stronger measures, ones that can capture
non-linear dependences and thus independences. In fact, for the following two measures we bring in the very
definition of statistical independence between random variables to construct measures.

Exploiting the fact that the joint density PXY of two jointly-distributed random variables X and Y can be
factorized as PXPY if and only if they are independent of each other, we quantify the ”distance” between the
joint density PXY and the product of marginals PXPY . Indeed, this approach guarantees that the distance
= 0 iff X and Y are independent.

Mutual Information

One of the most common measures of distance between two densities P and Q is Kullback-Leibler diver-
gence, or KL-divergence in short:

KL(P,Q) =

∫
x∈X

P (x) log
P (x)

Q(x)
dx

KL divergence returns 0 when P and Q are equal, i.e. P (x) = Q(x), ∀x ∈ X , and a larger positive
value as P and Q deviate further from each other. Since we likewise want the distance to be 0 when
PXY (x, y) = PX(x)PY (y), ∀(x, y) ∈ X × Y and positive otherwise, we can utilize KL divergence to obtain
our desired measure, known as mutual information:

I(X,Y ) = KL(PXY , PXPY )

This measure indeed successfully captures non-linear dependences. However, it poses computational issues
since integration over complex combination of non-Gaussian, multi-modal, and possibly even non-parametric
densities is a significant challenge.

Hilbert-Schmidt Independence Criterion (HSIC)

A recent finding that also captures non-linear dependences is HSIC(Gretton et al. 2005). It’s defined as the
maximum mean discrepancy (MMD) between joint density PXY and product of marginals PXPY .
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Definition of MMD:
Let P, Q be any two densities,

MMD(P,Q) = ||µk(P )− µkQ||Hk

µk(P ) = EZ∼P [φ(Z)] (kernel embedding of P )

φ(Z) = feature map of kernel k

One important property of this measure is HSIC(X,Y ) = 0 if and only if X ⊥ Y . More details will be
covered in future lectures.

Towards Graphical Models: Partial Correlation

The measures of association between two random variables discussed in the previous sections can be used to
define a marginal correlation/dependency graph. This is the most primitive form of graphical model
in which we connect any pair of variables with a non-trivial pairwise correlation or mutual information or
HSIC.

The drawback is that this type of graphical model is not very informative due to the reason that two random
variables will have non-zero measure of association very rarely. We can almost always find some statistical
association between a pair of variables, either due to some underlying process that affects both variables or
sometimes due to random chance.

Consider the following example: define, X = height of kid, Y = vocabulary of kid, Z = age of kid. If
we compute a pairwise measure of association between these variables, we expect to find all of them to be
non-zero. However, we know from ‘common sense’ that the height of the kid and the vocabulary has no
direct relation, rather the age of the kid is the underlying variable affecting both these values. In this case, a
marginal dependency graph will have edges between all pairs of variables, but we can find a more informative
structural relationship.

Partial Correlation

We can define a new measure of correlation between two variables given another variable. We can think
of it as the correlation measured between two variables X and Y after conditioning on another variable Z,
or after eliminating the linear effect of Z. This is known as the partial/conditional correlation.

ρ(X,Y |Z) = ρ(eX , eY ) =
Cov(eX , eY )√

Var(eX)
√

Var(eY )

eX = X − (βT
XZ + interceptX)

eY = Y − (βT
Y Z + interceptY )

It is the correlation between the residuals from regressing Z to X and Z to Y linearly. In this sense, it is
similar to Pearson’s correlation.

X ⊥⊥ Y | Z =⇒ ρ(X,Y |Z) = 0

ρ(X,Y |Z) = 0 6=⇒ X ⊥⊥ Y | Z
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Partial Correlation Graph

We can now construct a more meaningful graphical model than the marginal dependency graph. We connect
a pair of variables if they have non-trivial partial correlation given the rest of the variables.

One possible issue with this model is that it is computationally expensive to compute the partial correlation
for every pair of variables conditioned on all the rest, since we need to first fit a (linear) regression for each of
the conditioned variables. However, it turns out the partial correlation matrix R has a simple form related
to the inverse covariance matrix Θ.

Rij = ρ(Xi, Xj |X−ij)

Rij = − Θij√
Θii

√
Θjj

Conditional Independence

As revealed in previous sections, it’s always helpful to reduce statistical and computational complexity if we
can point out conditional independence. The classical notation for conditional independence is X ⊥ Y |Z,
X,Y, Z are random variables. And we have the definition:

X ⊥ Y |Z ⇐⇒ P (X,Y |Z) = P (X|Z)P (Y |Z)

It’s a hard mission to extract conditional independence if we want to use strong dependency measures or
partial correlation as a tool. One shortcut is simply impose Gaussian assumption to the random variables of
interest. To be detailed, suppose (X,Y, Z) are jointly Gaussian, we have ρ(X,Y |Z) = 0 iff X ⊥ Y |Z. Many
papers rely on this fact though may not state it explicitly.

Figure 5: Summary of pairwise measures of association.
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Why Graphical Models?

”Graphical models” really refer to a way of thinking, not necessarily to any particular individual model.
They are a language for communication, computation, and development.

Probability theory provides the glue whereby the parts are combined, ensuring that the system as a whole is
consistent, and providing ways to interface models to data.

The graph theoretic side of graphical models provides both an intuitively appealing interface by which humans
can model highly-interacting sets of variables as well as a data structure that lends itself naturally to the
design of efficient general-purpose algorithms.

Many of the classical multivariate probabilistic systems studied in fields such as statistics, systems engi-
neering, information theory, pattern recognition and statistical mechanics are special cases of the general
graphical model formalism.

The graphical model framework provides a way to view all of these systems as instances of a common
underlying formalism.


