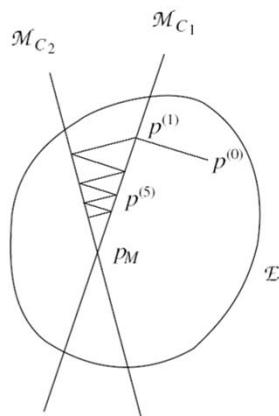


Probabilistic Graphical Models

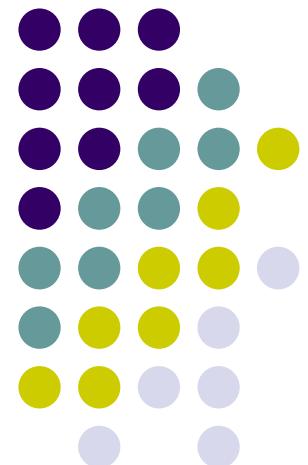
Maximum likelihood learning of
fully-observed undirected GM



Eric Xing

Lecture 7, February 8, 2017

Reading: MJ Chap 9, and 11

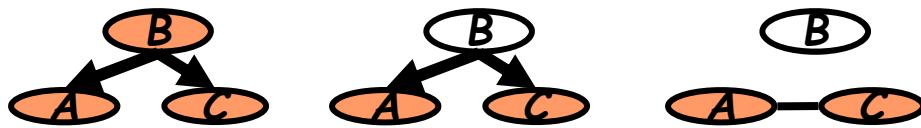


Undirected Graphical Models

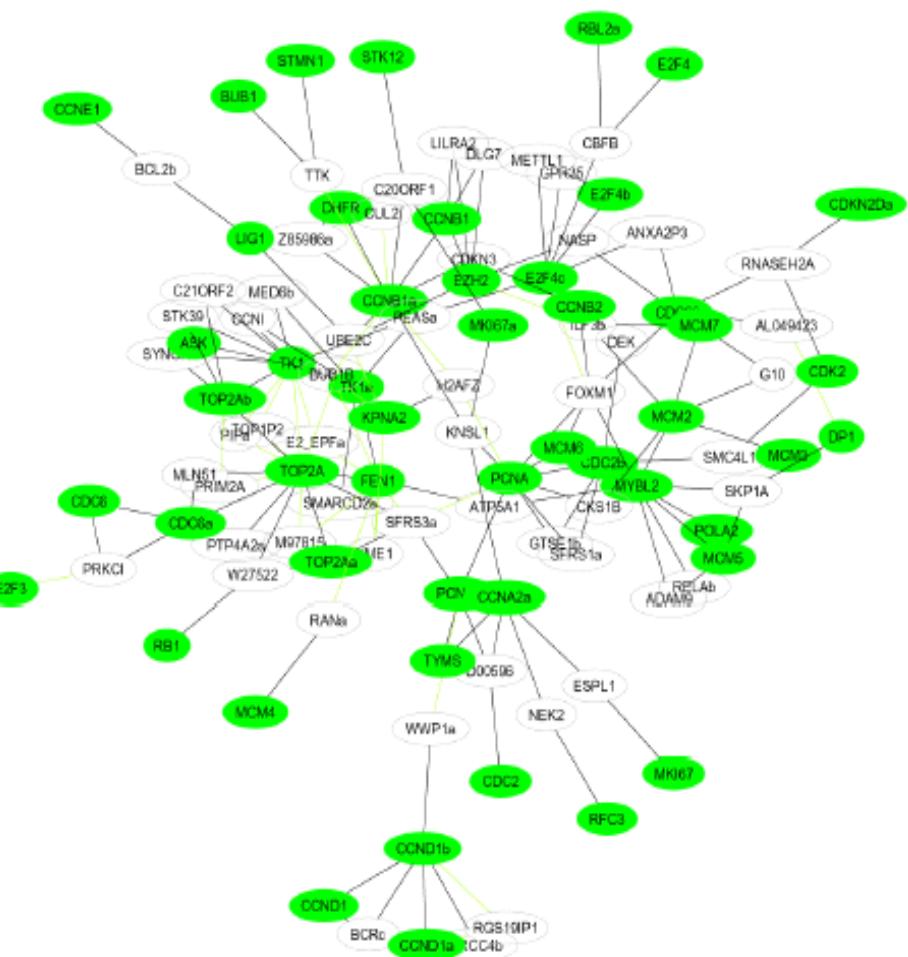
- Why?

Sometimes an **UNDIRECTED** association graph makes more sense and/or is more informative

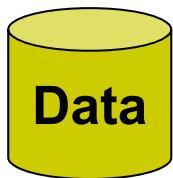
- gene expressions may be influenced by unobserved factor that are post-transcriptionally regulated



- The unavailability of the state of B results in a constrain over A and C



ML Structural Learning via Neighborhood Selection for completely observed MRF



$(x_1^{(1)}, \dots, x_n^{(1)})$

$(x_1^{(2)}, \dots, x_n^{(2)})$

...

$(x_1^{(M)}, \dots, x_n^{(M)})$

Gaussian Graphical Models

- Multivariate Gaussian density:

$$p(\mathbf{x} | \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right\}$$

- WOLG: let $\mu = 0$ $Q = \Sigma^{-1}$

$$p(x_1, x_2, \dots, x_p | \mu = 0, Q) = \frac{|Q|^{1/2}}{(2\pi)^{n/2}} \exp\left\{-\frac{1}{2} \sum_i q_{ii} (x_i)^2 - \sum_{i < j} q_{ij} x_i x_j\right\}$$

- We can view this as a continuous Markov Random Field with potentials defined on every node and edge:

Pairwise MRF (e.g., Ising Model)

- Assuming the nodes are discrete, and edges are weighted, then for a sample \mathbf{x}_d , we have

$$P(\mathbf{x}_d | \Theta) = \exp \left(\sum_{i \in V} \theta_{ii}^t x_{d,i} + \sum_{(i,j) \in E} \theta_{ij} x_{d,i} x_{d,j} - A(\Theta) \right)$$

The covariance and the precision matrices



- Covariance matrix Σ

$$\Sigma_{i,j} = 0 \quad \Rightarrow \quad X_i \perp X_j \quad \text{or} \quad p(X_i, X_j) = p(X_i)p(X_j)$$

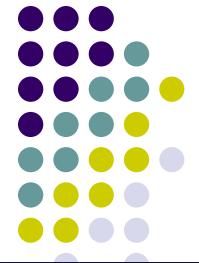
- Graphical model interpretation?

- Precision matrix $Q = \Sigma^{-1}$

$$Q_{i,j} = 0 \quad \Rightarrow \quad X_i \perp X_j | \mathbf{X}_{-ij} \quad \text{or} \quad p(X_i, X_j | \mathbf{X}_{-ij}) = p(X_i | \mathbf{X}_{-ij})p(X_j | \mathbf{X}_{-ij})$$

- Graphical model interpretation?

Sparse precision vs. sparse covariance in GGM



$$\Sigma^{-1} = \begin{pmatrix} 1 & 6 & 0 & 0 & 0 \\ 6 & 2 & 7 & 0 & 0 \\ 0 & 7 & 3 & 8 & 0 \\ 0 & 0 & 8 & 4 & 9 \\ 0 & 0 & 0 & 9 & 5 \end{pmatrix} \quad \Sigma = \begin{pmatrix} 0.10 & 0.15 & -0.13 & -0.08 & 0.15 \\ 0.15 & -0.03 & 0.02 & 0.01 & -0.03 \\ -0.13 & 0.02 & 0.10 & 0.07 & -0.12 \\ -0.08 & 0.01 & 0.07 & -0.04 & 0.07 \\ 0.15 & -0.03 & -0.12 & 0.07 & 0.08 \end{pmatrix}$$

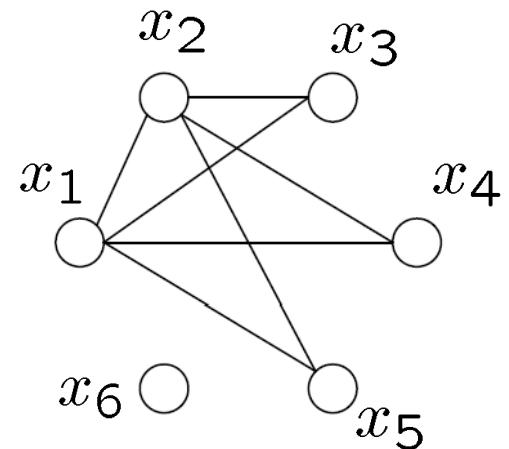
$$\Sigma_{15}^{-1} = 0 \Leftrightarrow X_1 \perp X_5 \mid X_{nbrs(1) \text{ or } nbrs(5)}$$

≠

$$X_1 \perp X_5 \Leftrightarrow \Sigma_{15} = 0$$

Another example

$$Q = \begin{pmatrix} * & * & * & * & * & 0 \\ * & * & * & * & * & 0 \\ * & * & * & 0 & 0 & 0 \\ * & * & 0 & * & 0 & 0 \\ * & * & 0 & 0 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * \end{pmatrix}$$



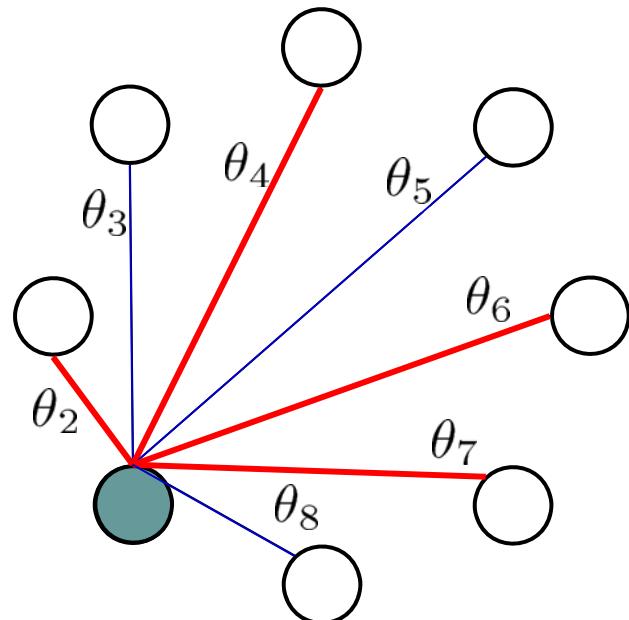
- How to estimate this MRF?
- What if $p \gg n$
 - MLE does not exist in general!
 - What about only learning a “sparse” graphical model?
 - This is possible when $s=o(n)$
 - Very often it is the structure of the GM that is more interesting ...

Recall lasso

$$\hat{\theta}_i = \arg \min_{\theta_i} l(\theta_i) + \lambda_1 \parallel \theta_i \parallel_1$$

where $l(\theta_i) = \log P(y_i | \mathbf{x}_i, \theta_i)$.

Graph Regression

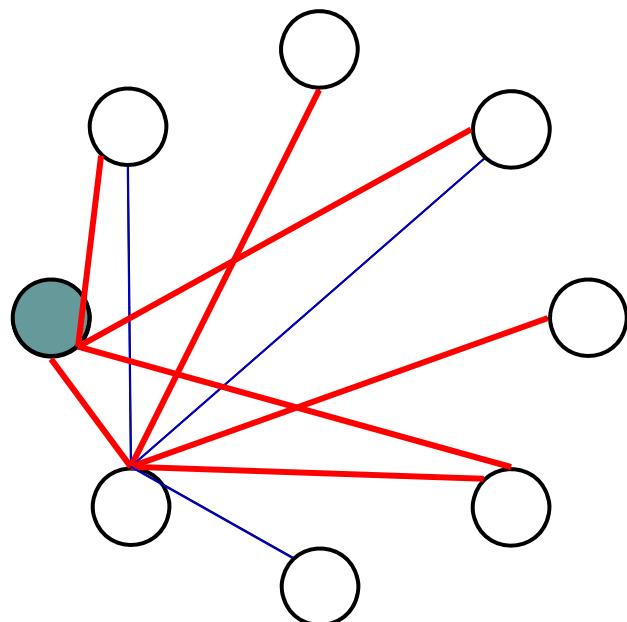


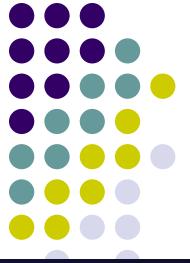
Neighborhood selection

Lasso:

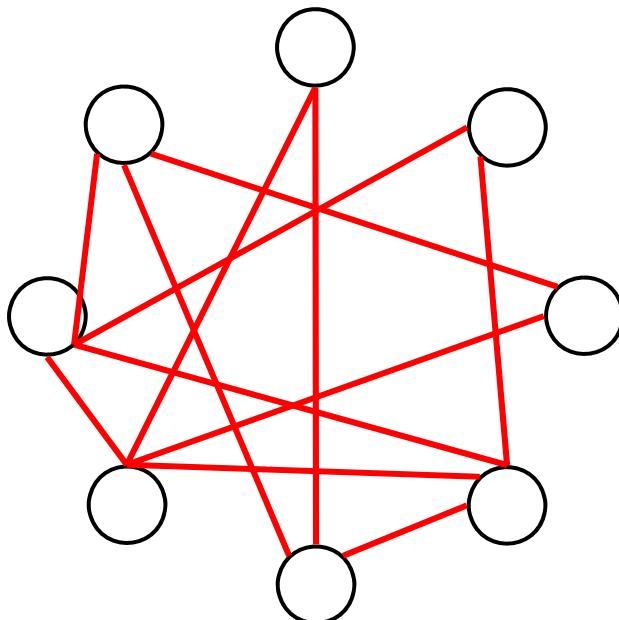
$$\hat{\theta} = \arg \min_{\theta} \sum_{t=1}^T l(\theta) + \lambda_1 \|\theta\|_1$$

Graph Regression





Graph Regression



It can be shown that:
given *iid* samples, and under several technical conditions (e.g., "irrepresentable"), the recovered structured is "sparsistent" even when $p >> n$

Learning Ising Model (i.e. pairwise MRF)

- Assuming the nodes are discrete, and edges are weighted, then for a sample x_d , we have

$$P(\mathbf{x}_d | \Theta) = \exp \left(\sum_{i \in V} \theta_{ii}^t x_{d,i} + \sum_{(i,j) \in E} \theta_{ij} x_{d,i} x_{d,j} - A(\Theta) \right)$$

- It can be shown following the same logic that we can use L_1 regularized **logistic regression** to obtain a sparse estimate of the neighborhood of each variable in the discrete case.

Consistency

- **Theorem:** for the graphical regression algorithm, under certain verifiable conditions (omitted here for simplicity):

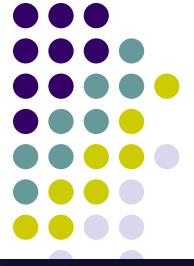
$$\mathbb{P} \left[\hat{G}(\lambda_n) \neq G \right] = \mathcal{O} \left(\exp(-Cn^\epsilon) \right) \rightarrow 0$$

Note the from this theorem one should see that the regularizer is not actually used to introduce an “artificial” sparsity bias, but a devise to ensure consistency under finite data and high dimension condition.

ML Parameter Est. for completely observed MRFs of given structure

- The data:

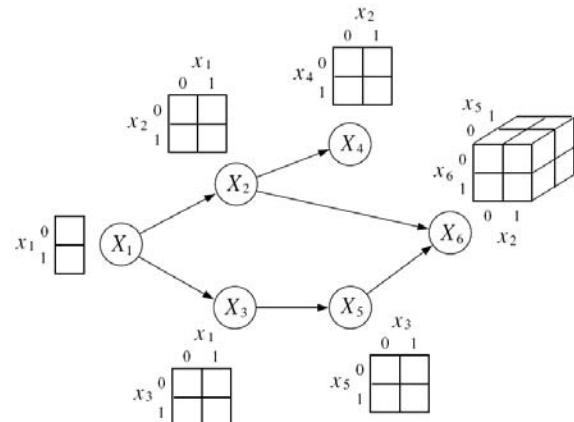
$$\{(z_1, x_1), (z_2, x_2), (z_3, x_3), \dots (z_N, x_N)\}$$



Recap: MLE for BNs

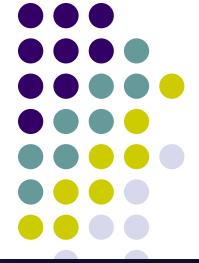
- Assuming the parameters for each CPD are globally independent, and all nodes are fully observed, then the log-likelihood function decomposes into a sum of local terms, one per node:

$$\ell(\theta; D) = \log p(D | \theta) = \log \prod_n \left(\prod_i p(x_{n,i} | \mathbf{x}_{\pi_i}, \theta_i) \right) = \sum_i \left(\sum_n \log p(x_{n,i} | \mathbf{x}_{\pi_i}, \theta_i) \right)$$



$$\theta_{ijk}^{ML} = \frac{n_{ijk}}{\sum_{i,j',k} n_{ij'k}}$$

MLE for undirected graphical models

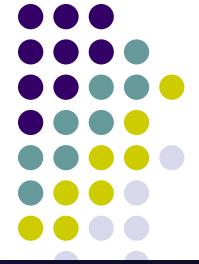


- For directed graphical models, the log-likelihood decomposes into a sum of terms, one per family (node plus parents).
- For undirected graphical models, the log-likelihood does not decompose, because the normalization constant Z is a function of **all** the parameters

$$P(x_1, \dots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c) \quad Z = \sum_{x_1, \dots, x_n} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

- In general, we will need to do inference (i.e., marginalization) to learn parameters for undirected models, even in the fully observed case.

Log Likelihood for UGMs with tabular clique potentials



- Sufficient statistics: for a UGM (V, E) , the number of times that a configuration \mathbf{x} (i.e., $X_V = \mathbf{x}$) is observed in a dataset $D = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ can be represented as follows:

$$m(\mathbf{x}) \stackrel{\text{def}}{=} \sum_n \delta(\mathbf{x}, \mathbf{x}_n) \quad (\text{total count}), \quad \text{and} \quad m(\mathbf{x}_c) \stackrel{\text{def}}{=} \sum_{\mathbf{x}_{V \setminus c}} m(\mathbf{x}) \quad (\text{clique count})$$

- In terms of the counts, the log likelihood is given by:

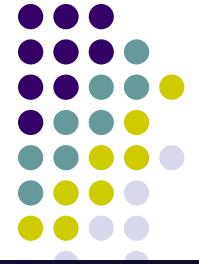
$$p(D|\theta) = \prod_n \prod_{\mathbf{x}} p(\mathbf{x}|\theta)^{\delta(\mathbf{x}, \mathbf{x}_n)}$$

$$\log p(D|\theta) = \sum_n \sum_{\mathbf{x}} \delta(\mathbf{x}, \mathbf{x}_n) \log p(\mathbf{x}|\theta) = \sum_{\mathbf{x}} \sum_n \delta(\mathbf{x}, \mathbf{x}_n) \log p(\mathbf{x}|\theta)$$

$$\begin{aligned} \ell &= \sum_{\mathbf{x}} m(\mathbf{x}) \log \left(\frac{1}{Z} \prod_c \psi_c(\mathbf{x}_c) \right) \\ &= \sum_c \sum_{\mathbf{x}_c} m(\mathbf{x}_c) \log \psi_c(\mathbf{x}_c) - N \log Z \end{aligned}$$

- There is a nasty $\log Z$ in the likelihood

Log Likelihood for UGMs with tabular clique potentials



- Sufficient statistics: for a UGM (V, E) , the number of times that a configuration \mathbf{x} (i.e., $X_V = \mathbf{x}$) is observed in a dataset $D = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ can be represented as follows:

$$m(\mathbf{x}) = \sum_n \delta(\mathbf{x}, \mathbf{x}_n) \quad (\text{total count}), \quad \text{and} \quad m(\mathbf{x}_c) = \sum_{\mathbf{x}_{V \setminus c}} m(\mathbf{x}) \quad (\text{clique count})$$

- In terms of the counts, the log likelihood is given by:

$$\log p(D|\theta) = \sum_c \sum_{\mathbf{x}_c} m(\mathbf{x}_c) \log \psi_c(\mathbf{x}_c) - N \log Z$$

- There is a nasty $\log Z$ in the likelihood

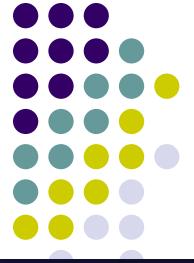
Derivative of log Likelihood

- Log-likelihood: $\ell = \sum_c \sum_{\mathbf{x}_c} m(\mathbf{x}_c) \log \psi_c(\mathbf{x}_c) - N \log Z$

- First term: $\frac{\partial \ell}{\partial \psi_c(\mathbf{x}_c)} = m(\mathbf{x}_c) / \psi_c(\mathbf{x}_c)$

- Second term:
$$\begin{aligned} \frac{\partial \log Z}{\partial \psi_c(\mathbf{x}_c)} &= \frac{1}{Z} \frac{\partial}{\partial \psi_c(\mathbf{x}_c)} \left(\sum_{\tilde{\mathbf{x}}} \prod_d \psi_d(\tilde{\mathbf{x}}_d) \right) \\ &= \frac{1}{Z} \sum_{\tilde{\mathbf{x}}} \delta(\tilde{\mathbf{x}}_c, \mathbf{x}_c) \frac{\partial}{\partial \psi_c(\mathbf{x}_c)} \left(\prod_d \psi_d(\tilde{\mathbf{x}}_d) \right) \\ &= \sum_{\tilde{\mathbf{x}}} \delta(\tilde{\mathbf{x}}_c, \mathbf{x}_c) \frac{1}{\psi_c(\tilde{\mathbf{x}}_c)} \frac{1}{Z} \prod_d \psi_d(\tilde{\mathbf{x}}_d) \\ &= \frac{1}{\psi_c(\mathbf{x}_c)} \sum_{\tilde{\mathbf{x}}} \delta(\tilde{\mathbf{x}}_c, \mathbf{x}_c) p(\tilde{\mathbf{x}}) = \frac{p(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)} \end{aligned}$$

Set the value of variables to \mathbf{x}



Conditions on Clique Marginals

- Derivative of log-likelihood

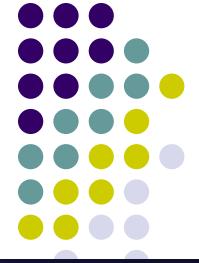
$$\frac{\partial \ell}{\partial \psi_c(\mathbf{x}_c)} = \frac{m(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)} - N \frac{p(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)}$$

- Hence, for the maximum likelihood parameters, we know that:

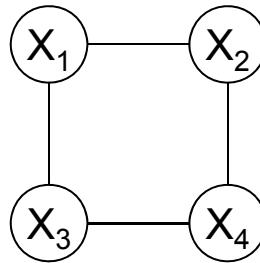
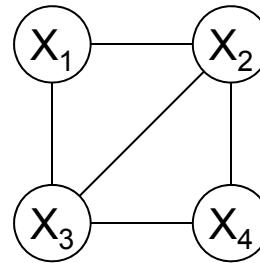
$$p_{MLE}^*(\mathbf{x}_c) = \frac{m(\mathbf{x}_c)}{N} \stackrel{\text{def}}{=} \tilde{p}(\mathbf{x}_c)$$

- In other words, at the maximum likelihood setting of the parameters, for each clique, the model marginals must be equal to the observed marginals (empirical counts).
- This doesn't tell us how to get the ML parameters, it just gives us a condition that must be satisfied when we have them.

MLE for undirected graphical models



- Is the graph decomposable (triangulated)?
- Are all the clique potentials defined on maximal cliques (not sub-cliques)? e.g., ψ_{123} , ψ_{234} not ψ_{12} , ψ_{23} , ...

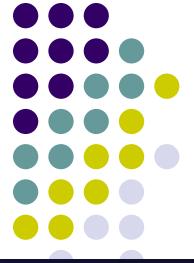


- Are the clique potentials full tables (or Gaussians), or parameterized more compactly, e.g. $\psi_c(\mathbf{x}_c) = \exp\left(\sum_k \theta_k f_k(\mathbf{x}_c)\right)$?

Properties on MLE of clique potentials

- For decomposable models, where potentials are defined on maximal cliques, the MLE of clique potentials equate to the empirical marginals (or conditionals) of the corresponding clique. **Thus the MLE can be solved by inspection!!**
- If the graph is non-decomposable, and or the potentials are defined on non-maximal cliques (e.g., ψ_{12} , ψ_{34}), we could not equate MLE of cliques potentials to empirical marginals (or conditionals).
 - Potential expressed as a tabular form: IPF
 - Feature-based potentials: GIS

MLE for decomposable undirected models



- Decomposable models:
 - G is decomposable $\Leftrightarrow G$ is triangulated $\Leftrightarrow G$ has a junction tree
 - Potential based representation:
$$p(\mathbf{x}) = \frac{\prod_c \psi_c(\mathbf{x}_c)}{\prod_s \varphi_s(\mathbf{x}_s)}$$
- Consider a chain $X_1 - X_2 - X_3$. The cliques are (X_1, X_2) and (X_2, X_3) ; the separator is X_2
 - The empirical marginals must equal the model marginals.
- Let us guess that
$$\hat{p}_{MLE}(x_1, x_2, x_3) = \frac{\tilde{p}(x_1, x_2) \tilde{p}(x_2, x_3)}{\tilde{p}(x_2)}$$
 - We can verify that such a guess satisfies the conditions:

and similarly
$$\hat{p}_{MLE}(x_1, x_2) = \sum_{x_3} \hat{p}_{MLE}(x_1, x_2, x_3) = \tilde{p}(x_1 | x_2) \sum_{x_3} \tilde{p}(x_2, x_3) = \tilde{p}(x_1, x_2)$$

$$\hat{p}_{MLE}(x_2, x_3) = \tilde{p}(x_2, x_3)$$

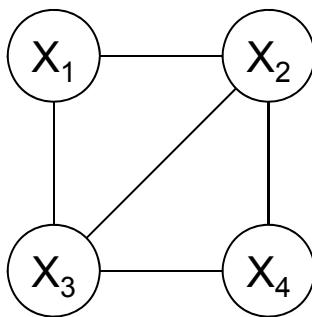
MLE for decomposable undirected models (cont.)



- Let us guess that $\hat{p}_{MLE}(x_1, x_2, x_3) = \frac{\tilde{p}(x_1, x_2) \tilde{p}(x_2, x_3)}{\tilde{p}(x_2)}$
- To compute the clique potentials, just equate them to the empirical marginals (or conditionals), i.e., the separator must be divided into one of its neighbors. Then $Z = 1$.

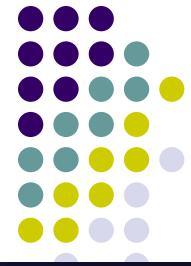
$$\hat{\psi}_{12}^{MLE}(x_1, x_2) = \tilde{p}(x_1, x_2) \quad \hat{\psi}_{23}^{MLE}(x_2, x_3) = \frac{\tilde{p}(x_2, x_3)}{\tilde{p}(x_2)} = \tilde{p}(x_2 | x_3)$$

- One more example:

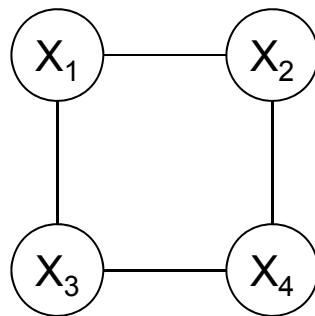


$$\begin{aligned} \hat{p}_{MLE}(x_1, x_2, x_3, x_4) &= \frac{\tilde{p}(x_1, x_2, x_3) \tilde{p}(x_2, x_3, x_4)}{\tilde{p}(x_2, x_3)} \\ \hat{\psi}_{123}^{MLE}(x_1, x_2, x_3) &= \frac{\tilde{p}(x_1, x_2, x_3)}{\tilde{p}(x_2, x_3)} = \tilde{p}(x_1 | x_2, x_3) \\ \hat{\psi}_{234}^{MLE}(x_2, x_3, x_4) &= \tilde{p}(x_2, x_3, x_4) \end{aligned}$$

Non-decomposable and/or with non-maximal clique potentials

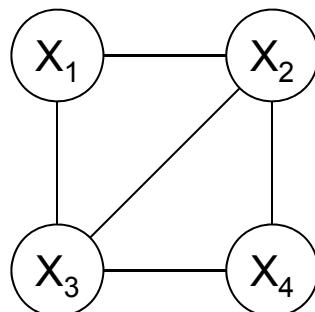


- If the graph is non-decomposable, and or the potentials are defined on non-maximal cliques (e.g., ψ_{12} , ψ_{34}), we could not equate empirical marginals (or conditionals) to MLE of cliques potentials.



$$p(x_1, x_2, x_3, x_4) = \prod_{\{i,j\}} \psi_{ij}(x_i, x_j)$$

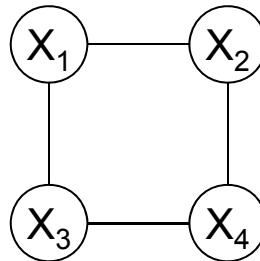
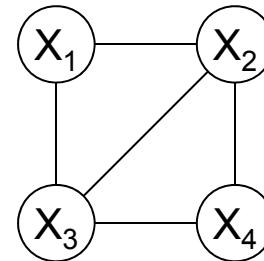
$$\exists(i, j) \text{ s.t. } \psi_{ij}^{\text{MLE}}(x_i, x_j) \neq \begin{cases} \tilde{p}(x_i, x_j) \\ \tilde{p}(x_i, x_j) / \tilde{p}(x_i) \\ \tilde{p}(x_i, x_j) / \tilde{p}(x_j) \end{cases}$$



Homework!

MLE for undirected graphical models

- Is the graph decomposable (triangulated)?
- Are all the clique potentials defined on maximal cliques (not sub-cliques)? e.g., ψ_{123} , ψ_{234} not ψ_{12} , ψ_{23} , ...



- Are the clique potentials full tables (or Gaussians), or parameterized more compactly, e.g. $\psi_c(\mathbf{x}_c) = \exp\left(\sum_k \theta_k f_k(\mathbf{x}_c)\right)$?

Decomposable?	Max clique?	Tabular?	Method
✓	✓	✓	Direct
-	-	✓	IPF
-	-	-	Gradient
-	-	-	GIS

Iterative Proportional Fitting (IPF)

- From the derivative of the likelihood:

$$\frac{\partial \ell}{\partial \psi_c(\mathbf{x}_c)} = \frac{m(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)} - N \frac{p(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)}$$

- we can derive another relationship:

$$\frac{\tilde{p}(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)} = \frac{p(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)}$$

in which ψ_c appears implicitly in the model marginal $p(\mathbf{x}_c)$.

- This is therefore a **fixed-point equation** for ψ_c .
 - Solving ψ_c in closed-form is hard, because it appears on both sides of this implicit nonlinear equation.
- The idea of IPF is to hold ψ_c fixed on the right hand side (both in the numerator and denominator) and solve for it on the left hand side. We cycle through all cliques, then iterate:

$$\psi_c^{(t+1)}(\mathbf{x}_c) = \psi_c^{(t)}(\mathbf{x}_c) \frac{\tilde{p}(\mathbf{x}_c)}{p^{(t)}(\mathbf{x}_c)}$$

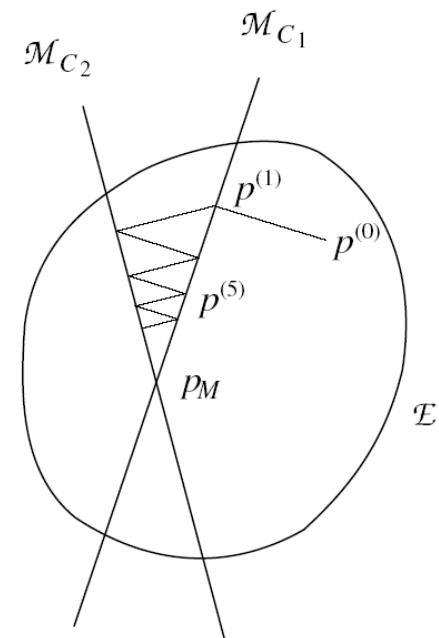
← Need to do inference here

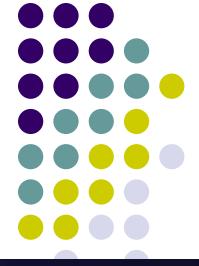
Properties of IPF Updates

- IPF iterates a set of fixed-point equations:

$$\psi_c^{(t+1)}(\mathbf{x}_c) = \psi_c^{(t)}(\mathbf{x}_c) \frac{\tilde{p}(\mathbf{x}_c)}{p^{(t)}(\mathbf{x}_c)}$$

- However, we can prove it is also a coordinate ascent algorithm (coordinates = parameters of clique potentials).
- Hence at each step, it will increase the log-likelihood, and it will converge to a global maximum.
- I-projection: finding a distribution with the correct marginals that has the maximal entropy





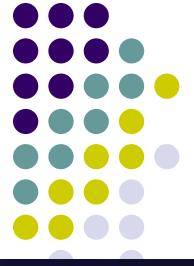
KL Divergence View

- IPF can be seen as coordinate ascent in the likelihood using the way of expressing likelihoods using KL divergences.
- We can show that maximizing the log likelihood is equivalent to minimizing the KL divergence (cross entropy) from the observed distribution to the model distribution:

$$\max \ell \Leftrightarrow \min KL(\tilde{p}(x) \| p(x | \theta)) = \sum_x \tilde{p}(x) \log \frac{\tilde{p}(x)}{p(x | \theta)}$$

- Using a property of KL divergence based on the conditional chain rule: $p(x) = p(x_a)p(x_b|x_a)$:

$$\begin{aligned} KL(q(x_a, x_b) \| p(x_a, x_b)) &= \sum_{x_a, x_b} q(x_a)q(x_b | x_a) \log \frac{q(x_a)q(x_b | x_a)}{p(x_a)p(x_b | x_a)} \\ &= \sum_{x_a, x_b} q(x_a)q(x_b | x_a) \log \frac{q(x_a)}{p(x_a)} + \sum_{x_a, x_b} q(x_a)q(x_b | x_a) \log \frac{q(x_b | x_a)}{p(x_b | x_a)} \\ &= KL(q(x_a) \| p(x_a)) + \sum q(x_a)KL(q(x_b | x_a) \| p(x_b | x_a)) \end{aligned}$$



IPF minimizes KL divergence

- Putting things together, we have

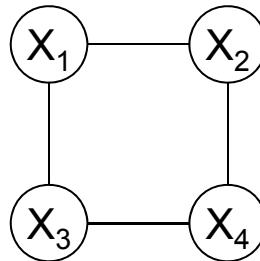
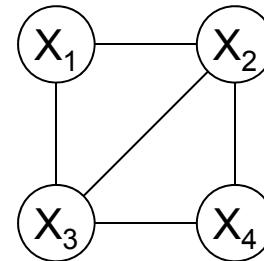
$$KL(\tilde{p}(\mathbf{x}) \| p(\mathbf{x} | \theta)) = KL(\tilde{p}(\mathbf{x}_c) \| p(\mathbf{x}_c | \theta)) + \sum_{x_a} \tilde{p}(\mathbf{x}_c) KL(\tilde{p}(\mathbf{x}_{-c} | \mathbf{x}_c) \| p(\mathbf{x}_{-c} | \mathbf{x}_c))$$

It can be shown that changing the clique potential ψ_c has no effect on the conditional distribution, so the second term is unaffected.

- To minimize the first term, we **set the marginal to the observed marginal**, just as in IPF.
 - Note that this is only good when the model is decomposable !
- We can interpret IPF updates as retaining the “old” conditional probabilities $p^{(t)}(\mathbf{x}_{-c} | \mathbf{x}_c)$ while replacing the “old” marginal probability $p^{(t)}(\mathbf{x}_c)$ with the observed marginal $\tilde{p}(\mathbf{x}_c)$.

MLE for undirected graphical models

- Is the graph decomposable (triangulated)?
- Are all the clique potentials defined on maximal cliques (not sub-cliques)? e.g., ψ_{123} , ψ_{234} not ψ_{12} , ψ_{23} , ...

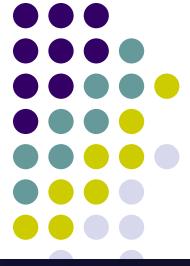


- Are the clique potentials full tables (or Gaussians), or parameterized more compactly, e.g. $\psi_c(\mathbf{x}_c) = \exp\left(\sum_k \theta_k f_k(\mathbf{x}_c)\right)$?

Decomposable?	Max clique?	Tabular?	Method
✓	✓	✓	Direct
-	-	✓	IPF
-	-	-	Gradient
-	-	-	GIS

Feature-based Clique Potentials

- So far we have discussed the most general form of an undirected graphical model in which cliques are parameterized by general “**tabular**” potential functions $\psi_c(x_c)$.
- But for large cliques these general potentials are exponentially costly for inference and have exponential numbers of parameters that we must learn from limited data.
- One solution: change the graphical model to make cliques smaller. But this changes the dependencies, and may force us to make more independence assumptions than we would like.
- Another solution: keep the same graphical model, but use a less general parameterization of the clique potentials.
- This is the idea behind feature-based models.



Features

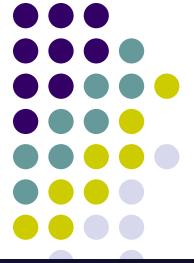
- Consider a clique x_c of random variables in a UGM, e.g. three consecutive characters $c_1c_2c_3$ in a string of English text.
- How would we build a model of $p(c_1c_2c_3)$?
 - If we use a single clique function over $c_1c_2c_3$, the full joint clique potential would be huge: $26^3 - 1$ parameters.
 - However, we often know that some particular joint settings of the variables in a clique are quite likely or quite unlikely. e.g. **ing**, **ate**, **ion**, **?ed**, **qu?**, **jkx**, **zzz**,...
- A “feature” is a function which is vacuous over all joint settings except a few particular ones on which it is high or low.
 - For example, we might have $f_{\text{ing}}(c_1c_2c_3)$ which is 1 if the string is 'ing' and 0 otherwise, and similar features for '?ed', etc.
- We can also define features when the inputs are continuous. Then the idea of a cell on which it is active disappears, but we might still have a compact parameterization of the feature.

Features as Micropotentials

- By exponentiating them, each feature function can be made into a “micropotential”. We can **multiply** these **micropotentials** together to get a **clique potential**.
- Example: a clique potential $\psi(c_1 c_2 c_3)$ could be expressed as:

$$\begin{aligned}\psi_c(c_1, c_2, c_3) &= e^{\theta_{\text{ing}} f_{\text{ing}}} \times e^{\theta_{\text{ed}} f_{\text{ed}}} \times \dots \\ &= \exp \left\{ \sum_{k=1}^K \theta_k f_k(c_1, c_2, c_3) \right\}\end{aligned}$$

- This is still a potential over 26^3 possible settings, but only uses K parameters if there are K features.
 - By having one indicator function per combination of x_c , we recover the standard tabular potential.



Combining Features

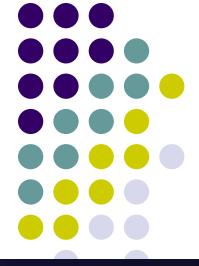
- Each feature has a weight θ_k which represents the numerical strength of the feature and whether it increases or decreases the probability of the clique.
- The marginal over the clique is a generalized exponential family distribution, actually, a GLIM:

$$p(c_1, c_2, c_3) \propto \exp \left\{ \theta_{\text{ing}} f_{\text{ing}}(c_1, c_2, c_3) + \theta_{\text{?ed}} f_{\text{?ed}}(c_1, c_2, c_3) + \theta_{\text{qu?}} f_{\text{qu?}}(c_1, c_2, c_3) + \theta_{\text{zzz}} f_{\text{zzz}}(c_1, c_2, c_3) + \dots \right\}$$

- In general, the features may be overlapping, unconstrained indicators or any function of any subset of the clique variables:

$$\psi_c(\mathbf{x}_c) \stackrel{\text{def}}{=} \exp \left\{ \sum_{i \in \mathcal{I}_c} \theta_k f_k(\mathbf{x}_{c_i}) \right\}$$

- How can we combine feature into a probability model?



Feature Based Model

- We can multiply these clique potentials as usual:

$$p(\mathbf{x}) = \frac{1}{Z(\theta)} \prod_c \psi_c(\mathbf{x}_c) = \frac{1}{Z(\theta)} \exp \left\{ \sum_c \sum_{i \in \mathcal{I}_c} \theta_i f_i(\mathbf{x}_{c_i}) \right\}$$

- However, in general we can forget about associating features with cliques and just use a simplified form:

$$p(\mathbf{x}) = \frac{1}{Z(\theta)} \exp \left\{ \sum_i \theta_i f_i(\mathbf{x}_{c_i}) \right\}$$

- This is just our friend the exponential family model, with the features as sufficient statistics!
- Learning: recall that in IPF, we have $\psi_c^{(t+1)}(\mathbf{x}_c) = \psi_c^{(t)}(\mathbf{x}_c) \frac{\tilde{p}(\mathbf{x}_c)}{p^{(t)}(\mathbf{x}_c)}$
 - **Not obvious how to use this rule to update the weights and features individually !!!**

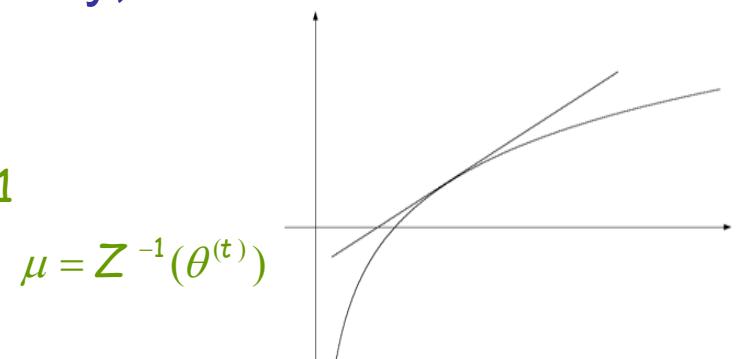
MLE of Feature Based UGMs

- Scaled likelihood function

$$\begin{aligned}
 \tilde{\ell}(\theta; \mathcal{D}) &= \ell(\theta; \mathcal{D})/N = \frac{1}{N} \sum_n \log p(x_n | \theta) \\
 &= \sum_x \tilde{p}(x) \log p(x | \theta) \\
 &= \sum_x \tilde{p}(x) \sum_i \theta_i f_i(x) - \log Z(\theta)
 \end{aligned}$$

- Instead of optimizing this objective directly, we attack its lower bound
 - The logarithm has a linear upper bound ...

$$\log Z(\theta) \leq \mu Z(\theta) - \log \mu - 1$$

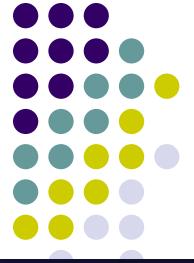


- This bound holds for all μ , in particular, for

- Thus we have

$$\tilde{\ell}(\theta; \mathcal{D}) \geq \sum_x \tilde{p}(x) \sum_i \theta_i f_i(x) - \frac{Z(\theta)}{Z(\theta^{(t)})} - \log Z(\theta^{(t)}) + 1$$

Generalized Iterative Scaling (GIS)



- Lower bound of scaled loglikelihood

$$\tilde{\ell}(\theta; \mathcal{D}) \geq \sum_x \tilde{p}(x) \sum_i \theta_i f_i(x) - \frac{\mathcal{Z}(\theta)}{\mathcal{Z}(\theta^{(t)})} - \log \mathcal{Z}(\theta^{(t)}) + 1$$

- Define $\Delta\theta_i^{(t)} \stackrel{\text{def}}{=} \theta_i - \theta_i^{(t)}$

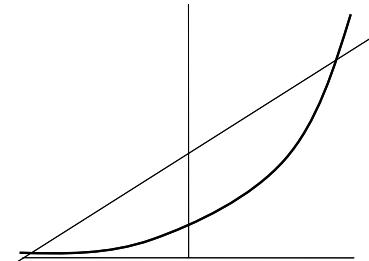
$$\begin{aligned} \tilde{\ell}(\theta; \mathcal{D}) &\geq \sum_x \tilde{p}(x) \sum_i \theta_i f_i(x) - \frac{1}{\mathcal{Z}(\theta^{(t)})} \sum_x \exp\left\{\sum_i \theta_i f_i(x)\right\} - \log \mathcal{Z}(\theta^{(t)}) + 1 \\ &= \sum_i \theta_i \sum_x \tilde{p}(x) f_i(x) - \frac{1}{\mathcal{Z}(\theta^{(t)})} \sum_x \exp\left\{\sum_i \theta_i^{(t)} f_i(x)\right\} \exp\left\{\sum_i \Delta\theta_i^{(t)} f_i(x)\right\} - \log \mathcal{Z}(\theta^{(t)}) + 1 \\ &= \sum_i \theta_i \sum_x \tilde{p}(x) f_i(x) - \sum_x p(x | \theta^{(t)}) \exp\left\{\sum_i \Delta\theta_i^{(t)} f_i(x)\right\} - \log \mathcal{Z}(\theta^{(t)}) + 1 \end{aligned}$$

- Relax again

- Assume $f_i(x) \geq 0$, $\sum_i f_i(x) = 1$
- Convexity of exponential: $\exp\left(\sum_i \pi_i x_i\right) \leq \sum_i \pi_i \exp(x_i)$

- We have:

$$\tilde{\ell}(\theta; \mathcal{D}) \geq \sum_i \theta_i \sum_x \tilde{p}(x) f_i(x) - \sum_x p(x | \theta^{(t)}) \sum_i f_i(x) \exp(\Delta\theta_i^{(t)}) - \log \mathcal{Z}(\theta^{(t)}) + 1 \stackrel{\text{def}}{=} \Lambda(\theta)$$



GIS

- Lower bound of scaled loglikelihood

$$\tilde{\ell}(\theta; D) \geq \sum_i \theta_i \sum_x \tilde{p}(x) f_i(x) - \sum_x p(x | \theta^{(t)}) \sum_i f_i(x) \exp(\Delta \theta_i^{(t)}) - \log Z(\theta^{(t)}) + 1 \stackrel{\text{def}}{=} \Lambda(\theta)$$

- Take derivative: $\frac{\partial \Lambda}{\partial \theta_i} = \sum_x \tilde{p}(x) f_i(x) - \exp(\Delta \theta_i^{(t)}) \sum_x p(x | \theta^{(t)}) f_i(x)$

- Set to zero

$$e^{\Delta \theta_i^{(t)}} = \frac{\sum_x \tilde{p}(x) f_i(x)}{\sum_x p(x | \theta^{(t)}) f_i(x)} = \frac{\sum_x \tilde{p}(x) f_i(x)}{\sum_x p^{(t)}(x) f_i(x)} Z(\theta^{(t)})$$

- where $p^{(t)}(x)$ is the unnormalized version of $p(x | \theta^{(t)})$

- Update $\theta_i^{(t+1)} = \theta_i^{(t)} + \Delta \theta_i^{(t)} \Rightarrow p^{(t+1)}(x) = p^{(t)}(x) \prod_i e^{\Delta \theta_i^{(t)} f_i(x)}$

$$\begin{aligned} p^{(t+1)}(x) &= \frac{p^{(t)}(x)}{Z(\theta^{(t)})} \prod_i \left(\frac{\sum_x \tilde{p}(x) f_i(x)}{\sum_x p^{(t)}(x) f_i(x)} Z(\theta^{(t)}) \right)^{f_i(x)} \\ &\Rightarrow \frac{p^{(t)}(x)}{Z(\theta^{(t)})} \prod_i \left(\frac{\sum_x \tilde{p}(x) f_i(x)}{\sum_x p^{(t)}(x) f_i(x)} \right)^{f_i(x)} (Z(\theta^{(t)}))^{\sum f_i(x)} \\ &= p^{(t)}(x) \prod_i \left(\frac{\sum_x \tilde{p}(x) f_i(x)}{\sum_x p^{(t)}(x) f_i(x)} \right)^{f_i(x)} \end{aligned}$$

Recall IPF:

$$\psi_c^{(t+1)}(\mathbf{x}_c) = \psi_c^{(t)}(\mathbf{x}_c) \frac{\tilde{p}(\mathbf{x}_c)}{p^{(t)}(\mathbf{x}_c)}$$

Summary

- IPF is a general algorithm for finding MLE of UGMs.
 - a **fixed-point equation** for ψ_c over single cliques, coordinate ascent
 - I-projection in the clique marginal space
 - Requires the potential to be fully parameterized
 - The clique described by the potentials do not have to be max-clique
 - For fully decomposable model, reduces to a single step iteration
- GIS
 - Iterative scaling on general UGM with feature-based potentials
 - IPF is a special case of GIS which the clique potential is built on features defined as an indicator function of clique configurations.

GIS:

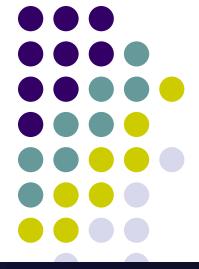
$$p^{(t+1)}(x) = p^{(t)}(x) \prod_i \left(\frac{\sum_x \tilde{p}(x) f_i(x)}{\sum_x p^{(t)}(x) f_i(x)} \right)^{f_i(x)}$$

$$\theta_i^{(t+1)} = \theta_i^{(t)} + \log \left(\frac{\sum_x \tilde{p}(x) f_i(x)}{\sum_x p^{(t)}(x) f_i(x)} \right)$$

IPF:

$$\psi_c^{(t+1)}(\mathbf{x}_c) = \psi_c^{(t)}(\mathbf{x}_c) \frac{\tilde{p}(\mathbf{x}_c)}{p^{(t)}(\mathbf{x}_c)}$$

Where does the exponential form come from?



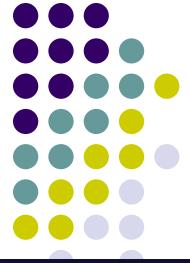
- Review: Maximum Likelihood for exponential family

$$\begin{aligned}\ell(\theta; \mathcal{D}) &= \sum_x m(x) \log p(x | \theta) \\ &= \sum_x m(x) \left(\sum_i \theta_i f_i(x) - \log Z(\theta) \right) \\ &= \sum_x m(x) \sum_i \theta_i f_i(x) - N \log Z(\theta)\end{aligned}$$

$$\begin{aligned}\frac{\partial}{\partial \theta_i} \ell(\theta; \mathcal{D}) &= \sum_x m(x) f_i(x) - N \frac{\partial}{\partial \theta_i} \log Z(\theta) \\ &= \sum_x m(x) f_i(x) - N \sum_x p(x | \theta) f_i(x)\end{aligned}$$

$$\Rightarrow \sum_x p(x | \theta) f_i(x) = \sum_x \frac{m(x)}{N} f_i(x) = \sum_x \tilde{p}(x | \theta) f_i(x)$$

- i.e., At ML estimate, the expectations of the sufficient statistics under the model must match empirical feature average.



Maximum Entropy

- We can approach the modeling problem from an entirely different point of view. Begin with some fixed feature expectations:

$$\sum_x p(x) f_i(x) = \alpha_i$$

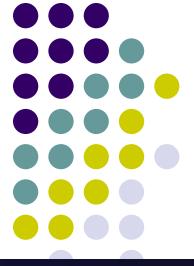
- Assuming expectations are consistent, there may exist many distributions which satisfy them. Which one should we select?
 - The most uncertain or flexible one, i.e., the one with maximum entropy.
- This yields a new optimization problem:

$$\max_p H(p(x)) = -\sum_x p(x) \log p(x)$$

$$\text{s.t. } \sum_x p(x) f_i(x) = \alpha_i$$

$$\sum_x p(x) = 1$$

This is a **variational** definition of a distribution!



Solution to the MaxEnt Problem

- To solve the MaxEnt problem, we use Lagrange multipliers:

$$L = -\sum_x p(x) \log p(x) - \sum_i \theta_i \left(\sum_x p(x) f_i(x) - \alpha_i \right) - \mu \left(\sum_x p(x) - 1 \right)$$

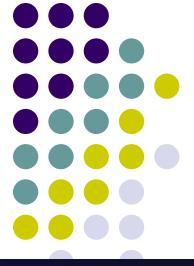
$$\frac{\partial L}{\partial p(x)} = 1 + \log p(x) - \sum_i \theta_i f_i(x) - \mu$$

$$p^*(x) = e^{\mu-1} \exp \left\{ \sum_i \theta_i f_i(x) \right\}$$

$$Z(\theta) = e^{\mu-1} = \sum_x \exp \left\{ \sum_i \theta_i f_i(x) \right\} \quad (\text{since } \sum_x p^*(x) = 1)$$

$$p(x|\theta) = \frac{1}{Z(\theta)} \exp \left\{ \sum_i \theta_i f_i(x) \right\}$$

- So feature constraints + MaxEnt \Rightarrow **exponential family**.
- Problem is strictly convex w.r.t. p , so solution is unique.

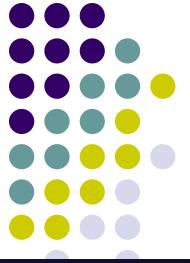


A more general MaxEnt problem

$$\begin{aligned} \min_p \quad & \text{KL}(p(x) \| h(x)) \\ & \stackrel{\text{def}}{=} \sum_x p(x) \log \frac{p(x)}{h(x)} = -H(p) - \sum_x p(x) \log h(x) \end{aligned}$$

$$\begin{aligned} \text{s.t.} \quad & \sum_x p(x) f_i(x) = \alpha_i \\ & \sum_x p(x) = 1 \end{aligned}$$

$$\Rightarrow \quad p(x|\theta) = \frac{1}{Z(\theta)} h(x) \exp \left\{ \sum_i \theta_i f_i(x) \right\}$$



Constraints from Data

- Where do the constraints α_i come from?
- Just as before, measure the empirical counts on the training data:

$$\alpha_i = \sum_x \frac{m(x)}{N} f_i(x) = \sum_x \tilde{p}(x) f_i(x)$$

- This also ensures consistency automatically.
- Known as the “method of moments”. (c.f. law of large numbers)
- We have seen a case of convex duality:
 - In one case, we assume exponential family and show that ML implies model expectations must match empirical expectations.
 - In the other case, we assume model expectations must match empirical feature counts and show that MaxEnt implies exponential family distribution.
 - No duality gap \Rightarrow yield the same value of the objective

Geometric interpretation

- All exponential family distribution:

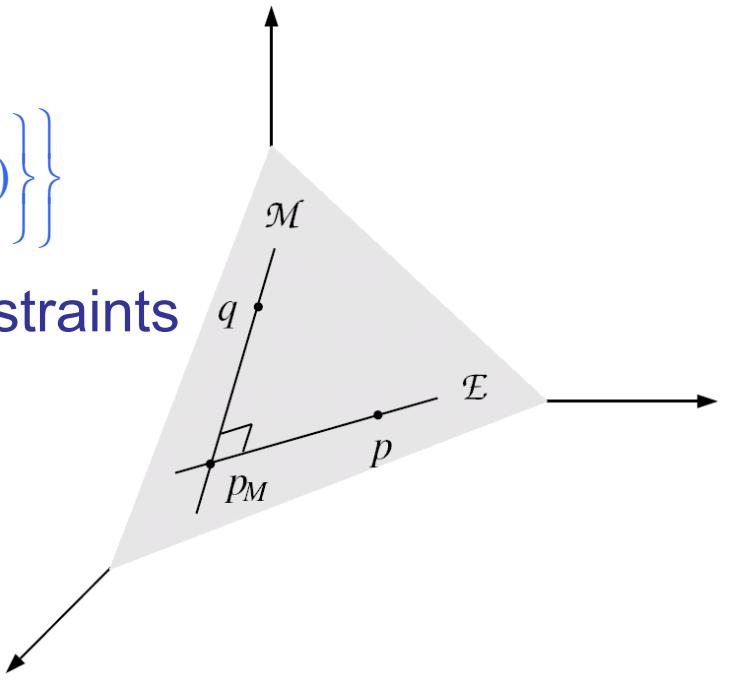
$$\mathcal{E} = \left\{ p(x) : p(x|\theta) = \frac{1}{Z(\theta)} h(x) \exp\left\{ \sum_i \theta_i f_i(x) \right\} \right\}$$

- All distributions satisfying moment constraints

$$\mathcal{M} = \left\{ p(x) : \sum_x p(x) f_i(x) = \sum_x \tilde{p}(x) f_i(x) \right\}$$

- Pythagorean theorem

$$\text{KL}(q \parallel p) = \text{KL}(q \parallel p_M) + \text{KL}(p_M \parallel p)$$



MaxEnt :

$$\min_p \text{KL}(q \parallel h)$$

s.t. $q \in \mathcal{M}$

$$\text{KL}(q \parallel h) = \text{KL}(q \parallel p_M) + \text{KL}(p_M \parallel h)$$

MaxLik :

$$\min_p \text{KL}(\tilde{p} \parallel p)$$

s.t. $q \in \mathcal{E}$

$$\text{KL}(\tilde{p} \parallel p) = \text{KL}(p \parallel p_M) + \text{KL}(p_M \parallel p)$$

Summary

- Exponential family distribution can be viewed as the solution to an variational expression --- the maximum entropy!
- The max-entropy principle to parameterization offers a dual perspective to the MLE.