10-708: Probabilistic Graphical Models, Spring 2020
15:Case Study of Deep Generative Models: Text Generation

Lecturer: Eric P. Xing Scribe: hell, mingjiel, yukaih2, wenhaod

1 Text Generation Tasks and Center Goals

The goal of text generation is to generate natural language from input data or machine representations. It
spans a broad set of natural language processing (NLP) tasks. These tasks includes dialog system, machine
translation, summarization, description generation, captioning and speech recognition.

There are basically two center goals in all these tasks. The first center goal is generating human-like,
grammatical, and readable text, or so called natural language. The second goal is generating text that
contains desired information inferred from inputs. For example, in machine translation the generated target
sentence should has the same meaning with the source input sentence. In data description tasks, the
generated report should describe the input data table. And for other tasks like attribute control the generated
sentence should also contain the same kind of information as input like generating "I like this restaurant” for
a positive sentiment input. Same goals is also in conversation control that we should control conversation
strategy and topic to the specified input.

2 Common Model for Text Generation

We will first take a look at the first center goal: how to generate natural language.

2.1 Language Model
One of the most basic model for text generation tasks is language model. In language model, the sentence
y is modeled as a series of tokens y;, and the probability of the sentence pg(y) is computed by decomposing
the probability of the whole sentence across times steps, or tokens. And the probability of each token y; is
modeled by a conditioned probability to its previous sequencey;.;—1. The expression is as below:
y =y(1,y2, - yr) (1)
po(y) = Hp@(ytb’l:tfl) (2)
t

To implement this model, we can use recurrent neural networks like LSTM.

2.2 Conditional Language Model

In conditional language model, we can specify the context x to incorporate the input data . For example, in
machine translation, x is the input sentence. During the inference, the probability is conditioned on input

2 15:Case Study of Deep Generative Models: Text Generation

z. Expression is as below:
y = y(y1,92, - yr) (3)

po(y[x) = [[po(welyre—1,%) (4)

3 Common Learning Algorithm

3.1 Maximum Likelihood Estimation (MLE)

One of the most popular and simplest training method is Maximum Likelihood Estimation (MLE). In MLE,
we will maximize the data log-likelihood L(#) from the given ground truth data y*. The expression for
training is as below:

v =i, Y5: - U7) (5)

0= arggnaxL(H) = arg(gnaxpe(y*lx) = arggnaX(longe(yf IY1:t-1,%)) (6)
t

For the evaluation, we have different metrics for different tasks to evaluate similarity between the output and

ground truth. For example, BLEU is used for machine translation and ROUGE is used for summarization.

3.1.1 Two Issues of MLE

There are two issues of MLE. The first issue is called exposure bias [Ranzato et al., 2015]. In the training
process, the next token is predicted given the previous ground-truth sequence: (y;|y7.;_1,%). But in eval-
uation process, the ground truth is not exposed to the model. The next token is predicted given previous
sequence that are generated by the model it self: (¢|¥1.4—1,%). So if there is an error in the model, the error
will affect subsequent tokens. The second issue is the mismatch between training and evaluation criteria. As
described in the training and evaluation process, we use log-likelihood for training metrics but use BLUE
for evaluation in machine translation.

3.1.2 Possible Solutions

Reinforcement learning [e.g., Ranzato et al., 2015] is one of the solutions to deal with the mismatch between
training and evaluation criteria. In reinforcement learning, a reward function R(y,y™*) is defined on sequence
y and ground truth y*. And the training process is to maximize the expected reward. For example, if we
use BLEU as reward function R for translation tasks, then we will have the same metrics for training and
evaluation. Expression is as below:

mOaX Eps (¥) [R(Y7 y*)} (7)

But there are also problems for reinforcement learning. For example, the sequence space is extremely large
(50000°Y for a sentence with length of 50 and vocabulary of 50000). So there will be high variance and
poor exploration efficiency during training process. This means most of the time, the model may generate
something not very meaningful.

There are also many recent works to make training more practical. For example, Reward Augmented
Maximum Likelihood (RAML) [Norouzi et al.,16] adds reward-aware perturbation to the MLE data examples
to close the gap between training and evaluation criteria. RAML can also let the model see mistakes in the
data rather than just ground truth data. In Softmax Policy Gradient (SPG) [Ding & Soricut, 17], reward

15:Case Study of Deep Generative Models: Text Generation 3

distribution is used for effective sampling and estimating policy gradient. There are also other algorithms
like Data noising [Xie et al.,17] that adds random noise to data so that model is exposed to noise and mistake
during training time.

All these algorithms are special instances of a generalized entropy regularized policy optimization (ERPO)
framework. The differences are in the choice of rewards and the values of hyperparameters o and .

4 Generalized Entropy Regularized Policy Optimization (ERPO)

4.1 General Framework

The objective of the generalized ERPO is:

L(q,0) = Eq[R(y|y™)] — aK L(q(y|x)|lpe(y]x)) + BH(q) (8)

where py(y|x) is the sequence generation model, R(y|y*) is the reward function and ¢(y|x) is the variational
distribution. Therefore, in ERPO, the objective is to maximize the reward function under g, minimize the
KL divergence between q and the model pf, and regularized by the entropy of q.

The objective can be solved with an EM-style procedure.

In the E-step:

n+1 alog py (y[x) + R(yly~) 9
q"" (y[x) o< exp(s) 9)

In the M-step:
0" = argmax,yE n+1[log po(y|x)] (10)

« and B have implications for the algorithm. As a — oo, ¢"™' = p? and the objective corresponds to
minimizing KL divergence. As 8 — 00, ¢"*! becomes a uniform distribution and the objective corresponds
to maximizing the entropy of q.

4.2 MLE

MLE can be interpreted as a ERPO. Specifically, if the reward function is:

1 if y=y*
R=R)=
s(y1y") {—oo otherwise

and a — o0, = 1.

Then the E-step becomes:

(y[%) 1 if y=y*
X) =
ay 0 otherwise

4 15:Case Study of Deep Generative Models: Text Generation

and the M-step becomes:
6" = argmax, log pg (y*|x)

Therefore, MLE can be viewed as a policy optimization with a é-function reward. In this formulation, any
exploration beyond the training data will not be exposed to the model and this will result in exposure bias,
which is one of the drawback of MLE. On the other hand, due to the restriction, q becomes the empirical
distribution, so the implementation of the algorithm is very simple and efficient

4.3 RAML

In RAML [Norouzi et al., 16], the reward function can be a common reward such as the BLEU(y|y*). « = 0
and 8 = 1.

In this scenario, the E-step becomes:

q(y|x) oc exp(R(y,y™))

and the M-step becomes:
maxg[Eq [log po (y[x)]

Compared to MLE, RAML use a smoother reward function and it can be exposed to a larger exploration
space.

4.4 SPG

Softmax Policy Gradient (SPG) [Ding & Soricut, 17] is another special case of ERPO. The E-step and
M-step are the same as previous two methods, the reward function could be a common reward such as
BLEU(y,y*). The only difference is that in SPG we set &« = 1 and 8 = 0, which is contrary to the MLE
and RAML methods. The final updating equation is:

E-step: q(y|x) o« po(y|x)exp(R(y,y™))

M-step: max E, [log pe(y|x)]

SPG uses both the model distribution and the reward for exploration, therefore leading to the largest explo-
ration space. The advantage is that the chance to find the optimal solution is larger, while the disadvantage
is that learning difficulty is highly increased. Some training tricks are needed to resolve this difficulty.

4.5 Data Noising

Data Noising is also a special case of ERPO with « — 0 and § = 1. The difference is that the reward
function is a locally relaxed variant of Rs(y|y*). For example, we can use this reward function:

L ifdiff(y,y*) =1
—o0o otherwise

Rs(yly™) == { (11)

To implement this reward function, we can randomly replace a single token with another uniformly picked
token, which is much easier than adding reward-aware noise in RAML.

15:Case Study of Deep Generative Models: Text Generation 5

5 Interpolation algorithm

After introducing previous four algorithms, we can summarize them in a hyperparameter space. the explo-
ration space can be used to compare these methods, and the relation is shown below:

Data Noising
(R =relaxed Rg,a — 0, = 1) SPG
RAML (R=BLEU,a =1, =0)
MLE (R =BLEU,a = 0, =1)
(R=Rs,a—0,=1)
small exploration space large exploration space

Every algorithm corresponds to a point in the hyperparameter space and the position is defined by the
selection of reward function, «, and 8. From left to right, the exploration space increases. There exists a
trade-off here: when the exploration space is large, we will have better test performance in theory, but more
difficult for training.

An intuitive idea to balance this trade-off is interpolating among the algorithms. We can start from MLE
hyperparameter values, and then gradually anneal to the SPG hyperparameter values. This procedure will
make the training easy at the beginning and gradually increase the exploration space later.

6 Unsupervised Controlled Generation of Text

Recall that we have two central goals in text generation tasks. In previous sections, we have introduced
how to generate human-like, grammatical, and readable text. Next, we will focus on generating text that
contains desired information inferred from inputs.

Usually, we need lots of supervision data to achieve the second goal. Though tasks such as machine translation
and data description can easily acquire millions of data, for some tasks, we cannot access to these amounts
of data. For example, in attribute control task (i.e. modify sentiment from positive to negative) and
conversation control task (i.e. control conversation strategy and topic), there is nearly no existing supervision
data. Therefore, we have to consider unsupervised controlled generation method.

There are two kinds of generative level in general: sentence-level control and conversation-level control. Two
representative works of the sentence-level control are text attribute transfer and text content manipulation,
and target-guided open-domain conversation is a typically conversation-level control. In the following part,
we will mainly introduce these three tasks.

6.1 Text Attribute Transfer

The task is that, given a sentence, we want to modify this sentence to have a desired attribute value while
keeping all other aspects unchanged. Let’s say we want to transfer sentiment from negative to positive. Here
is an input sentence for example:

"It was super dry and had a weird taste to the entire slice.”
we want to modify the sentence to have a positive sentiment like:

”It was super fresh and had a delicious taste to the entire slice.”

6 15:Case Study of Deep Generative Models: Text Generation

The goal here is we want to change the content from ”dry” to ”fresh” and from ”weird” to ”delicious”, but
still keep all other aspects unchanged. The application of this kind of tasks can be like the personalized
article writing, conversation systems, and authorship obfuscation.

With formal formulation, given an input sentence x and the original attributes a,. For the target, we have
target sentence y and target attribute a,. Now we want to generate a target sentence y, where y has the
desired attributes a, and keeps all attribute-independent properties of x:

Task : (z,ay) =y
In the training setting, we only have (z, a), but no ((z, az), (y, ay)) for training. So the next is how we
can use this data available to train a particular conditional generation model in this case.

The solution is that we design an encoder, which encodes the input sentence as a feature vector z. And we
concatenate this feature vector with the attribute, where the value is a, for the positive sentiment or 0 for
the negative sentiment. Then we feed the concatenated input into a decoder to generate y, where the model
can be represented as:

po(ylz, ay)

The key intuition for learning is we decompose the task into competitive sub-objectives and use direct
supervision for each of the sub-objectives.

The first objective is we want y to keep all attribute-independent properties of x, which means y must be
fairly close to the input of x. So a very straightforward and simple way is to enforce the similarity between
x and y, where we just use the auto-encoding loss:

(x,a,) = x

The second objective is we want y has the desired attributes a,, where we use a classification loss given the
produced y sample to a pre-trained sentiment classifier f:

9~ polyle, ay), f(§) = ay

So there are basically two loss functions and we will optimize these two loss functions jointly.

6.2 Text Content Manipulation

The goal here is that we want to generate a sentence to describe the contents in a given data record like
controlling the writing style by using the writing style of a reference sentence.

The method is pretty similar to the one in ”Text Attribute Transfer”, where we also decompose the task
into competitive sub-objectives and use direct supervision for each of the sub-objectives.

6.3 Target-guided Open-domain Conversation

There are basically three sets of conversation systems.

15:Case Study of Deep Generative Models: Text Generation 7

The first set is the Task-oriented dialog, where we use this dialogue system to address the specific tasks like
booking a flight or reserving a restaurant. However, the task-oriented dialog is a close domain conversation,
which means the conversation system can only do a specific task, not any anything else.

The second set is Open-domain chit-chat conversation. The goal is to improve the user engagement, and
the metric is how long this chat bot can keep it conversing with a human, where the conversation is random
without any control of topics or other aspects.

The third set is Target-guided conversation, which combines previous two types of conversation. It is still
an open-domain conversation that basically can converse with human about whatever topic, but it controls
the conversation strategy to reach a desired topic at the end of the conversation at the same time.

There are two goals for target-guided open-domain conversation. The first goal is to reach a desired topic in
the end of conversation starting from any topic. The second goal is to achieve a smooth transition in natural
conversation.

The challenge is that we have no supervised data for the task. The solution to this problem is using
competitive sub-objectives and partial supervision. More specifically, we use rich chit-chat data to learn
smooth single-turn transition for generating natural conversation. We can also use rule-based multi-turn
planning to reach desired target, that means use keyword of each response to guide the topic closer to the
target at each step. The basic step is as follows. At first, we extract keyword from the input sentence. Then
we use the learned kernel-based topic transition and target-guided rule to transit to keywords that are close
in the word embedding space and make sure the next keywords must get closer to the target keyword. At
last, keyword conditional response retrieval is done to generate the conversation.

