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atent Variable Models

Sequence models

Sl

Parsing Ho. et al. 2012

NP? VP* Mixed membership models

Dl/\N2 V4/\P1

the dog saw him
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PCFG
S

NP VP
DT NN VBD NP
T
X1 X5 X3 Xy Xs
The bear ate the fish

/
(/ Latent Variable PCFG [Matsuzaki et al., 2005, Petrov et al. 2006]

Latent Variable PCFG
S (H1)

NP (H2)

/\

DT (H5) NN (H6) VBD (H7) NP (H4)

VP (H3)

DT (H8) NN (H9)

X4 X5 X3 X Xs
The bear ate the fish
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Learning Parameters (EM)

latent variables
(unobserved in
training data)

—

Observed variable

5

P[H;|Hi—1] | [ P[X:|H]

1=2 1=1

— ..

IP)[Xla e X57 Hla e H5] - ]P)[Hl]

Since latent variables are not observed in the data, we have to
use Expectation Maximization (EM) to learn parameters
 Slow
 Local Minima
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% Spectral Learning

o Different paradigm of learning in latent variable models based on linear algebra

o Theoretically,
o Provably consistent
o Can offer deeper insight into the identifiability

o Practically,
o Local minima free
o As of now, performs comparably to EM with 10-100x speed-up

o Can also model non-Gaussian continuous data using kernels (usually performs much better
than EM in this case)
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% Related References

o Relevant works

Hsu et al. 2009 - Spectral HMMs (also Bailly 2009)

Siddiqi et al. 2009 — Features in Spectral Learning

Parikh et al. 2011/2012 —Tensors to Generalize to Trees/Low Treewidth Graphs
Cohen et al. 2012 /2013 — Spectral Learning of latent PCFGs

U 0O 0 O

o Will present it from “matrix factorization” view:
o Balle et al. 2012 — Connection between Spectral Learning / Hankel Matrix Factorization
o Song et al. 2013 — Spectral Learning as Hierarchical Tensor Decomposition
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Focusing on Prediction

o In many applications that use latent variable models, the end task is not to recover the
latent states, but rather to use the model for prediction among observed variables.

o Dynamical Systems — Predict future given past

Q- QOO0
- Q 0 00 O,

©Eric Xing @ CMU, 2005-2020 7 Lg



% Focusing on Prediction

o We will only be concerned with quantities related to the observed

variables: P[Xl, X27 Xg, X4, X5]

o We do not care about the latent variables explicitly.

o Do we still need EM to learn the parameters?



% But if we don’t care about the latent variables....

o Why don’t we just integrate them out?

o Because integrating them out results in a clique ®

Sesse™ ol




Marginal Does Not Factorize

P[Xl,XQ,Xg,X4,X5] — Z Hl HIP) |Hz 1 ﬁ
1=1

Does not factorize due to the outer sum (Can somewhat distribute
the sum, but doesn’t solve problem)

P X;|H;|



% But isn’t an HMM different from a clique?

o It depends on the number of latent states.

o Consider the following model.




% If H has only one state.....

o Then the observed variables are independent!

H




% What if H has many states?

o Let us say the observed variables each have m states.

a Then if H has m3states then the latent model can be exactly equivalent to
a cligue (depending on how parameters are set).

H X2

)

Xl X2 X3
o But what about all the other cases?




; The Question

o Under existing methods, latent models all require EM to learn regardless
of the number of hidden states.

o However, is there a formulation of latent variable models where the
difficulty of learning is a function of the number of latent states?”

o This is the question that the will answer.



/
(/ Sum Rule (Matrix Form)

o Sum Rule

P[X] = ) P[X[Y]P[Y]

o Equivalent view using Matrix Algebra

PIX] = PlX|]

N—

(szmyzm P[X = 0]V = 1]
P[X =1]Y =0] P[X = 1]V = 1]



Chain Rule (Matrix Form)

o Chain Rule
P[X,Y] = P[X|Y]P[Y] = P[Y|X]|P[Y]
Means on diagonal

o Equivalent view using Matrix Algebra \

P(X,Y]|= P[X[Y] x PloY]

P[X =0.Y =0] P[X=0,Y =1]
PIX =1.Y =0] P[X =1V =1] —

PIX =0y =0] P[X =0]Y =1 _
(P%lelY:O% P%X:IIY—1}> X( P[Yo ’ I[D[YO: 1])

o Note how diagonal is used to keep Y from being marginalized out.



; Graphical Models: The Linear Algebra View

o In general, nothing we can say about the nature of this matrix.

A B

A and B have m
states each.

P|A, B]



% Independence: The Linear Algebra View

o What if we know A and B are independent?
A B

PlA, B] o °

L )

o Joint probability matrix is rank one, since all rows are multiples of one
another!!
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% Independence and Rank

o What about rank in between 1 and m?

A B

o o ’P[A7 B] has rank m (at most)
A B

o o P|A, B| hasrank1




% Low Rank Structure

o A and B are not marginally independent (They are only conditionally
iIndependent given )8

A X B

0 OO

o Assume X has k states (while A and B have m states).

o Then,

rank(P|A, B]) < k
o Why?



% Low Rank Structure

A X B

0O 06

P|A, B] PlAIX] P@X) P[B|X]'

rank < k rank < k rank < k rank < k



% The Spectral View

o Latent variable models encode low rank dependencies among variables
(both marginal and conditional)

o Use tools from linear algebra to exploit this structure.

Rank
Eigenvalues
SVD
Tensors

U 0O 0O O



% A More Interesting Example

k states

m states

X4

{X37X4}

has rank k

{X17X2}



/
(/ Low Rank Matrices “Factorize”

M = ILIR 1fMhasrankk

m by n mby k kbyn

We already know one factorization!!!

Pl X2 Xzap] = Pl X2 Ho| PIOH | P[ X34 Ho]

Factor of 4 variables Factor of 3 variables T Factor of 3 variables

Factor of 1 variable



Alternate Factorizations

o The key insight is that this factorization is not unique.

o Consider Matrix Factorization. Can add any invertible transformation:

M = LR
M =LSS 'R

o The magic of spectral learning is that there exists an alternative
factorization that only depends on observed variables!



An Alternate Factorization

o Let us say we only want to factorize this matrix of 4 variables
P X2 Xz

such that it is product of matrices that contain at most three
variables e.q.

P[X{1,2}7 XS]
P[X27 X{3,4}]



An Alternate Factorization

o Note that
Pl X2} Xs] = P X123 Ho ] PlOH2 | P X3| Ho ]
P Xo, Xi341] = P Xo|Ho|P|OH2 P X 3.0y |Ha]

o Product of green terms (in some order) is

Pl X2y, Xisar]

a Product of red terms (in some order) is

Pl X2, X5



An Alternate Factorization

Pl X109y, Xz ] = Pl X2, X3|P[Xo, X3 "P[Xa, Xi3.4]

factor of 4 variables factor of 3 variables factor of 3 variables

Advantage: Factors are only functions of observed variables! Can
be directly computed from data without EM!!!!

Caveat: some factors are no longer probability tables (do not have
to be non-negative)

We will call this factorization the observable factorization.
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? Graphical Relationship

Pl X101, Xisay | = Pl X193 X3]P[X2,X3]~1'P[X2,X{3,4}]




% Another Factorization

PlX12y. Xisay] = PlX (12 Xa PIX0, X "PX0, Xz g

o Seems we would do better empirically if you could “combine” both
factorizations. Will come back to this later.



; Relationship to Original Factorization

o What is the relationship between the original factorization and the new
factorization?

Pl X2 Xzap] = Pl X2 Ho| PIOH P X34 Ho]

M L R
M = LR
M =LSS 'R

Can | choose S to get the observable factorization?



/
(/ Relationship to Original Factorization

o Let S C— P[X3|H2]

Pl X121, Xz ] = PlX 12y, X3]P[Xo, X3]"P[Xa, Xi3.4]

= LS - S 'R

Pl X2y, Xsay] = Pl X120 Ho] P[OHs P X (54| Ho|



% Our Alternative Factorization

Pl X121, Xsay] = Pl X195, X3|P[Xo. X3] "P[Xo. Xi5.4y]

factor of 4 variables factor of 3 variables factor of 3 variables

o It may not seem very amazing at the moment (we have only reduced the
size of the factor by 1)

o What is cool is that every latent tree of V variables has such a

factorization where:

o All factors are of size 3
o All factors are only functions of observed variables



/
(/ Generalizing To More Variables

o Consider HMM with 5 observations. Using similar arguments as before
we will get that:

P(X1191, Xizasy] = PlXi1.2), Xa]P[Xo, X3] ™ P[Xo, Xi3.45]

/

reshape and decompose
recursively

PlXi2ap, Xiasy] = PLX 2y, Xa] P[Xa, Xa] 7 P[Xa, Xya 5]



/
(/ Training / Testing with Spectral Learning

o We have that
P[X{l,Q} 9 X{3—l}] — P[X{l,Q}? XIB],P[X‘Za X3]_1,P[X27 X{3,4}]

o Intraining, we compute estimates:
PrrelXaoy, Xl Pure[Xe, Xz Pure[Xe, X34

o Intest time, we can compute probability estimates (let lowercase letters
denote fixed evidence values):

AN

Popecl1, 22, 3, 04] = Porrelrae, Xa]Pare[Xe, Xa] " Pure[Xo, vi34] "
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% Consistency

a A trivial consistent estimator is to simply attempt to estimate the “big”

probability table from the data without making any conditional
iIndependence assumptions

PMLE[Xla X27 X37 X4] — P[Xla X27 X37 X4] as number of samples

increases

o While this is consistent, it is not very statistically efficient



Unsupervised Parsing

Training Set — Given Test Set — Find (unlabeled)
sentences and part-of-speech  parse tree for each sentence
tags

DT NN VB NN

The bear likes fish ‘ ,

DT NN VB DT NN O

The llama eats the grass

NN ADV VB NN CONJ NN

Lions quickly chase deer and  antelope

Parse tree structure is a latent variable



% Conditional Latent Tree Model

o Each tag sequence x associated with a latent tree

H
p(w,z|x) = p(z; |my(2;))
Ji=41L

£(x)
X p(w; [y (w;))
i=1

o Traditional Approach

Training
(Given the latent tree) Estimate parameters using nonconvex
optimization: ) )
P(H;)  P(Xy|Hp) P(Xs|H,)
Test

To query probabilities: P(X; =0,..X, = 1)
multiply learned parameters

x, = (DT,NN,VBD,DT,AD]J,NN)

The bear ate the big fish
The moose ran the tiring race

©Eric Xing @ CMU, 2005-2020
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% The Spectral Approach

Latent Tree Observable Factorization

p(Xer21X3'X4!X5'X6)

X

L. :F(X3!X41X5)

Training
Estimate alternate parameters:
F(Xlr XZ! X3)

Test

F(X11X31X5)

To query probabilities: P(X; =0, ...

tensor multiply parameters

P(X1, X3, X5)

F(XI!XZJXB)

<[

X
F(X41X51X6)
P(X3, X4, Xs) F(X4, X5, X6)
Xe=1)

©Eric Xing @ CMU, 2005-2020
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/
ﬁ Consistency

o A better estimate is to compute likelihood estimates of the factorization:

Prre|Xaa Ho|Prure|©OH | Prre| X |H,] '
— P X1, Xo; X3, X4

o But this requires running EM, which will get stuck in local optima and is
not guaranteed to obtain the MLE of the factorized model



/
f Consistency

o In spectral learning, we estimate the alternate factorization from the data

Porre[Xioy, Xa]Pure[Xe Xa] " Pure[Xe, Xiz.4]
— P[Xla X27 X37 X4]

o This is consistent and computationally tractable (at some loss of
statistical efficiency due to the dependence on the inverse)



/
f Where’s the Catch?

o Before we said that if the number of latent states was very large then the
model was equivalent to a clique.

o Where does that scenario enter in our factorization?

Pl X121, Xz ] = PlXi12), X3]P[Xo, Xz| "P[Xo, Xi3.4]

o

When does this inverse exist?



/
(/ When Does the Inverse Exist

PlX,5. X3 = Pl Xo|Ho | Pl@H P X5 | Hy | '

o All the matrices on the right hand side must have full rank. (This is in
general a requirement of spectral learning, although it can be somewhat
relaxed)



/
f When m >k

o The inverse cannot exist, but this situation is easily fixable (project onto
lower dimensional space)

Pl X2y, Xzl =
—1
P[X{l,Q}a XS]V(UTP[XQ: X3]V) UT,P[X27 X{3,4}]

a Where U, V are the top left/right k singular vectors of P| X5, X3]



% When k> m

o The inverse does exist. But it no longer satisfies the following property,
which we used to derive the factorization

PlXo, X3] ™! = (P[Xs|Ha]T) ™ Pl@H,] ' PXs|Ha] ™

o Thisis much more difficult to fix, and intuitively corresponds to how the
problem becomes intractable if k >>m.



% What does k>m mean?

o Intuitively, large k, small m means long range dependencies

o Consider following generative process:
(1) With probability 0.5, let 8= X, and with probability 0.5 let S=Y.
(2) Print A ntimes.
(3) Print S
(4) Go back to step (2)

With n=1 we either generate:
AXAXAXA...... or AYAYAYA.....

With n=2 we either generate:
AAXAAXAA.....or AAYAAYAA.......
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/
ﬁ How many hidden states does HMM need?

o HMM needs 2n states.
o Needs to remember count as well as whether we picked S=X or S=Y

o However, number of observed states m does not change, so our
previous spectral algorithm will break for n > 2.

o How to deal with this in spectral framework?



% Making Spectral Learning Work In Practice

o We are only using marginals of pairs/triples of variables to construct the
full marginal among the observed variables.

o Only works when k<m.

o However, in real problems we need to capture longer range
dependencies.



? Recall our factorization

Pl X101, Xisay | = Pl X193 X3]P[X2,X3]~1'P[X2,X{3,4}]




% Key Idea: Use Long-Range Features

Construct feature Construct feature
vector of left side vector of right side

¢L ¢R



/
(/ Spectral Learning With Features

P Xs, X5] = E[d: ® 5] := E[5,0, |

1

Use more complex feature instead:

b @ PRl

P[X{l.Q} ’ X{?»—l}] — E[51®2a 53@'—1]
= E[6192. 0]V (U 'E[pr ® ¢r]V) U ' Pldr. Xi3.4]




Experimentally,

o Has been shown by many authors that (with some work) spectral
methods achieve comparable results to EM but are 10-50x faster
a Parikh et al. 2011 /2012
o Balle et al. 2012
o Cohenetal. 2012 /2013

o The following are some synthetic and real data results demonstrating the
comparison between EM and spectral methods.



% Synthetic Data [parikn et al. 2012]

o Different latent variable models
! Lenﬁth=40 !

! Length =40 !

o Train: Learn parameters for a given model given samples of observed

variables

o Test: Evaluate likelihood of random samples drawn from model and

compare to the true likelihood

Length =15

oo

B0l ool
O &0 60 00 O
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Synthetic Data (parikh et al. 2012]

a Synthetic 3@ order HMM Example (Spectral/EM/Online EM):

Runtime vs. Sample Size

10000f P |
'
0”'

—_ Online EM R
£ 4000} N
) : oG
E i ’o-\ ‘.’
_‘= L '0 “‘ ) ‘-’o'\
c e LT EM
> -
o7 K

100¢ Spectral

0.10205 1

2 5 10 20 50 75 100

Training Samples

o Results for other structures look similar

Error

Error vs. Sample Size

0.5¢
0.4¢

0.3}
0.2}

Spectral

010205 1

2 5 10 20 50 75 100
Training Samples
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/
f Supervised Parsing [cohen et al. 2012/2013]

a Learn a latent variable Probabilistic Context Free Grammar model (latent

PCFG) which is a PCFG augmented with additional latent states

PCFG Latent Variable PCFG
S S (H1)
NP VP NP (H2) VP (H3)
DT NN VBD NP DT (H5) NN (H6) VBD (H7) NP (H4)

DT (H8) NN (H9)

T 7 |
X1 X, X3 X4 Xs X1 X, X3 X4 Xs
The bear ate the fish The bear ate the fish

a Train: Learn parameters given parse trees on training examples.
o [est: Estimate most likely parse structure on test sentences

©Eric Xing @ CMU, 2005-2020
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/
(/ Empirical Results for Latent PCFGs [cohen et al. 2013]

section 22 section 23
EM  spectral EM  spectral
m =8 86.87  85.60 — —
m =16 || 88.32  87.77 — —
m = 24 || 88.35 88.53 — —
m =32 || 88.56 88.82 &7.76  88.05

Evaluation Measure: F1 bracketing score



/
ﬁ Timing Results on Latent PCFGS [cohen et al. 2013]

single EM spectral algorithm
EM iter. | best model | total feature transfer + scaling SVD a—bc a—=x
m =38 6m 3h 3h32m ‘ ‘ 36m 1h34m 10m
m = 16 52m 26h6m 5h19m 34m 3hl3m 19m
) 22m 49m
m = 24 3h7m 93h36m 7h15m ‘ 36m 4h54m 28m
m =32 1| 9h21m 187h12m | 9h52m ‘ 35m 7hlém 41m

©Eric Xing @ CMU, 2005-2020
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Dealing with Nonparametric,
Continuous Variables

o It is difficult to run EM if the conditional/marginal distributions are
continuous and do not easily fit into a parametric family.

Estimated Probability Density Function

o However, we will see that Hilbert Space Embeddings can easily be
combined with spectral methods for learning nonparametric latent

models.
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/
(/ Connection to Hilbert Space Embeddings

o Recall that we could substitute features for variables

P[XQ,XS] = “:[52 ®53] :

/

Use more complex feature instead:

il ® Pr|

4, [52 5;—]




Can Also Use Infinite Dimensional Features

o Replace

P[XQ,XS] — 41[52 ®53] L=
o with

C| X2, X3| = E|ox, ® dx,]

a (and similarly for other quantities)

4, [52 5;—]

covariance
operator




/
(/ Connection to Hilbert Space Embeddings

Discrete case:
Pl X, Xga| =
1
P[X{I,Q}a XfS]V(UT,P[X27 XS]V) UT,P[XQa X{3,4}]

Continuous case:
Cl X Xz =
—1
C[X(12y; X3]V(UC[Xo, X3]V) U'C[Xo; X3.4]



% Summary - EM & Spectral (Part )

EM

« Aims to Find MLE so more
“statistically” efficient

« Can get stuck in local-optima
* Lack of theoretical guarantees
+ Slow

« Easy to derive for new models

Spectral

Does not aim to find MLE so less
statistically efficient.

Local-optima-free

Provably consistent

Very fast

Challenging to derive for new
models (Unknown whether it can

generalize to arbitrary loopy
models)

©Eric Xing @ CMU, 2005-2020
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% Summary - EM & Spectral (Part ll)

EM

 No issues with negative numbers

« Allows for easy modelling with
conditional distributions

» Difficult to incorporate long-range
features (since it increases
treewidth).

* Generalizes poorly to non-
Gaussian continuous variables.

Spectral

Problems with negative numbers.
Requires explicit normalization to
compute likelihood.

Allows for easy modelling with
marginal distributions

Easy to incorporate long-range
features.

Easy to generalize to non-

Gaussian continuous variables
via Hilbert Space Embeddings

©Eric Xing @ CMU, 2005-2020
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