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 Why? 

Sometimes an UNDIRECTED
association graph makes 
more sense and/or is more 
informative
 gene expressions may be influenced 

by unobserved factor that are post-
transcriptionally regulated

 The unavailability of the state of B 
results in a constrain over A and C

B
A C

B
A C

B
A C

Undirected Graphical Models
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ML Structural Learning via 
Neighborhood Selection for 

completely observed 
MRF Data
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Gaussian Graphical Models
 Multivariate Gaussian density:

 WOLG:  let

 We can view this as a continuous Markov Random Field with 
potentials defined on every node and edge:
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Pairwise MRF (e.g., Ising Model)
 Assuming the nodes are discrete, and edges are weighted, 

then for a sample xd, we have 
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The covariance and the precision 
matrices  
 Covariance matrix

 Graphical model interpretation?

 Precision matrix

 Graphical model interpretation?
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Sparse precision vs. sparse 
covariance in GGM
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Another example

 How to estimate this MRF?
 What if p >> n

 MLE does not exist in general!
 What about only learning a “sparse” graphical model?

 This is possible when s=o(n)
 Very often it is the structure of the GM that is more interesting …
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Recall lasso 
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Graph Regression

Lasso:Neighborhood selection

10© Eric Xing @ CMU, 2005-2017



Graph Regression
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Graph Regression

It can be shown that:
given iid samples, and under several technical conditions (e.g., 
"irrepresentable"), the recovered structured is "sparsistent" even when p >> 
n 
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Learning Ising Model 
(i.e. pairwise MRF)
 Assuming the nodes are discrete, and edges are weighted, 

then for a sample xd, we have 

 It can be shown following the same logic that we can use L_1 
regularized logistic regression to obtain a sparse estimate of 
the neighborhood of each variable in the discrete case.
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Consistency
 Theorem: for the graphical regression algorithm, under 

certain verifiable conditions (omitted here for simplicity):

Note the from this theorem one should see that the regularizer is not actually 
used to introduce an “artificial” sparsity bias, but a devise to ensure consistency 
under finite data and high dimension condition.
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ML Parameter Est. for 
completely observed MRFs of 

given structure

 The data:
{ (z1,x1), (z2,x2), (z3,x3), ... (zN,xN)}

X1

X4X3

X2

15© Eric Xing @ CMU, 2005-2017



Recap: MLE for BNs
 Assuming the parameters for each CPD are globally independent, 

and all nodes are fully observed, then the log-likelihood function 
decomposes into a sum of local terms, one per node:
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MLE for undirected graphical 
models
 For directed graphical models, the log-likelihood decomposes 

into a sum of terms, one per family (node plus parents).
 For undirected graphical models, the log-likelihood does not 

decompose, because the normalization constant Z is a 
function of all the parameters

 In general, we will need to do inference (i.e., marginalization) 
to learn parameters for undirected models, even in the fully 
observed case.
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Log Likelihood for UGMs with 
tabular clique potentials
 Sufficient statistics: for a UGM (V,E), the number of times that a 

configuration x (i.e., XV=x) is observed in a dataset D={x1,…,xN} can 
be represented as follows:

 In terms of the counts, the log likelihood is given by:

 There is a nasty log Z in the likelihood
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Log Likelihood for UGMs with 
tabular clique potentials
 Sufficient statistics: for a UGM (V,E), the number of times that a 

configuration x (i.e., XV=x) is observed in a dataset D={x1,…,xN} can 
be represented as follows:

 In terms of the counts, the log likelihood is given by:

 There is a nasty log Z in the likelihood
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Derivative of log Likelihood
 Log-likelihood: 

 First term:

 Second term:
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Conditions on Clique Marginals
 Derivative of log-likelihood

 Hence, for the maximum likelihood parameters, we know that:

 In other words, at the maximum likelihood setting of the 
parameters, for each clique, the model marginals must be 
equal to the observed marginals (empirical counts).

 This doesn’t tell us how to get the ML parameters, it just gives 
us a condition that must be satisfied when we have them.
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MLE for undirected graphical 
models
 Is the graph decomposable (triangulated)?
 Are all the clique potentials defined on maximal cliques (not 

sub-cliques)? e.g., 123,  234 not  12,  23, …

 Are the clique potentials full tables (or Gaussians), or 
parameterized more compactly, e.g.                                  ?

X1

X4X3

X2 X1

X4X3

X2

 
c ckkcc f )(exp)( xx 
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Properties on MLE of clique 
potentials 
 For decomposable models, where potentials are defined on 

maximal cliques, the MLE of clique potentials equate to the 
empirical marginals (or conditionals) of the corresponding 
clique. Thus the MLE can be solved by inspection!!

 If the graph is non-decomposable, and or the potentials are 
defined on non-maximal cliques (e.g.,  12,  34), we could not 
equate MLE of cliques potentials to empirical marginals (or 
conditionals).
 Potential expressed as a tabular form: IPF

 Feature-based potentials: GIS
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MLE for decomposable 
undirected models
 Decomposable models:

 G is decomposable  G is triangulated  G has a junction tree

 Potential based representation: 

 Consider a chain X1 − X2 − X3. The cliques are (X1,X2 ) and 
(X2,X3); the separator is X2
 The empirical marginals must equal the model marginals.

 Let us guess that
 We can verify that such a guess satisfies the conditions:

and similarly
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MLE for decomposable 
undirected models (cont.)
 Let us guess that
 To compute the clique potentials, just equate them to the 

empirical marginals (or conditionals), i.e., the separator must 
be divided into one of its neighbors. Then Z = 1.

 One more example:
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Non-decomposable and/or with 
non-maximal clique potentials
 If the graph is non-decomposable, and or the potentials are 

defined on non-maximal cliques (e.g.,  12,  34), we could not 
equate empirical marginals (or conditionals) to MLE of cliques 
potentials.
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MLE for undirected graphical 
models
 Is the graph decomposable (triangulated)?
 Are all the clique potentials defined on maximal cliques (not 

sub-cliques)? e.g., 123,  234 not  12,  23, …

 Are the clique potentials full tables (or Gaussians), or 
parameterized more compactly, e.g.                                  ?

X1

X4X3

X2 X1

X4X3

X2

 
c ckkcc f )(exp)( xx 

Decomposable? Max clique? Tabular? Method
   Direct
- -  IPF
- - - Gradient
- - - GIS
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Iterative Proportional Fitting (IPF)
 From the derivative of the likelihood:

 we can derive another relationship:

in which c appears implicitly in the model marginal p(xc).

 This is therefore a fixed-point equation for c. 
 Solving c in closed-form is hard, because it appears on both sides of this implicit 

nonlinear equation.

 The idea of IPF is to hold c fixed on the right hand side (both in the 
numerator and denominator) and solve for it on the left hand side. We cycle 
through all cliques, then iterate:
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Properties of IPF Updates
 IPF iterates a set of fixed-point equations:

 However, we can prove it is also a coordinate ascent 
algorithm (coordinates = parameters of clique potentials).

 Hence at each step, it will increase 
the log-likelihood, and it will converge 
to a global maximum.

 I-projection: finding a distribution with 
the correct marginals that has the 
maximal entropy
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KL Divergence View
 IPF can be seen as coordinate ascent in the likelihood using 

the way of expressing likelihoods using KL divergences.
 We can show that maximizing the log likelihood is equivalent 

to minimizing the KL divergence (cross entropy) from the 
observed distribution to the model distribution:

 Using a property of KL divergence based on the conditional 
chain rule: p(x) = p(xa)p(xb|xa):
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IPF minimizes KL divergence
 Putting things together, we have

It can be shown that changing the clique potential c has no effect 
on the conditional distribution, so the second term in unaffected. 

 To minimize the first term, we set the marginal to the 
observed marginal, just as in IPF.
 Note that this is only good when the model is decomposable !

 We can interpret IPF updates as retaining the “old” conditional 
probabilities p(t)(x-c|xc) while replacing the “old” marginal 
probability p(t)(xc) with the observed marginal         .
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MLE for undirected graphical 
models
 Is the graph decomposable (triangulated)?
 Are all the clique potentials defined on maximal cliques (not 

sub-cliques)? e.g., 123,  234 not  12,  23, …

 Are the clique potentials full tables (or Gaussians), or 
parameterized more compactly, e.g.                                  ?

X1

X4X3

X2 X1

X4X3

X2

 
c ckkcc f )(exp)( xx 

Decomposable? Max clique? Tabular? Method
   Direct
- -  IPF
- - - Gradient
- - - GIS
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Feature-based Clique Potentials
 So far we have discussed the most general form of an 

undirected graphical model in which cliques are 
parameterized by general “tabular” potential functions c(xc).

 But for large cliques these general potentials are 
exponentially costly for inference and have exponential 
numbers of parameters that we must learn from limited data.

 One solution: change the graphical model to make cliques 
smaller. But this changes the dependencies, and may force 
us to make more independence assumptions than we would 
like.

 Another solution: keep the same graphical model, but use a 
less general parameterization of the clique potentials.

 This is the idea behind feature-based models.
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Features
 Consider a clique xc of random variables in a UGM, e.g. three 

consecutive characters c1c2c3 in a string of English text.
 How would we build a model of p(c1c2c3)?

 If we use a single clique function over c1c2c3, the full joint clique potential would 
be huge: 263−1 parameters.

 However, we often know that some particular joint settings of the variables in a 
clique are quite likely or quite unlikely. e.g. ing, ate, ion, ?ed, qu?, jkx, zzz,...

 A “feature” is a function which is vacuous over all joint settings 
except a few particular ones on which it is high or low.
 For example, we might have fing(c1c2c3) which is 1 if the string is ’ing’ and 0 

otherwise, and similar features for ’?ed’, etc.

 We can also define features when the inputs are continuous. 
Then the idea of a cell on which it is active disappears, but we 
might still have a compact parameterization of the feature.
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Features as Micropotentials
 By exponentiating them, each feature function can be made 

into a “micropotential”. We can multiply these micropotentials 
together to get a clique potential.

 Example: a clique potential (c1c2c3) could be expressed as:

 This is still a potential over 263 possible settings, but only 
uses K parameters if there are K features.
 By having one indicator function per combination of xc, we recover the standard 

tabular potential.
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Combining Features
 Each feature has a weight k which represents the numerical 

strength of the feature and whether it increases or decreases 
the probability of the clique.

 The marginal over the clique is a generalized exponential 
family distribution, actually, a GLIM:

 In general, the features may be overlapping, unconstrained 
indicators or any function of any subset of the clique 
variables:

 How can we combine feature into a probability model?
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Feature Based Model
 We can multiply these clique potentials as usual:

 However, in general we can forget about associating features 
with cliques and just use a simplified form:

 This is just our friend the exponential family model, with the 
features as sufficient statistics!

 Learning: recall that in IPF, we have
 Not obvious how to use this rule to update the weights and features 

individually !!!
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MLE of Feature Based UGMs
 Scaled likelihood function

 Instead of optimizing this objective directly, we attack its lower 
bound

 The logarithm has a linear upper bound …

 This bound holds for all , in particular, for

 Thus we have 
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Generalized Iterative Scaling 
(GIS)
 Lower bound of scaled loglikelihood

 Define

 Relax again
 Assume 
 Convexity of exponential:  

 We have:
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GIS
 Lower bound of scaled loglikelihood

 Take derivative:

 Set to zero

 where p(t)(x) is the unnormalized version of p(x|(t))

 Update
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Recall IPF:
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Summary
 IPF is a general algorithm for finding MLE of UGMs.

 a fixed-point equation for c over single cliques, coordinate ascent
 I-projection in the clique marginal space
 Requires the potential to be fully parameterized
 The clique described by the potentials do not have to be max-clique
 For fully decomposable model, reduces to a single step iteration

 GIS
 Iterative scaling on general UGM with feature-based potentials
 IPF is a special case of GIS which the clique potential is built on features defined 

as an indicator function of clique configurations.
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Where does the exponential form 
come from?
 Review: Maximum Likelihood for exponential family

 i.e., At ML estimate, the expectations of the sufficient statistics 
under the model must match empirical feature average.
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Maximum Entropy
 We can approach the modeling problem from an entirely 

different point of view. Begin with some fixed feature 
expectations:

 Assuming expectations are consistent, there may exist many 
distributions which satisfy them. Which one should we select?
 The most uncertain or flexible one, i.e., the one with maximum entropy.

 This yields a new optimization problem:
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This is a variational
definition of a distribution!
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Solution to the MaxEnt Problem
 To solve the MaxEnt problem, we use Lagrange multipliers:

 So feature constraints + MaxEnt  exponential family.
 Problem is strictly convex w.r.t. p, so solution is unique.
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A more general MaxEnt problem
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Constraints from Data
 Where do the constraints i come from?
 Just as before, measure the empirical counts on the training 

data:

 This also ensures consistency automatically.
 Known as the “method of moments”. (c.f. law of large 

numbers)
 We have seen a case of convex duality:

 In one case, we assume exponential family and show that ML implies model 
expectations must match empirical expectations.

 In the other case, we assume model expectations must match empirical feature 
counts and show that MaxEnt implies exponential family distribution.

 No duality gap  yield the same value of the objective

)()(~)()( xxxx
i

xx
iN

m
i fpf  

46© Eric Xing @ CMU, 2005-2017



Geometric interpretation
 All exponential family distribution:

 All distributions satisfying moment constraints

 Pythagorean theorem
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Summary
 Exponential family distribution can be viewed as the solution 

to an variational expression --- the maximum entropy!
 The max-entropy principle to parameterization offers a dual 

perspective to the MLE.
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