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Latent Variable Models

Ho. et al. 2012

Sequence models

Parsing
Mixed membership models
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Latent Variable PCFG [Matsuzaki et al., 2005, Petrov et al. 2006]

PCFG Latent Variable PCFG
S	

NP	 VP

NP	

X1 X2 X3 X4 X5

DT	 NN		 VBD

DT	 NN	

The								bear								ate					the								fish

S	(H1)	

NP	(H2) VP	(H3)

NP	(H4)

X2 X3 X4 X5

DT	(H5)	 NN	(H6)	 VBD	(H7)	

DT	(H8)	 NN	(H9)	

The								bear								ate					the								fish
X1
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Learning Parameters (EM)

Since latent variables are not observed in the data, we have to 
use Expectation Maximization (EM) to learn parameters

• Slow
• Local Minima

latent variables 
(unobserved in 
training data)

Observed variable
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Spectral Learning

q Different paradigm of learning in latent variable models based on linear algebra

q Theoretically,
q Provably consistent
q Can offer deeper insight into the identifiability

q Practically, 
q Local minima free
q As of now, performs comparably to EM with 10-100x speed-up
q Can also model non-Gaussian continuous data using kernels (usually performs much better 

than EM in this case)
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Related References

q Relevant works
q Hsu et al. 2009 – Spectral HMMs (also Bailly 2009)
q Siddiqi et al. 2009 – Features in Spectral Learning
q Parikh et al. 2011/2012 –Tensors to Generalize to Trees/Low Treewidth Graphs
q Cohen et al. 2012 / 2013 – Spectral Learning of latent PCFGs

q Will present it from “matrix factorization” view:
q Balle et al. 2012 – Connection between Spectral Learning / Hankel Matrix Factorization
q Song et al. 2013 – Spectral Learning as Hierarchical Tensor Decomposition
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Focusing on Prediction

q In many applications that use latent variable models, the end task is not to recover the 
latent states, but rather to use the model for prediction among observed variables.

q Dynamical Systems – Predict future given past

future
past
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Focusing on Prediction

q We will only be concerned with quantities related to the observed 
variables:

q We do not care about the latent variables explicitly.

q Do we still need EM to learn the parameters?
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But if we don’t care about the latent variables....

q Why don’t we just integrate them out?

q Because integrating them out results in a clique L
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Marginal Does Not Factorize

Does not factorize due to the outer sum (Can somewhat distribute 
the sum, but doesn’t solve problem)
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But isn’t an HMM different from a clique?

q It depends on the number of latent states.

q Consider the following model.
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If H has only one state.....

q Then the observed variables are independent!
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What if H has many states?

q Let us say the observed variables each have m states.

q Then if H has m3 states then the latent model can be exactly equivalent to 
a clique (depending on how parameters are set).

q But what about all the other cases?
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The Question

q Under existing methods, latent models all require EM to learn regardless 
of the number of hidden states.

q However, is there a formulation of latent variable models where the 
difficulty of learning is a function of the number of latent states?

q This is the question that the spectral view will answer.
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Sum Rule (Matrix Form)

q Sum Rule

q Equivalent view using Matrix Algebra
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Chain Rule (Matrix Form)

q Chain Rule

q Equivalent view using Matrix Algebra

q Note how diagonal is used to keep Y from being marginalized out.

Means on diagonal
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Graphical Models: The Linear Algebra View

q In general, nothing we can say about the nature of this matrix.

A and B have m 
states each.
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Independence: The Linear Algebra View

q What if we know A and B are independent?

q Joint probability matrix is rank one, since all rows are multiples of one 
another!!
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Independence and Rank

q What about rank in between 1 and m?

has rank m (at most)

has rank 1
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Low Rank Structure

q A and B are not marginally independent (They are only conditionally 
independent given X).

q Assume X has k states (while A and B have m states).

q Then,             

q Why?
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Low Rank Structure

=

𝒓𝒂𝒏𝒌 ≤ 𝒌 𝒓𝒂𝒏𝒌 ≤ 𝒌 𝒓𝒂𝒏𝒌 ≤ 𝒌 𝒓𝒂𝒏𝒌 ≤ 𝒌
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The Spectral View

q Latent variable models encode low rank dependencies among variables 
(both marginal and conditional)

q Use tools from linear algebra to exploit this structure.
q Rank
q Eigenvalues
q SVD
q Tensors
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A More Interesting Example

𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒

k states

m states

has rank k
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Low Rank Matrices “Factorize”

m by n

We already know one factorization!!!

m by k k by n

If M has rank k

Factor of 4 variables Factor of 3 variables

Factor of 1 variable

Factor of 3 variables
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Alternate Factorizations

q The key insight is that this factorization is not unique.

q Consider Matrix Factorization. Can add any invertible transformation:

q The magic of spectral learning is that there exists an alternative 
factorization that only depends on observed variables!
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An  Alternate Factorization

q Let us say we only want to factorize this matrix of 4 variables 

such that it is product of matrices that contain at most three observed
variables e.g. 

©Eric Xing @ CMU, 2005-2020 26



An  Alternate Factorization

q Note that

q Product of green terms (in some order) is

q Product of red terms (in some order) is 

©Eric Xing @ CMU, 2005-2020 27



An Alternate Factorization

factor of 4 variables factor of 3 variables factor of 3 variables

Caveat: some factors are no longer probability tables (do not have 
to be non-negative)

Advantage: Factors are only functions of observed variables! Can 
be directly computed from data without EM!!!!

We will call this factorization the observable factorization.
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Graphical Relationship

𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒
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Another Factorization

q Seems we would do better empirically if you could “combine” both 
factorizations. Will come back to this later.
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Relationship to Original Factorization

q What is the relationship between the original factorization and the new 
factorization?

Can I choose S to get the observable factorization?
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Relationship to Original Factorization

q Let 
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Our Alternative Factorization

q It may not seem very amazing at the moment (we have only  reduced the 
size of the factor by 1)

q What is cool is that every latent tree of V variables has such a 
factorization where:

q All factors are of size 3
q All factors are only functions of observed variables

factor of 4 variables factor of 3 variables factor of 3 variables

©Eric Xing @ CMU, 2005-2020 33



Generalizing To More Variables

q Consider HMM with 5 observations. Using similar arguments as before 
we will get that:

reshape and decompose 
recursively
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Training / Testing with Spectral Learning

q We have that

q In training, we compute estimates:

q In test time, we can compute probability estimates (let lowercase letters 
denote fixed evidence values): 
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Consistency

q A trivial consistent estimator is to simply attempt to estimate the “big” 
probability table from the data without making any conditional 
independence assumptions

q While this is consistent, it is not very statistically efficient

as number of samples 
increases
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Unsupervised Parsing

37

Training Set – Given 
sentences and part-of-speech 
tags

Test Set – Find (unlabeled) 
parse tree for each sentence

NN   ADV   VB   NN   CONJ   NN
Lions   quickly  chase   deer      and      antelope

?DT   NN   VB   NN
The     bear    likes    fish 

Parse tree structure is a latent variable

DT   NN   VB   DT   NN
The   llama    eats    the   grass
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Conditional Latent Tree Model

q Each tag sequence 𝒙 associated with a latent tree

q Traditional Approach

38

𝑝 𝒘, 𝒛	 	𝒙) =3𝑝 𝑧5	 𝜋𝒙 𝑧5 )		
7

589

×3𝑝 𝑤5	 𝜋𝒙 𝑤5 )		
ℓ(>)

589

Training

Test
To query probabilities: P 𝑋9 = 0,…𝑋B = 1
multiply learned parameters 

(Given the latent tree) Estimate parameters using nonconvex 
optimization:

𝑃E 𝑋9 𝐻G) 𝑃E 𝑋H 𝐻I)𝑃E(𝐻9) …..

w1 w2 w3 w4

z1

z3z2

w6w5

z4

The bear ate the big fish

𝒙𝟐 = (𝐷𝑇,𝑁𝑁, 𝑉𝐵𝐷,𝐷𝑇, 𝐴𝐷𝐽, 𝑁𝑁)	

The moose ran the tiring race
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The Spectral Approach

39

Estimate alternate parameters:

To query probabilities: P 𝑋9 = 0,…𝑋B = 1
tensor multiply parameters 

F 𝑋9, 𝑋Q, 𝑋HF 𝑋9, 𝑋G, 𝑋Q F 𝑋Q, 𝑋I, 𝑋H F 𝑋I, 𝑋H, 𝑋B

Training

Test

P 𝑋9, 𝑋G, 𝑋Q, 𝑋I, 𝑋H, 𝑋B F 𝑋9, 𝑋Q, 𝑋H F 𝑋9, 𝑋G, 𝑋Q

F 𝑋Q, 𝑋I, 𝑋H F 𝑋I, 𝑋H, 𝑋B

Latent Tree Observable Factorization

©Eric Xing @ CMU, 2005-2020



Consistency

q A better estimate is to compute likelihood estimates of the factorization:

q But this requires running EM, which will get stuck in local optima and is 
not guaranteed to obtain the MLE of the factorized model
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Consistency

q In spectral learning, we estimate the alternate factorization from the data

q This is consistent and computationally tractable (at some loss of 
statistical efficiency due to the dependence on the inverse)
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Where’s the Catch?

q Before we said that if the number of latent states was very large then the 
model was equivalent to a clique.

q Where does that scenario enter in our factorization?

When does this inverse exist?
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When Does the Inverse Exist

q All the matrices on the right hand side must have full rank. (This is in 
general a requirement of spectral learning, although it can be somewhat 
relaxed)
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When m > k

q The inverse cannot exist, but this situation is easily fixable (project onto 
lower dimensional space)

q Where U, V are the top left/right k singular vectors of 
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When k > m

q The inverse does exist. But it no longer satisfies the following property, 
which we used to derive the factorization

q This is much more difficult to fix, and intuitively corresponds to how the 
problem becomes intractable if k >> m.
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What does k>m mean?

q Intuitively, large k, small m means long range dependencies

q Consider following generative process:
(1) With probability 0.5, let S= X, and with probability 0.5 let S=Y.
(2) Print A n times.
(3) Print S
(4) Go back to step (2)

With n=1 we either generate:
AXAXAXA…… or AYAYAYA…..

With n=2 we either generate:
AAXAAXAA….. or AAYAAYAA…….
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How many hidden states does HMM need?

q HMM needs 2n states.

q Needs to remember count as well as whether we picked S=X or S=Y

q However, number of observed states m does not change, so our 
previous spectral algorithm will break for n > 2.

q How to deal with this in spectral framework?
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Making Spectral Learning Work In Practice

q We are only using marginals of pairs/triples of variables to construct the 
full marginal among the observed variables.

q Only works when k < m. 

q However, in real problems we need to capture longer range 
dependencies.
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Recall our factorization

𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒
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Key Idea: Use Long-Range Features

Construct feature 
vector of left side

Construct feature 
vector of right side
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Spectral Learning With Features

Use more complex feature instead:
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Experimentally,

q Has been shown by many authors that (with some work) spectral 
methods achieve comparable results to EM but are 10-50x faster

q Parikh et al. 2011 / 2012
q Balle et al. 2012 
q Cohen et al. 2012 / 2013

q The following are some synthetic and real data results demonstrating the 
comparison between EM and spectral methods.
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Synthetic Data [Parikh et al. 2012]

q Different latent variable models

q Train: Learn parameters for a given model given samples of observed 
variables

q Test: Evaluate likelihood of random samples drawn from model and 
compare to the true likelihood
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Synthetic Data [Parikh et al. 2012]

q Synthetic 3rd order HMM Example (Spectral/EM/Online EM):

q Results for other structures look similar

Training Samples

Runtime vs. Sample Size
R

un
tim

e(
s) Online EM

EM

Spectral

Training Samples

Error vs. Sample Size

Er
ro

r

Spectral

Online EM
EM
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Supervised Parsing [Cohen et al. 2012/2013]

q Learn a latent variable Probabilistic Context Free Grammar model (latent 
PCFG) which is a PCFG augmented with additional latent states

q Train: Learn parameters given parse trees on training examples.
q Test: Estimate most likely parse structure on test sentences

PCFG Latent Variable PCFG
S	

NP	 VP

NP	

X1 X2 X3 X4 X5

DT	 NN		 VBD

DT	 NN	

The								bear								ate					the								fish

S	(H1)	

NP	(H2) VP	(H3)

NP	(H4)

X2 X3 X4 X5

DT	(H5)	 NN	(H6)	 VBD	(H7)	

DT	(H8)	 NN	(H9)	

The								bear								ate					the								fish
X1

©Eric Xing @ CMU, 2005-2020 55



Empirical Results for Latent PCFGs [Cohen et al. 2013]

Evaluation Measure: F1 bracketing score
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Timing Results on Latent PCFGs [Cohen et al. 2013]
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Dealing with Nonparametric, 
Continuous Variables

q It is difficult to run EM if the conditional/marginal distributions are 
continuous and do not easily fit into a parametric family.

q However, we will see that Hilbert Space Embeddings can easily be 
combined with spectral methods for learning nonparametric latent 
models.
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Connection to Hilbert Space Embeddings

q Recall that we could substitute features for variables

Use more complex feature instead:
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Can Also Use Infinite Dimensional Features

q Replace

q with

q (and similarly for other quantities)

covariance 
operator
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Connection to Hilbert Space Embeddings

Discrete case:

Continuous case:
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Summary - EM & Spectral (Part I)

EM
• Aims to Find MLE so more 

“statistically” efficient

• Can get stuck in local-optima

• Lack of theoretical guarantees

• Slow

• Easy to derive for new models

• Does not aim to find MLE so less 
statistically efficient.

• Local-optima-free

• Provably consistent

• Very fast

• Challenging to derive for new 
models (Unknown whether it can 
generalize to arbitrary loopy 
models)

Spectral

©Eric Xing @ CMU, 2005-2020 62



Summary - EM & Spectral (Part II)

EM Spectral
• No issues with negative numbers

• Allows for easy modelling with 
conditional distributions

• Difficult to incorporate long-range 
features (since it increases 
treewidth).

• Generalizes poorly to non-
Gaussian continuous variables.

• Problems with negative numbers. 
Requires explicit normalization to 
compute likelihood.

• Allows for easy modelling with 
marginal distributions

• Easy to incorporate long-range 
features.

• Easy to generalize to non-
Gaussian continuous variables 
via Hilbert Space Embeddings
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